aplr 10.7.4__cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl → 10.9.0__cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aplr might be problematic. Click here for more details.

aplr/aplr.py CHANGED
@@ -69,11 +69,12 @@ class APLRRegressor:
69
69
  monotonic_constraints_ignore_interactions: bool = False,
70
70
  group_mse_by_prediction_bins: int = 10,
71
71
  group_mse_cycle_min_obs_in_bin: int = 30,
72
- early_stopping_rounds: int = 500,
72
+ early_stopping_rounds: int = 200,
73
73
  num_first_steps_with_linear_effects_only: int = 0,
74
74
  penalty_for_non_linearity: float = 0.0,
75
75
  penalty_for_interactions: float = 0.0,
76
76
  max_terms: int = 0,
77
+ ridge_penalty: float = 0.0001,
77
78
  ):
78
79
  self.m = m
79
80
  self.v = v
@@ -120,6 +121,7 @@ class APLRRegressor:
120
121
  self.penalty_for_non_linearity = penalty_for_non_linearity
121
122
  self.penalty_for_interactions = penalty_for_interactions
122
123
  self.max_terms = max_terms
124
+ self.ridge_penalty = ridge_penalty
123
125
 
124
126
  # Creating aplr_cpp and setting parameters
125
127
  self.APLRRegressor = aplr_cpp.APLRRegressor()
@@ -180,6 +182,7 @@ class APLRRegressor:
180
182
  self.APLRRegressor.penalty_for_non_linearity = self.penalty_for_non_linearity
181
183
  self.APLRRegressor.penalty_for_interactions = self.penalty_for_interactions
182
184
  self.APLRRegressor.max_terms = self.max_terms
185
+ self.APLRRegressor.ridge_penalty = self.ridge_penalty
183
186
 
184
187
  def fit(
185
188
  self,
@@ -196,6 +199,7 @@ class APLRRegressor:
196
199
  predictor_learning_rates: List[float] = [],
197
200
  predictor_penalties_for_non_linearity: List[float] = [],
198
201
  predictor_penalties_for_interactions: List[float] = [],
202
+ predictor_min_observations_in_split: List[int] = [],
199
203
  ):
200
204
  self.__set_params_cpp()
201
205
  self.APLRRegressor.fit(
@@ -212,6 +216,7 @@ class APLRRegressor:
212
216
  predictor_learning_rates,
213
217
  predictor_penalties_for_non_linearity,
214
218
  predictor_penalties_for_interactions,
219
+ predictor_min_observations_in_split,
215
220
  )
216
221
 
217
222
  def predict(
@@ -341,6 +346,7 @@ class APLRRegressor:
341
346
  "penalty_for_non_linearity": self.penalty_for_non_linearity,
342
347
  "penalty_for_interactions": self.penalty_for_interactions,
343
348
  "max_terms": self.max_terms,
349
+ "ridge_penalty": self.ridge_penalty,
344
350
  }
345
351
 
346
352
  # For sklearn
@@ -368,11 +374,12 @@ class APLRClassifier:
368
374
  max_eligible_terms: int = 7,
369
375
  boosting_steps_before_interactions_are_allowed: int = 0,
370
376
  monotonic_constraints_ignore_interactions: bool = False,
371
- early_stopping_rounds: int = 500,
377
+ early_stopping_rounds: int = 200,
372
378
  num_first_steps_with_linear_effects_only: int = 0,
373
379
  penalty_for_non_linearity: float = 0.0,
374
380
  penalty_for_interactions: float = 0.0,
375
381
  max_terms: int = 0,
382
+ ridge_penalty: float = 0.0001,
376
383
  ):
377
384
  self.m = m
378
385
  self.v = v
@@ -399,6 +406,7 @@ class APLRClassifier:
399
406
  self.penalty_for_non_linearity = penalty_for_non_linearity
400
407
  self.penalty_for_interactions = penalty_for_interactions
401
408
  self.max_terms = max_terms
409
+ self.ridge_penalty = ridge_penalty
402
410
 
403
411
  # Creating aplr_cpp and setting parameters
404
412
  self.APLRClassifier = aplr_cpp.APLRClassifier()
@@ -433,6 +441,7 @@ class APLRClassifier:
433
441
  self.APLRClassifier.penalty_for_non_linearity = self.penalty_for_non_linearity
434
442
  self.APLRClassifier.penalty_for_interactions = self.penalty_for_interactions
435
443
  self.APLRClassifier.max_terms = self.max_terms
444
+ self.APLRClassifier.ridge_penalty = self.ridge_penalty
436
445
 
437
446
  def fit(
438
447
  self,
@@ -447,6 +456,7 @@ class APLRClassifier:
447
456
  predictor_learning_rates: List[float] = [],
448
457
  predictor_penalties_for_non_linearity: List[float] = [],
449
458
  predictor_penalties_for_interactions: List[float] = [],
459
+ predictor_min_observations_in_split: List[int] = [],
450
460
  ):
451
461
  self.__set_params_cpp()
452
462
  self.APLRClassifier.fit(
@@ -461,6 +471,7 @@ class APLRClassifier:
461
471
  predictor_learning_rates,
462
472
  predictor_penalties_for_non_linearity,
463
473
  predictor_penalties_for_interactions,
474
+ predictor_min_observations_in_split,
464
475
  )
465
476
  # For sklearn
466
477
  self.classes_ = np.arange(len(self.APLRClassifier.get_categories()))
@@ -523,6 +534,7 @@ class APLRClassifier:
523
534
  "penalty_for_non_linearity": self.penalty_for_non_linearity,
524
535
  "penalty_for_interactions": self.penalty_for_interactions,
525
536
  "max_terms": self.max_terms,
537
+ "ridge_penalty": self.ridge_penalty,
526
538
  }
527
539
 
528
540
  # For sklearn
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: aplr
3
- Version: 10.7.4
3
+ Version: 10.9.0
4
4
  Summary: Automatic Piecewise Linear Regression
5
5
  Home-page: https://github.com/ottenbreit-data-science/aplr
6
6
  Author: Mathias von Ottenbreit
@@ -13,7 +13,19 @@ Classifier: License :: OSI Approved :: MIT License
13
13
  Requires-Python: >=3.8
14
14
  Description-Content-Type: text/markdown
15
15
  License-File: LICENSE
16
- Requires-Dist: numpy >=1.11
16
+ Requires-Dist: numpy>=1.11
17
+ Dynamic: author
18
+ Dynamic: author-email
19
+ Dynamic: classifier
20
+ Dynamic: description
21
+ Dynamic: description-content-type
22
+ Dynamic: home-page
23
+ Dynamic: license
24
+ Dynamic: license-file
25
+ Dynamic: platform
26
+ Dynamic: requires-dist
27
+ Dynamic: requires-python
28
+ Dynamic: summary
17
29
 
18
30
  # APLR
19
31
  **Automatic Piecewise Linear Regression**
@@ -0,0 +1,8 @@
1
+ aplr_cpp.cpython-310-i386-linux-gnu.so,sha256=j2uXuAd5jUoilQKMu8y2hm4nh1U9a7EqmLPhbMDSHQg,30586660
2
+ aplr-10.9.0.dist-info/WHEEL,sha256=uJK11qVBBZxDtmmBRatfnDuQ_lOH6n4H-BbB_WvJFtA,147
3
+ aplr-10.9.0.dist-info/RECORD,,
4
+ aplr-10.9.0.dist-info/top_level.txt,sha256=DXVC0RIFGpzVnPeKWAZTXQdJheOEZL51Wip6Fx7zbR4,14
5
+ aplr-10.9.0.dist-info/METADATA,sha256=YyVcDnXStzsAnm5KWfxaSYgd70qn6IqhqaoLpZI-3IM,2361
6
+ aplr-10.9.0.dist-info/licenses/LICENSE,sha256=g4qcQtkSVPHtGRi3T93DoFCrssvW6ij_emU-2fj_xfY,1113
7
+ aplr/__init__.py,sha256=rRfTgNWnYZlFatyA920lWqBcjwmQUI7FcvEPFUTJgzE,20
8
+ aplr/aplr.py,sha256=18XnQy37U3AApCWESlfKysuHPsl9_LiF2kyubroFr_Q,26718
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.42.0)
2
+ Generator: setuptools (78.1.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp310-cp310-manylinux_2_17_i686
5
5
  Tag: cp310-cp310-manylinux2014_i686
Binary file
@@ -1,8 +0,0 @@
1
- aplr_cpp.cpython-310-i386-linux-gnu.so,sha256=Zo2IvjttnJvnmdHvnthBD8IpR6Y0wrOtzhdWRCRmfI0,30012416
2
- aplr-10.7.4.dist-info/top_level.txt,sha256=DXVC0RIFGpzVnPeKWAZTXQdJheOEZL51Wip6Fx7zbR4,14
3
- aplr-10.7.4.dist-info/RECORD,,
4
- aplr-10.7.4.dist-info/LICENSE,sha256=g4qcQtkSVPHtGRi3T93DoFCrssvW6ij_emU-2fj_xfY,1113
5
- aplr-10.7.4.dist-info/METADATA,sha256=EFueQLpdri2dl9pLpf22_NKOXO62QYtDxpvGV7K6-pQ,2108
6
- aplr-10.7.4.dist-info/WHEEL,sha256=W_h_v73vqhXplglVsLK38ASJ2zS4_xhfmBPlyaIkxRU,148
7
- aplr/aplr.py,sha256=4a_5jtaeA5rYc1-6K1fhE8wmWCzVnR_SZ4YdbqBoX_M,26099
8
- aplr/__init__.py,sha256=rRfTgNWnYZlFatyA920lWqBcjwmQUI7FcvEPFUTJgzE,20