aplr 10.6.4__cp310-cp310-macosx_11_0_arm64.whl → 10.7.0__cp310-cp310-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of aplr might be problematic. Click here for more details.
- aplr/aplr.py +3 -0
- aplr-10.7.0.dist-info/METADATA +47 -0
- aplr-10.7.0.dist-info/RECORD +8 -0
- aplr_cpp.cpython-310-darwin.so +0 -0
- aplr-10.6.4.dist-info/METADATA +0 -37
- aplr-10.6.4.dist-info/RECORD +0 -8
- {aplr-10.6.4.dist-info → aplr-10.7.0.dist-info}/LICENSE +0 -0
- {aplr-10.6.4.dist-info → aplr-10.7.0.dist-info}/WHEEL +0 -0
- {aplr-10.6.4.dist-info → aplr-10.7.0.dist-info}/top_level.txt +0 -0
aplr/aplr.py
CHANGED
|
@@ -304,6 +304,9 @@ class APLRRegressor:
|
|
|
304
304
|
def get_cv_error(self) -> float:
|
|
305
305
|
return self.APLRRegressor.get_cv_error()
|
|
306
306
|
|
|
307
|
+
def set_intercept(self, value: float):
|
|
308
|
+
self.APLRRegressor.set_intercept(value)
|
|
309
|
+
|
|
307
310
|
# For sklearn
|
|
308
311
|
def get_params(self, deep=True):
|
|
309
312
|
return {
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: aplr
|
|
3
|
+
Version: 10.7.0
|
|
4
|
+
Summary: Automatic Piecewise Linear Regression
|
|
5
|
+
Home-page: https://github.com/ottenbreit-data-science/aplr
|
|
6
|
+
Author: Mathias von Ottenbreit
|
|
7
|
+
Author-email: ottenbreitdatascience@gmail.com
|
|
8
|
+
License: MIT
|
|
9
|
+
Platform: Windows
|
|
10
|
+
Platform: Linux
|
|
11
|
+
Platform: MacOS
|
|
12
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
13
|
+
Requires-Python: >=3.8
|
|
14
|
+
Description-Content-Type: text/markdown
|
|
15
|
+
License-File: LICENSE
|
|
16
|
+
Requires-Dist: numpy (>=1.11)
|
|
17
|
+
|
|
18
|
+
# APLR
|
|
19
|
+
**Automatic Piecewise Linear Regression**
|
|
20
|
+
|
|
21
|
+
## About
|
|
22
|
+
APLR allows you to build predictive and interpretable regression or classification machine learning models in Python, using the Automatic Piecewise Linear Regression (APLR) methodology developed by Mathias von Ottenbreit. APLR often rivals tree-based methods in predictive accuracy, while offering smoother, more interpretable predictions.
|
|
23
|
+
|
|
24
|
+
For further details, see the [documentation](https://github.com/ottenbreit-data-science/aplr/tree/main/documentation). You may also read the published article for additional insights: [Link 1](https://link.springer.com/article/10.1007/s00180-024-01475-4) and [Link 2](https://rdcu.be/dz7bF). Additional functionality has been added since the article was published.
|
|
25
|
+
|
|
26
|
+
## Installation
|
|
27
|
+
To install APLR, use the following command:
|
|
28
|
+
|
|
29
|
+
```bash
|
|
30
|
+
pip install aplr
|
|
31
|
+
```
|
|
32
|
+
|
|
33
|
+
## Availability
|
|
34
|
+
APLR is available for Windows, most Linux distributions, and macOS.
|
|
35
|
+
|
|
36
|
+
## Usage
|
|
37
|
+
Example Python scripts are available [here](https://github.com/ottenbreit-data-science/aplr/tree/main/examples).
|
|
38
|
+
|
|
39
|
+
## Sponsorship
|
|
40
|
+
Consider sponsoring Von Ottenbreit Data Science by clicking the **Sponsor** button on the repository. Sufficient funding will help maintain and further develop APLR.
|
|
41
|
+
|
|
42
|
+
## API Reference
|
|
43
|
+
- [API reference for regression](https://github.com/ottenbreit-data-science/aplr/blob/main/API_REFERENCE_FOR_REGRESSION.md)
|
|
44
|
+
- [API reference for classification](https://github.com/ottenbreit-data-science/aplr/blob/main/API_REFERENCE_FOR_CLASSIFICATION.md)
|
|
45
|
+
|
|
46
|
+
## Contact Information
|
|
47
|
+
For inquiries, please email: [ottenbreitdatascience@gmail.com](mailto:ottenbreitdatascience@gmail.com)
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
aplr_cpp.cpython-310-darwin.so,sha256=BAa6FZJJ0CHYNIFl0yQv_u68uqOdMxpG8dPqJPfgLWw,1124032
|
|
2
|
+
aplr/__init__.py,sha256=rRfTgNWnYZlFatyA920lWqBcjwmQUI7FcvEPFUTJgzE,20
|
|
3
|
+
aplr/aplr.py,sha256=4a_5jtaeA5rYc1-6K1fhE8wmWCzVnR_SZ4YdbqBoX_M,26099
|
|
4
|
+
aplr-10.7.0.dist-info/RECORD,,
|
|
5
|
+
aplr-10.7.0.dist-info/LICENSE,sha256=g4qcQtkSVPHtGRi3T93DoFCrssvW6ij_emU-2fj_xfY,1113
|
|
6
|
+
aplr-10.7.0.dist-info/WHEEL,sha256=YkgppTG7ykOlXc_zwnXV9-VBXF-Nf0nL_gt0JCpKtEA,110
|
|
7
|
+
aplr-10.7.0.dist-info/top_level.txt,sha256=DXVC0RIFGpzVnPeKWAZTXQdJheOEZL51Wip6Fx7zbR4,14
|
|
8
|
+
aplr-10.7.0.dist-info/METADATA,sha256=SulVGjRKlAa8Ylvk7HDwTwT2si0Vc-BWzwSNAwmrEZ0,2110
|
aplr_cpp.cpython-310-darwin.so
CHANGED
|
Binary file
|
aplr-10.6.4.dist-info/METADATA
DELETED
|
@@ -1,37 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: aplr
|
|
3
|
-
Version: 10.6.4
|
|
4
|
-
Summary: Automatic Piecewise Linear Regression
|
|
5
|
-
Home-page: https://github.com/ottenbreit-data-science/aplr
|
|
6
|
-
Author: Mathias von Ottenbreit
|
|
7
|
-
Author-email: ottenbreitdatascience@gmail.com
|
|
8
|
-
License: MIT
|
|
9
|
-
Platform: Windows
|
|
10
|
-
Platform: Linux
|
|
11
|
-
Platform: MacOS
|
|
12
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
13
|
-
Requires-Python: >=3.8
|
|
14
|
-
Description-Content-Type: text/markdown
|
|
15
|
-
License-File: LICENSE
|
|
16
|
-
Requires-Dist: numpy (>=1.11)
|
|
17
|
-
|
|
18
|
-
# APLR
|
|
19
|
-
Automatic Piecewise Linear Regression.
|
|
20
|
-
|
|
21
|
-
# About
|
|
22
|
-
Build predictive and interpretable parametric regression or classification machine learning models in Python based on the Automatic Piecewise Linear Regression (APLR) methodology developed by Mathias von Ottenbreit. APLR is often able to compete with tree-based methods on predictiveness, but unlike tree-based methods APLR is interpretable. Furthermore, APLR produces smoother predictions than tree-based methods. Please see the [documentation](https://github.com/ottenbreit-data-science/aplr/tree/main/documentation) for more information. Links to published article: [https://link.springer.com/article/10.1007/s00180-024-01475-4](https://link.springer.com/article/10.1007/s00180-024-01475-4) and [https://rdcu.be/dz7bF](https://rdcu.be/dz7bF). More functionality has been added to APLR since the article was published.
|
|
23
|
-
|
|
24
|
-
# How to install
|
|
25
|
-
***pip install aplr***
|
|
26
|
-
|
|
27
|
-
# Availability
|
|
28
|
-
Available for Windows, most Linux distributions and MacOS.
|
|
29
|
-
|
|
30
|
-
# How to use
|
|
31
|
-
Please see example Python scripts [here](https://github.com/ottenbreit-data-science/aplr/tree/main/examples).
|
|
32
|
-
|
|
33
|
-
# Sponsorship
|
|
34
|
-
Please consider sponsoring Ottenbreit Data Science by clicking on the Sponsor button. Sufficient funding will enable maintenance of APLR and further development.
|
|
35
|
-
|
|
36
|
-
# API reference
|
|
37
|
-
Please see the [API reference for regression](https://github.com/ottenbreit-data-science/aplr/blob/main/API_REFERENCE_FOR_REGRESSION.md) and [API reference for classification](https://github.com/ottenbreit-data-science/aplr/blob/main/API_REFERENCE_FOR_CLASSIFICATION.md).
|
aplr-10.6.4.dist-info/RECORD
DELETED
|
@@ -1,8 +0,0 @@
|
|
|
1
|
-
aplr_cpp.cpython-310-darwin.so,sha256=Bx4Bb8g4I8LXrGukZtsHlnMgtHlVYjNHy0l7L0ehm-k,1122576
|
|
2
|
-
aplr/__init__.py,sha256=rRfTgNWnYZlFatyA920lWqBcjwmQUI7FcvEPFUTJgzE,20
|
|
3
|
-
aplr/aplr.py,sha256=HTdI3N-Hljn4T02mj0WD6zj9mKh8qTCPgVDHQHo9dWc,26004
|
|
4
|
-
aplr-10.6.4.dist-info/RECORD,,
|
|
5
|
-
aplr-10.6.4.dist-info/LICENSE,sha256=g4qcQtkSVPHtGRi3T93DoFCrssvW6ij_emU-2fj_xfY,1113
|
|
6
|
-
aplr-10.6.4.dist-info/WHEEL,sha256=YkgppTG7ykOlXc_zwnXV9-VBXF-Nf0nL_gt0JCpKtEA,110
|
|
7
|
-
aplr-10.6.4.dist-info/top_level.txt,sha256=DXVC0RIFGpzVnPeKWAZTXQdJheOEZL51Wip6Fx7zbR4,14
|
|
8
|
-
aplr-10.6.4.dist-info/METADATA,sha256=hAThzz5lipWQRap1INrHgOL_xdjRc4uCQGbWxaMHH9o,2044
|
|
File without changes
|
|
File without changes
|
|
File without changes
|