ararpy 0.1.199__py3-none-any.whl → 0.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ararpy/Example - Check arr.py +52 -0
- ararpy/Example - Granite Cooling History.py +411 -0
- ararpy/Example - Plot temperature calibration.py +291 -0
- ararpy/Example - Show MDD results.py +561 -0
- ararpy/Example - Show all Kfs age spectra.py +344 -0
- ararpy/Example - Show random walk results.py +363 -0
- ararpy/Example - Tc calculation.py +437 -0
- ararpy/__init__.py +3 -4
- ararpy/calc/age.py +34 -36
- ararpy/calc/arr.py +0 -20
- ararpy/calc/basic.py +26 -3
- ararpy/calc/corr.py +131 -85
- ararpy/calc/jvalue.py +7 -5
- ararpy/calc/plot.py +1 -2
- ararpy/calc/raw_funcs.py +41 -2
- ararpy/calc/regression.py +224 -132
- ararpy/files/arr_file.py +2 -1
- ararpy/files/basic.py +0 -22
- ararpy/files/calc_file.py +107 -84
- ararpy/files/raw_file.py +242 -229
- ararpy/smp/basic.py +133 -34
- ararpy/smp/calculation.py +6 -6
- ararpy/smp/corr.py +339 -153
- ararpy/smp/diffusion_funcs.py +345 -36
- ararpy/smp/export.py +247 -129
- ararpy/smp/info.py +2 -2
- ararpy/smp/initial.py +93 -45
- ararpy/smp/json.py +2 -2
- ararpy/smp/plots.py +144 -164
- ararpy/smp/raw.py +11 -15
- ararpy/smp/sample.py +222 -181
- ararpy/smp/style.py +26 -7
- ararpy/smp/table.py +42 -33
- ararpy/thermo/atomic_level_random_walk.py +56 -48
- ararpy/thermo/basic.py +2 -2
- {ararpy-0.1.199.dist-info → ararpy-0.2.2.dist-info}/METADATA +10 -1
- ararpy-0.2.2.dist-info/RECORD +73 -0
- {ararpy-0.1.199.dist-info → ararpy-0.2.2.dist-info}/WHEEL +1 -1
- ararpy-0.1.199.dist-info/RECORD +0 -66
- {ararpy-0.1.199.dist-info → ararpy-0.2.2.dist-info}/licenses/LICENSE +0 -0
- {ararpy-0.1.199.dist-info → ararpy-0.2.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,363 @@
|
|
|
1
|
+
# Copyright (C) 2025 Yang. - All Rights Reserved
|
|
2
|
+
|
|
3
|
+
#!/usr/bin/env python
|
|
4
|
+
# -*- coding: UTF-8 -*-
|
|
5
|
+
"""
|
|
6
|
+
# ==========================================
|
|
7
|
+
# Copyright 2025 Yang
|
|
8
|
+
# ararpy - Example - Show random walk results
|
|
9
|
+
# ==========================================
|
|
10
|
+
#
|
|
11
|
+
#
|
|
12
|
+
#
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
import ararpy as ap
|
|
16
|
+
import numpy as np
|
|
17
|
+
import pdf_maker as pm
|
|
18
|
+
import os
|
|
19
|
+
|
|
20
|
+
import matplotlib
|
|
21
|
+
from matplotlib.collections import PathCollection
|
|
22
|
+
|
|
23
|
+
matplotlib.use('TkAgg')
|
|
24
|
+
matplotlib.rc('font',family='Arial', size=10)
|
|
25
|
+
import matplotlib.pyplot as plt
|
|
26
|
+
# 设置全局字体,确保中文正常显示
|
|
27
|
+
# plt.rcParams["font.family"] = ["SimHei"] # 中文字体
|
|
28
|
+
# plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
main_color = ['#397DA1', '#BA5624', '#212121', '#6C5D1E', '#BC3D85', '#3C6933'] # blue red black
|
|
32
|
+
middle_color = ['#83CDFA', '#F1B595', '#737373', '#C0A737', '#E9CDE1', '#84B775']
|
|
33
|
+
shallow_color = ['#E0F1FE', '#FBEBE3', '#DDDDDD', '#F9E16F', '#CB73B0', '#B8F1A7']
|
|
34
|
+
|
|
35
|
+
colors =[
|
|
36
|
+
'#397DA1', '#BA5624', '#212121', '#6C5D1E', '#BC3D85', '#3C6933',
|
|
37
|
+
'#83CDFA', '#F1B595', '#737373', '#C0A737', '#E9CDE1', '#84B775',
|
|
38
|
+
'#E0F1FE', '#FBEBE3', '#DDDDDD', '#F9E16F', '#CB73B0', '#B8F1A7',
|
|
39
|
+
]
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def export_to_pdf(axs, filename="unknown"):
|
|
43
|
+
|
|
44
|
+
params_list = {
|
|
45
|
+
"page_size": 'a4', "ppi": 72, "width": 9.5, "height": 6,
|
|
46
|
+
"pt_width": 0.8, "pt_height": 0.8, "pt_left": 0.16, "pt_bottom": 0.18,
|
|
47
|
+
"offset_top": 0, "offset_right": 0, "offset_bottom": 20, "offset_left": 30,
|
|
48
|
+
"plot_together": False, "show_frame": False,
|
|
49
|
+
'xlabel_offset': 8, 'ylabel_offset': 2
|
|
50
|
+
}
|
|
51
|
+
|
|
52
|
+
plot_data = {
|
|
53
|
+
"data": [transform(axs)],
|
|
54
|
+
"file_name": filename,
|
|
55
|
+
"plot_names": [f"plotname"],
|
|
56
|
+
}
|
|
57
|
+
|
|
58
|
+
filepath = os.path.join(r"C:\Users\Young\Downloads", f"{filename}.pdf")
|
|
59
|
+
cvs = [[ap.smp.export.get_cv_from_dict(plot, **params_list) for plot in plot_data['data']]]
|
|
60
|
+
for i in range(len(cvs[0])):
|
|
61
|
+
pt = cvs[0][i]._plot_areas[0]
|
|
62
|
+
title = pt.get_comp(comp_name="title")
|
|
63
|
+
title._y -= 2
|
|
64
|
+
title._z_index = 999
|
|
65
|
+
pt.text(50, title._y, text=f"({['a', 'b', 'c', 'd'][i]})", coordinate='pt', clip=False, size=8, z_index=299, v_align='top')
|
|
66
|
+
for comp in pt._components:
|
|
67
|
+
if isinstance(comp, pm.Scatter):
|
|
68
|
+
comp._type = 'rec'
|
|
69
|
+
comp._size = 1.5
|
|
70
|
+
for index, legned in enumerate(list(filter(lambda cp: cp.name() == 'legend', pt._components))):
|
|
71
|
+
legned._size = 7
|
|
72
|
+
legned._z_index = 250
|
|
73
|
+
legned._h_align = "left"
|
|
74
|
+
legned._v_align = "center"
|
|
75
|
+
if i == 0: # age spectra
|
|
76
|
+
legned._x = 175
|
|
77
|
+
legned._y = 40 + index * 10
|
|
78
|
+
elif i == 1: # cooling history
|
|
79
|
+
legned._x = 65
|
|
80
|
+
legned._y = 135 - index * 10
|
|
81
|
+
elif i == 2: # arrhenius
|
|
82
|
+
legned._x = 75
|
|
83
|
+
legned._y = 40 + index * 10
|
|
84
|
+
else:
|
|
85
|
+
legned._x = 65
|
|
86
|
+
legned._y = 40 + index * 10
|
|
87
|
+
for comp in pt._components:
|
|
88
|
+
if legned._text in comp.name() and "legend" in comp.name():
|
|
89
|
+
comp._z_index = 250
|
|
90
|
+
if isinstance(comp, pm.Scatter):
|
|
91
|
+
comp._x = legned._x - 10
|
|
92
|
+
comp._y = legned._y
|
|
93
|
+
if isinstance(comp, pm.Line):
|
|
94
|
+
comp._start = [legned._x - 16, legned._y]
|
|
95
|
+
comp._end = [legned._x - 4, legned._y]
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
filepath = ap.smp.export.export_chart_to_pdf(cvs, filename, filepath)
|
|
99
|
+
|
|
100
|
+
return filepath
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def read_sample(arr_file_path):
|
|
104
|
+
# 读取样品信息
|
|
105
|
+
if not arr_file_path.endswith('.arr'):
|
|
106
|
+
for root, dirs, files in os.walk(arr_file_path):
|
|
107
|
+
for file in files:
|
|
108
|
+
if file.endswith('.arr'):
|
|
109
|
+
arr_file_path = os.path.join(arr_file_path, file)
|
|
110
|
+
break
|
|
111
|
+
print(f"arr file: {arr_file_path}")
|
|
112
|
+
sample = ap.from_arr(file_path=arr_file_path)
|
|
113
|
+
name = sample.name()
|
|
114
|
+
sequence = sample.sequence()
|
|
115
|
+
nsteps = sequence.size
|
|
116
|
+
te = np.array(sample.TotalParam[124], dtype=np.float64)
|
|
117
|
+
ti = (np.array(sample.TotalParam[123], dtype=np.float64) / 60).round(2) # time in minute
|
|
118
|
+
nindex = {"40": 24, "39": 20, "38": 10, "37": 8, "36": 0}
|
|
119
|
+
argon = "39"
|
|
120
|
+
if argon in list(nindex.keys()):
|
|
121
|
+
ar = np.array(sample.DegasValues[nindex[argon]], dtype=np.float64) # 20-21 Argon
|
|
122
|
+
sar = np.array(sample.DegasValues[nindex[argon] + 1], dtype=np.float64)
|
|
123
|
+
elif argon == 'total':
|
|
124
|
+
all_ar = np.array(sample.CorrectedValues, dtype=np.float64) # 20-21 Argon
|
|
125
|
+
ar, sar = ap.calc.arr.add(*all_ar.reshape(5, 2, len(all_ar[0])))
|
|
126
|
+
ar = np.array(ar)
|
|
127
|
+
sar = np.array(sar)
|
|
128
|
+
else:
|
|
129
|
+
raise KeyError
|
|
130
|
+
age = np.array(sample.ApparentAgeValues[2], dtype=np.float64) # 2-3 age
|
|
131
|
+
sage = np.array(sample.ApparentAgeValues[3], dtype=np.float64)
|
|
132
|
+
f = np.cumsum(ar) / ar.sum()
|
|
133
|
+
|
|
134
|
+
# 组合data
|
|
135
|
+
dr2 = [1 for i in range(nsteps)]
|
|
136
|
+
ln_dr2 = [1 for i in range(nsteps)]
|
|
137
|
+
wt = [1 for i in range(nsteps)]
|
|
138
|
+
data = np.array([sequence.value, te, ti, age, sage, ar, sar, f, dr2, ln_dr2, wt]).tolist()
|
|
139
|
+
data.insert(0, (np.where(np.array(data[3]) > 0, True, False) & np.isfinite(data[3])).tolist())
|
|
140
|
+
data.insert(1, [1 for i in range(nsteps)])
|
|
141
|
+
for row in ap.calc.arr.transpose(data):
|
|
142
|
+
print(row)
|
|
143
|
+
return data, name
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def read_ads(ads_file_path):
|
|
147
|
+
released = []
|
|
148
|
+
release_name = []
|
|
149
|
+
|
|
150
|
+
ads_released = []
|
|
151
|
+
index = 1
|
|
152
|
+
if os.path.isdir(ads_file_path):
|
|
153
|
+
for (dirpath, dirnames, fs) in os.walk(ads_file_path):
|
|
154
|
+
for f in fs:
|
|
155
|
+
if f.endswith(".ads"):
|
|
156
|
+
file_path = os.path.join(ads_file_path, f)
|
|
157
|
+
if not os.path.exists(file_path):
|
|
158
|
+
continue
|
|
159
|
+
# if "k=100" not in f:
|
|
160
|
+
# continue
|
|
161
|
+
index += 1
|
|
162
|
+
release_name.append(f"Released{index}: {f}")
|
|
163
|
+
diff = ap.thermo.arw.read_ads(file_path)
|
|
164
|
+
print(f"{f = }, {len(diff.released_per_step) = }, {diff.atom_density = :.0e}")
|
|
165
|
+
print(f"{'kJ/mol, '.join([str(dom.energy / 1000) for dom in diff.domains])}")
|
|
166
|
+
print(f"{'kcal/mol, '.join([str(dom.energy / 4.181 / 1000) for dom in diff.domains])}")
|
|
167
|
+
ads_released.append(np.array(diff.released_per_step) / diff.natoms)
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
# for i in range(len(ads_released)):
|
|
171
|
+
# released.append([i + 1, sum(ar[0:i + 1]) / sum(ar), *ads_released[i]])
|
|
172
|
+
#
|
|
173
|
+
# spectra_data.append(released)
|
|
174
|
+
|
|
175
|
+
return ads_released, release_name
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
def plot_diff(loc, arr_file_path=None, argon=39):
|
|
179
|
+
ads_released, release_name = read_ads(loc)
|
|
180
|
+
|
|
181
|
+
fig, axs = plt.subplots(1, 1, figsize=(12, 8))
|
|
182
|
+
|
|
183
|
+
index = 0
|
|
184
|
+
for index, each_line in enumerate(ads_released):
|
|
185
|
+
axs.plot(list(range(1, len(each_line) + 1)), each_line, c=colors[index], linewidth=1, label=release_name[index])
|
|
186
|
+
|
|
187
|
+
if arr_file_path is not None:
|
|
188
|
+
sample = ap.from_arr(file_path=arr_file_path)
|
|
189
|
+
nindex = {"40": 24, "39": 20, "38": 10, "37": 8, "36": 0}
|
|
190
|
+
argon = str(argon)
|
|
191
|
+
if argon in list(nindex.keys()):
|
|
192
|
+
ar = np.array(sample.DegasValues[nindex[argon]], dtype=np.float64) # 20-21 Argon
|
|
193
|
+
sar = np.array(sample.DegasValues[nindex[argon] + 1], dtype=np.float64)
|
|
194
|
+
elif argon == 'total':
|
|
195
|
+
all_ar = np.array(sample.CorrectedValues, dtype=np.float64) # 20-21 Argon
|
|
196
|
+
ar, sar = ap.calc.arr.add(*all_ar.reshape(5, 2, len(all_ar[0])))
|
|
197
|
+
ar = np.array(ar)
|
|
198
|
+
sar = np.array(sar)
|
|
199
|
+
else:
|
|
200
|
+
raise KeyError
|
|
201
|
+
axs.plot(list(range(1, len(ar) + 1)), np.cumsum(ar) / np.sum(ar), c=colors[index+1], linewidth=1, label=f"{sample.name()}")
|
|
202
|
+
|
|
203
|
+
axs.set_title(f'Ads released', loc='center', y=1,)
|
|
204
|
+
axs.set_xlabel(f'Steps',)
|
|
205
|
+
axs.set_ylabel(f'Aumulative Argon Released (100%)',)
|
|
206
|
+
axs.legend(loc='lower right')
|
|
207
|
+
fig.tight_layout()
|
|
208
|
+
plt.show()
|
|
209
|
+
|
|
210
|
+
export_to_pdf(axs, filename="test_ads")
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def plot_spectra(loc, arr_file_path=None, argon=39, loc39=""):
|
|
214
|
+
|
|
215
|
+
ar = []
|
|
216
|
+
name = ""
|
|
217
|
+
if arr_file_path is not None:
|
|
218
|
+
sample = ap.from_arr(file_path=arr_file_path)
|
|
219
|
+
name = sample.name()
|
|
220
|
+
ar39 = np.array(sample.DegasValues[20], dtype=np.float64) # 20-21 Argon
|
|
221
|
+
ar40 = np.array(sample.DegasValues[24], dtype=np.float64)
|
|
222
|
+
print(f"{ar40 = }")
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
ads_released_ar40, release_name = read_ads(loc)
|
|
227
|
+
ads_released_ar39, release_name = read_ads(loc39)
|
|
228
|
+
|
|
229
|
+
fig, axs = plt.subplots(1, 1, figsize=(12, 8))
|
|
230
|
+
|
|
231
|
+
index = 0
|
|
232
|
+
for index, each_line in enumerate(ads_released_ar40):
|
|
233
|
+
_ = np.array(each_line) * sum(ar40)
|
|
234
|
+
ar40_model = [_[0]]
|
|
235
|
+
for i in range(1, len(_)):
|
|
236
|
+
ar40_model.append(_[i] - _[i - 1])
|
|
237
|
+
|
|
238
|
+
_ = np.array(ads_released_ar39[0]) * sum(ar39)
|
|
239
|
+
ar39_model = [_[0]]
|
|
240
|
+
for i in range(1, len(_)):
|
|
241
|
+
ar39_model.append(_[i] - _[i - 1])
|
|
242
|
+
ar39_model = ar39_model[:58]
|
|
243
|
+
print(f"{len(ar39_model) = }, {len(ar40_model) = }")
|
|
244
|
+
|
|
245
|
+
x, y1, y2 = ap.calc.spectra.get_data(np.array(ar40_model)/np.array(ar39_model), np.zeros(len(ar39_model)), ar39_model)
|
|
246
|
+
axs.plot(x, y1, c=colors[index], linewidth=1, label=release_name[index])
|
|
247
|
+
|
|
248
|
+
x, y1, y2 = ap.calc.spectra.get_data(ar40/ar39, np.zeros(len(ar40)), ar39)
|
|
249
|
+
axs.plot(x, y1, c=colors[index+1], linewidth=1, label=f"{name}")
|
|
250
|
+
|
|
251
|
+
axs.set_title(f'Ads spectra', loc='center', y=1,)
|
|
252
|
+
axs.set_xlabel(f'Steps',)
|
|
253
|
+
axs.set_ylabel(f'Aumulative Argon Released (100%)',)
|
|
254
|
+
axs.set_ylim(0, 8)
|
|
255
|
+
axs.legend(loc='lower right')
|
|
256
|
+
fig.tight_layout()
|
|
257
|
+
plt.show()
|
|
258
|
+
|
|
259
|
+
export_to_pdf(axs, filename="test_ads")
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
def transform(ax: plt.Axes):
|
|
264
|
+
xlabels = [i.get_text().replace('−', '-') for i in ax.get_xticklabels()]
|
|
265
|
+
ylabels = [i.get_text().replace('−', '-') for i in ax.get_yticklabels()]
|
|
266
|
+
linestyles = {'-': 'solid', '--': 'dashed', '-.': 'dashdot', ':': 'dotted'}
|
|
267
|
+
|
|
268
|
+
series = []
|
|
269
|
+
for i, line in enumerate(ax.lines):
|
|
270
|
+
xy_data = line.get_xydata() # [[x1, y1], [x2, y2], ...]
|
|
271
|
+
line_style = linestyles.get(line.get_linestyle(), 'solid')
|
|
272
|
+
series.append({
|
|
273
|
+
'type': 'series.line', 'id': f'line-{i}', 'name': f'line-{i}',
|
|
274
|
+
'color': line.get_color(), 'line_width': 1, 'line_style': line_style,
|
|
275
|
+
'data': xy_data, 'line_caps': 'none'
|
|
276
|
+
})
|
|
277
|
+
if bool(line._marker):
|
|
278
|
+
series.append({
|
|
279
|
+
'type': 'series.scatter', 'id': f'line-marker-{i}', 'name': f'line-marker-{i}',
|
|
280
|
+
'stroke_color': line.get_markeredgecolor(), 'fill_color': line.get_markerfacecolor(),
|
|
281
|
+
'data': xy_data, 'size': 2,
|
|
282
|
+
# 'symbol': line._marker.markers.get(line.get_marker(), 'square'),
|
|
283
|
+
'symbol': 'rec'
|
|
284
|
+
})
|
|
285
|
+
for i, collection in enumerate(ax.collections):
|
|
286
|
+
series.append({
|
|
287
|
+
'type': 'series.scatter', 'id': f'scatter-{i}', 'name': f'{collection.get_label()}',
|
|
288
|
+
'stroke_color': collection.get_edgecolor()[0][:3], 'fill_color': collection.get_edgecolor()[0][:3],
|
|
289
|
+
'data': collection.get_offsets(), 'size': 2,
|
|
290
|
+
'symbol': 'rec'
|
|
291
|
+
})
|
|
292
|
+
|
|
293
|
+
for i, text in enumerate(ax.texts):
|
|
294
|
+
xy_data = text.get_position() # [[x1, y1], [x2, y2], ...]
|
|
295
|
+
series.append({
|
|
296
|
+
'type': 'series.text', 'id': f'text-{i}', 'name': f'text-{i}',
|
|
297
|
+
'color': text.get_color(), 'data': [xy_data], 'text': text.get_text().replace('\n', '<r>'),
|
|
298
|
+
'size': 8
|
|
299
|
+
})
|
|
300
|
+
|
|
301
|
+
series.append({
|
|
302
|
+
'type': 'series.text', 'id': f'title', 'name': f'title',
|
|
303
|
+
'color': 'black', 'data': [[sum(ax.get_xlim()) / 2, ax.get_ylim()[1]]],
|
|
304
|
+
'h_align': "middle", 'v_align': "top",
|
|
305
|
+
'text': ax.get_title(), 'size': 8
|
|
306
|
+
})
|
|
307
|
+
|
|
308
|
+
if ax.legend_ is not None:
|
|
309
|
+
for handle, text in zip(ax.legend_.legend_handles, ax.legend_.texts):
|
|
310
|
+
series.append({
|
|
311
|
+
'type': 'series.text', 'id': f'legend', 'name': f'legend',
|
|
312
|
+
'color': text.get_color(), 'data': [[ax.get_xlim()[0], ax.get_ylim()[0]]],
|
|
313
|
+
'h_align': "left", 'v_align': "bottom",
|
|
314
|
+
'text': text.get_text(), 'size': 8
|
|
315
|
+
})
|
|
316
|
+
if isinstance(handle, plt.Line2D):
|
|
317
|
+
series.append({
|
|
318
|
+
'type': 'series.line', 'id': f'legend-line', 'name': f'legend-line-{text.get_text()}',
|
|
319
|
+
'color': handle.get_color(), 'data':[[ax.get_xlim()[0], ax.get_ylim()[0]], [ax.get_xlim()[1], ax.get_ylim()[1]]],
|
|
320
|
+
'line_width': 1, 'line_style': linestyles.get(handle.get_linestyle(), 'solid')
|
|
321
|
+
})
|
|
322
|
+
if isinstance(handle, PathCollection):
|
|
323
|
+
stroke_c = handle.get_edgecolor()[0][:3]
|
|
324
|
+
stroke_c = f"#{int(stroke_c[0]*255):02x}{int(stroke_c[1]*255):02x}{int(stroke_c[2]*255):02x}"
|
|
325
|
+
fill_c = handle.get_facecolor()[0][:3]
|
|
326
|
+
fill_c = f"#{int(fill_c[0]*255):02x}{int(fill_c[1]*255):02x}{int(fill_c[2]*255):02x}"
|
|
327
|
+
series.append({
|
|
328
|
+
'type': 'series.scatter', 'id': f'legend-scatter', 'name': f'legend-scatter-{text.get_text()}',
|
|
329
|
+
'stroke_color': stroke_c, 'fill_color': fill_c,
|
|
330
|
+
'data': [[sum(ax.get_xlim()) / 2, sum(ax.get_ylim()) / 2]],
|
|
331
|
+
'size': 2, 'symbol': 'rec'
|
|
332
|
+
})
|
|
333
|
+
|
|
334
|
+
data = {
|
|
335
|
+
'xAxis': [{
|
|
336
|
+
'extent': ax.get_xlim(), 'interval': xlabels, 'title': ax.get_xlabel(),
|
|
337
|
+
'nameLocation': 'middle', 'show_frame': True, 'label_size': 8, 'title_size': 8,
|
|
338
|
+
}],
|
|
339
|
+
'yAxis': [{
|
|
340
|
+
'extent': ax.get_ylim(), 'interval': ylabels, 'title': ax.get_ylabel(),
|
|
341
|
+
'nameLocation': 'middle', 'show_frame': True, 'label_size': 8, 'title_size': 8,
|
|
342
|
+
}],
|
|
343
|
+
'series': series
|
|
344
|
+
}
|
|
345
|
+
|
|
346
|
+
# print(data)
|
|
347
|
+
return data
|
|
348
|
+
|
|
349
|
+
|
|
350
|
+
if __name__ == "__main__":
|
|
351
|
+
loc = r"D:\DjangoProjects\webarar\private\mdd\20240920_24FY88a\1doms"
|
|
352
|
+
loc = r"D:\DjangoProjects\webarar\private\mdd\20240920_24FY88a\2doms"
|
|
353
|
+
loc = r"D:\DjangoProjects\webarar\private\mdd\20240920_24FY88a\5doms"
|
|
354
|
+
loc = r"D:\DjangoProjects\webarar\private\mdd\20240920_24FY88a\6doms"
|
|
355
|
+
# loc = r"D:\DjangoProjects\webarar\private\mdd\24FY88a-Ar40\thermo-history-0628"
|
|
356
|
+
# loc = r"D:\DjangoProjects\webarar\private\mdd\24FY88a-Ar40\thermo-history-0628\heating_experiment"
|
|
357
|
+
loc = r"D:\DjangoProjects\webarar\private\mdd\24FY88a-Ar40\thermo-history-0919\lab"
|
|
358
|
+
loc2 = r"D:\DjangoProjects\webarar\private\mdd\24FY88a-Ar40\thermo-history-0919\ar39"
|
|
359
|
+
# loc = r"D:\DjangoProjects\webarar\private\mdd\24FY88a-Ar40\thermo-history-0919\ar39"
|
|
360
|
+
# arr_file_path = r"D:\DjangoProjects\webarar\private\mdd\20240920_24FY88a\20240920_24FY88a.arr"
|
|
361
|
+
arr_file_path = r"D:\DjangoProjects\webarar\private\mdd\24FY88a-Ar40\20240920_24FY88a-smooth.arr"
|
|
362
|
+
# plot_diff(loc, arr_file_path, argon=39)
|
|
363
|
+
plot_spectra(loc, arr_file_path, argon=40, loc39=loc2)
|