aplr 10.6.0__cp38-cp38-win32.whl → 10.6.2__cp38-cp38-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aplr might be problematic. Click here for more details.

aplr/aplr.py CHANGED
@@ -12,7 +12,7 @@ IntMatrix = np.ndarray
12
12
  class APLRRegressor:
13
13
  def __init__(
14
14
  self,
15
- m: int = 20000,
15
+ m: int = 3000,
16
16
  v: float = 0.5,
17
17
  random_state: int = 0,
18
18
  loss_function: str = "mse",
@@ -351,7 +351,7 @@ class APLRRegressor:
351
351
  class APLRClassifier:
352
352
  def __init__(
353
353
  self,
354
- m: int = 20000,
354
+ m: int = 3000,
355
355
  v: float = 0.5,
356
356
  random_state: int = 0,
357
357
  n_jobs: int = 0,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: aplr
3
- Version: 10.6.0
3
+ Version: 10.6.2
4
4
  Summary: Automatic Piecewise Linear Regression
5
5
  Home-page: https://github.com/ottenbreit-data-science/aplr
6
6
  Author: Mathias von Ottenbreit
@@ -13,7 +13,7 @@ Classifier: License :: OSI Approved :: MIT License
13
13
  Requires-Python: >=3.8
14
14
  Description-Content-Type: text/markdown
15
15
  License-File: LICENSE
16
- Requires-Dist: numpy >=1.11
16
+ Requires-Dist: numpy (>=1.11)
17
17
 
18
18
  # APLR
19
19
  Automatic Piecewise Linear Regression.
@@ -28,7 +28,7 @@ Build predictive and interpretable parametric regression or classification machi
28
28
  Available for Windows, most Linux distributions and MacOS.
29
29
 
30
30
  # How to use
31
- Please see the two example Python scripts [here](https://github.com/ottenbreit-data-science/aplr/tree/main/examples). They cover common use cases, but not all of the functionality in this package.
31
+ Please see example Python scripts [here](https://github.com/ottenbreit-data-science/aplr/tree/main/examples).
32
32
 
33
33
  # Sponsorship
34
34
  Please consider sponsoring Ottenbreit Data Science by clicking on the Sponsor button. Sufficient funding will enable maintenance of APLR and further development.
@@ -0,0 +1,8 @@
1
+ aplr_cpp.cp38-win32.pyd,sha256=AyJC9U5RLx8l1_G-ObbOLwqn809g6ZGkDIX3DPDqqeE,509440
2
+ aplr/__init__.py,sha256=oDFSgVytP_qQ8ilun6oHxKr-DYEeqjEQp5FciX45lls,21
3
+ aplr/aplr.py,sha256=HTdI3N-Hljn4T02mj0WD6zj9mKh8qTCPgVDHQHo9dWc,26004
4
+ aplr-10.6.2.dist-info/LICENSE,sha256=YOMo-RaL4P7edMZGD96-NskKpxyMZdP3-WiiMMmihNk,1134
5
+ aplr-10.6.2.dist-info/METADATA,sha256=ZsYcRKKOVOEXu-gJAKOZP4usECJT-ZZ2oin3vgsNsJE,2081
6
+ aplr-10.6.2.dist-info/WHEEL,sha256=eISolWHwNhb92gGPHWycatPqef50U4Y2t5AK5I8bfIY,96
7
+ aplr-10.6.2.dist-info/top_level.txt,sha256=DXVC0RIFGpzVnPeKWAZTXQdJheOEZL51Wip6Fx7zbR4,14
8
+ aplr-10.6.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (72.1.0)
2
+ Generator: bdist_wheel (0.40.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp38-cp38-win32
5
5
 
aplr_cpp.cp38-win32.pyd CHANGED
Binary file
@@ -1,8 +0,0 @@
1
- aplr_cpp.cp38-win32.pyd,sha256=5bJiuXAovtUdo5QEIStpK8qjs7gxi1VGc_wSoffEKjg,509952
2
- aplr/__init__.py,sha256=oDFSgVytP_qQ8ilun6oHxKr-DYEeqjEQp5FciX45lls,21
3
- aplr/aplr.py,sha256=Qc_n1PQ1dKqyIR9UXKi73fX6HBGpmu7fayZHJxxCTXA,26006
4
- aplr-10.6.0.dist-info/LICENSE,sha256=YOMo-RaL4P7edMZGD96-NskKpxyMZdP3-WiiMMmihNk,1134
5
- aplr-10.6.0.dist-info/METADATA,sha256=orPj166YzyjPQirasMrR-AUJn8nJrulSNHdi_YUvyDg,2166
6
- aplr-10.6.0.dist-info/WHEEL,sha256=3szW57pNWqFVRic6Ma4o9j5UYGJmr9Fs-0ZX6rmK_Y4,95
7
- aplr-10.6.0.dist-info/top_level.txt,sha256=DXVC0RIFGpzVnPeKWAZTXQdJheOEZL51Wip6Fx7zbR4,14
8
- aplr-10.6.0.dist-info/RECORD,,
File without changes