aplr 10.6.4__cp38-cp38-win32.whl → 10.7.0__cp38-cp38-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aplr might be problematic. Click here for more details.

aplr/aplr.py CHANGED
@@ -304,6 +304,9 @@ class APLRRegressor:
304
304
  def get_cv_error(self) -> float:
305
305
  return self.APLRRegressor.get_cv_error()
306
306
 
307
+ def set_intercept(self, value: float):
308
+ self.APLRRegressor.set_intercept(value)
309
+
307
310
  # For sklearn
308
311
  def get_params(self, deep=True):
309
312
  return {
@@ -0,0 +1,47 @@
1
+ Metadata-Version: 2.1
2
+ Name: aplr
3
+ Version: 10.7.0
4
+ Summary: Automatic Piecewise Linear Regression
5
+ Home-page: https://github.com/ottenbreit-data-science/aplr
6
+ Author: Mathias von Ottenbreit
7
+ Author-email: ottenbreitdatascience@gmail.com
8
+ License: MIT
9
+ Platform: Windows
10
+ Platform: Linux
11
+ Platform: MacOS
12
+ Classifier: License :: OSI Approved :: MIT License
13
+ Requires-Python: >=3.8
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+ Requires-Dist: numpy (>=1.11)
17
+
18
+ # APLR
19
+ **Automatic Piecewise Linear Regression**
20
+
21
+ ## About
22
+ APLR allows you to build predictive and interpretable regression or classification machine learning models in Python, using the Automatic Piecewise Linear Regression (APLR) methodology developed by Mathias von Ottenbreit. APLR often rivals tree-based methods in predictive accuracy, while offering smoother, more interpretable predictions.
23
+
24
+ For further details, see the [documentation](https://github.com/ottenbreit-data-science/aplr/tree/main/documentation). You may also read the published article for additional insights: [Link 1](https://link.springer.com/article/10.1007/s00180-024-01475-4) and [Link 2](https://rdcu.be/dz7bF). Additional functionality has been added since the article was published.
25
+
26
+ ## Installation
27
+ To install APLR, use the following command:
28
+
29
+ ```bash
30
+ pip install aplr
31
+ ```
32
+
33
+ ## Availability
34
+ APLR is available for Windows, most Linux distributions, and macOS.
35
+
36
+ ## Usage
37
+ Example Python scripts are available [here](https://github.com/ottenbreit-data-science/aplr/tree/main/examples).
38
+
39
+ ## Sponsorship
40
+ Consider sponsoring Von Ottenbreit Data Science by clicking the **Sponsor** button on the repository. Sufficient funding will help maintain and further develop APLR.
41
+
42
+ ## API Reference
43
+ - [API reference for regression](https://github.com/ottenbreit-data-science/aplr/blob/main/API_REFERENCE_FOR_REGRESSION.md)
44
+ - [API reference for classification](https://github.com/ottenbreit-data-science/aplr/blob/main/API_REFERENCE_FOR_CLASSIFICATION.md)
45
+
46
+ ## Contact Information
47
+ For inquiries, please email: [ottenbreitdatascience@gmail.com](mailto:ottenbreitdatascience@gmail.com)
@@ -0,0 +1,8 @@
1
+ aplr_cpp.cp38-win32.pyd,sha256=YOOTimqvErC9dffEuZ_quFoyUK3pDIWAc7NH3NNxfNE,514048
2
+ aplr/__init__.py,sha256=oDFSgVytP_qQ8ilun6oHxKr-DYEeqjEQp5FciX45lls,21
3
+ aplr/aplr.py,sha256=4a_5jtaeA5rYc1-6K1fhE8wmWCzVnR_SZ4YdbqBoX_M,26099
4
+ aplr-10.7.0.dist-info/LICENSE,sha256=YOMo-RaL4P7edMZGD96-NskKpxyMZdP3-WiiMMmihNk,1134
5
+ aplr-10.7.0.dist-info/METADATA,sha256=W-gcSkpJxFSXAqi36t9x0Gf-9HkLenPLx0ISS89rfjk,2157
6
+ aplr-10.7.0.dist-info/WHEEL,sha256=eISolWHwNhb92gGPHWycatPqef50U4Y2t5AK5I8bfIY,96
7
+ aplr-10.7.0.dist-info/top_level.txt,sha256=DXVC0RIFGpzVnPeKWAZTXQdJheOEZL51Wip6Fx7zbR4,14
8
+ aplr-10.7.0.dist-info/RECORD,,
aplr_cpp.cp38-win32.pyd CHANGED
Binary file
@@ -1,37 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: aplr
3
- Version: 10.6.4
4
- Summary: Automatic Piecewise Linear Regression
5
- Home-page: https://github.com/ottenbreit-data-science/aplr
6
- Author: Mathias von Ottenbreit
7
- Author-email: ottenbreitdatascience@gmail.com
8
- License: MIT
9
- Platform: Windows
10
- Platform: Linux
11
- Platform: MacOS
12
- Classifier: License :: OSI Approved :: MIT License
13
- Requires-Python: >=3.8
14
- Description-Content-Type: text/markdown
15
- License-File: LICENSE
16
- Requires-Dist: numpy (>=1.11)
17
-
18
- # APLR
19
- Automatic Piecewise Linear Regression.
20
-
21
- # About
22
- Build predictive and interpretable parametric regression or classification machine learning models in Python based on the Automatic Piecewise Linear Regression (APLR) methodology developed by Mathias von Ottenbreit. APLR is often able to compete with tree-based methods on predictiveness, but unlike tree-based methods APLR is interpretable. Furthermore, APLR produces smoother predictions than tree-based methods. Please see the [documentation](https://github.com/ottenbreit-data-science/aplr/tree/main/documentation) for more information. Links to published article: [https://link.springer.com/article/10.1007/s00180-024-01475-4](https://link.springer.com/article/10.1007/s00180-024-01475-4) and [https://rdcu.be/dz7bF](https://rdcu.be/dz7bF). More functionality has been added to APLR since the article was published.
23
-
24
- # How to install
25
- ***pip install aplr***
26
-
27
- # Availability
28
- Available for Windows, most Linux distributions and MacOS.
29
-
30
- # How to use
31
- Please see example Python scripts [here](https://github.com/ottenbreit-data-science/aplr/tree/main/examples).
32
-
33
- # Sponsorship
34
- Please consider sponsoring Ottenbreit Data Science by clicking on the Sponsor button. Sufficient funding will enable maintenance of APLR and further development.
35
-
36
- # API reference
37
- Please see the [API reference for regression](https://github.com/ottenbreit-data-science/aplr/blob/main/API_REFERENCE_FOR_REGRESSION.md) and [API reference for classification](https://github.com/ottenbreit-data-science/aplr/blob/main/API_REFERENCE_FOR_CLASSIFICATION.md).
@@ -1,8 +0,0 @@
1
- aplr_cpp.cp38-win32.pyd,sha256=cYgHntObNUg-6LsClwI43XqoOP0rzGnlmsdinLeNF7Y,513536
2
- aplr/__init__.py,sha256=oDFSgVytP_qQ8ilun6oHxKr-DYEeqjEQp5FciX45lls,21
3
- aplr/aplr.py,sha256=HTdI3N-Hljn4T02mj0WD6zj9mKh8qTCPgVDHQHo9dWc,26004
4
- aplr-10.6.4.dist-info/LICENSE,sha256=YOMo-RaL4P7edMZGD96-NskKpxyMZdP3-WiiMMmihNk,1134
5
- aplr-10.6.4.dist-info/METADATA,sha256=aLRbukXnrqXa4UGLdi_JND5BrzYqkSjvnzyPlU-pFpI,2081
6
- aplr-10.6.4.dist-info/WHEEL,sha256=eISolWHwNhb92gGPHWycatPqef50U4Y2t5AK5I8bfIY,96
7
- aplr-10.6.4.dist-info/top_level.txt,sha256=DXVC0RIFGpzVnPeKWAZTXQdJheOEZL51Wip6Fx7zbR4,14
8
- aplr-10.6.4.dist-info/RECORD,,
File without changes
File without changes