apache-airflow-providers-amazon 8.22.0rc1__py3-none-any.whl → 8.23.0rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- airflow/providers/amazon/__init__.py +1 -1
- airflow/providers/amazon/aws/executors/batch/batch_executor.py +47 -3
- airflow/providers/amazon/aws/executors/ecs/ecs_executor.py +1 -0
- airflow/providers/amazon/aws/hooks/bedrock.py +20 -0
- airflow/providers/amazon/aws/hooks/comprehend.py +37 -0
- airflow/providers/amazon/aws/hooks/neptune.py +36 -1
- airflow/providers/amazon/aws/operators/athena.py +1 -1
- airflow/providers/amazon/aws/operators/batch.py +1 -3
- airflow/providers/amazon/aws/operators/bedrock.py +218 -2
- airflow/providers/amazon/aws/operators/comprehend.py +192 -0
- airflow/providers/amazon/aws/operators/emr.py +21 -11
- airflow/providers/amazon/aws/operators/neptune.py +128 -21
- airflow/providers/amazon/aws/operators/sagemaker.py +10 -14
- airflow/providers/amazon/aws/sensors/comprehend.py +147 -0
- airflow/providers/amazon/aws/sensors/emr.py +8 -0
- airflow/providers/amazon/aws/triggers/comprehend.py +61 -0
- airflow/providers/amazon/aws/triggers/neptune.py +45 -0
- airflow/providers/amazon/aws/triggers/sagemaker.py +1 -1
- airflow/providers/amazon/aws/utils/__init__.py +7 -0
- airflow/providers/amazon/aws/waiters/comprehend.json +49 -0
- airflow/providers/amazon/get_provider_info.py +25 -1
- {apache_airflow_providers_amazon-8.22.0rc1.dist-info → apache_airflow_providers_amazon-8.23.0rc1.dist-info}/METADATA +6 -6
- {apache_airflow_providers_amazon-8.22.0rc1.dist-info → apache_airflow_providers_amazon-8.23.0rc1.dist-info}/RECORD +25 -20
- {apache_airflow_providers_amazon-8.22.0rc1.dist-info → apache_airflow_providers_amazon-8.23.0rc1.dist-info}/WHEEL +0 -0
- {apache_airflow_providers_amazon-8.22.0rc1.dist-info → apache_airflow_providers_amazon-8.23.0rc1.dist-info}/entry_points.txt +0 -0
@@ -29,7 +29,7 @@ from airflow import __version__ as airflow_version
|
|
29
29
|
|
30
30
|
__all__ = ["__version__"]
|
31
31
|
|
32
|
-
__version__ = "8.
|
32
|
+
__version__ = "8.23.0"
|
33
33
|
|
34
34
|
if packaging.version.parse(packaging.version.parse(airflow_version).base_version) < packaging.version.parse(
|
35
35
|
"2.7.0"
|
@@ -19,10 +19,11 @@
|
|
19
19
|
|
20
20
|
from __future__ import annotations
|
21
21
|
|
22
|
+
import contextlib
|
22
23
|
import time
|
23
24
|
from collections import defaultdict, deque
|
24
25
|
from copy import deepcopy
|
25
|
-
from typing import TYPE_CHECKING, Any, Dict, List
|
26
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Sequence
|
26
27
|
|
27
28
|
from botocore.exceptions import ClientError, NoCredentialsError
|
28
29
|
|
@@ -34,11 +35,12 @@ from airflow.providers.amazon.aws.executors.utils.exponential_backoff_retry impo
|
|
34
35
|
exponential_backoff_retry,
|
35
36
|
)
|
36
37
|
from airflow.providers.amazon.aws.hooks.batch_client import BatchClientHook
|
38
|
+
from airflow.stats import Stats
|
37
39
|
from airflow.utils import timezone
|
38
40
|
from airflow.utils.helpers import merge_dicts
|
39
41
|
|
40
42
|
if TYPE_CHECKING:
|
41
|
-
from airflow.models.taskinstance import TaskInstanceKey
|
43
|
+
from airflow.models.taskinstance import TaskInstance, TaskInstanceKey
|
42
44
|
from airflow.providers.amazon.aws.executors.batch.boto_schema import (
|
43
45
|
BatchDescribeJobsResponseSchema,
|
44
46
|
BatchSubmitJobResponseSchema,
|
@@ -306,14 +308,20 @@ class AwsBatchExecutor(BaseExecutor):
|
|
306
308
|
self.pending_jobs.append(batch_job)
|
307
309
|
else:
|
308
310
|
# Success case
|
311
|
+
job_id = submit_job_response["job_id"]
|
309
312
|
self.active_workers.add_job(
|
310
|
-
job_id=
|
313
|
+
job_id=job_id,
|
311
314
|
airflow_task_key=key,
|
312
315
|
airflow_cmd=cmd,
|
313
316
|
queue=queue,
|
314
317
|
exec_config=exec_config,
|
315
318
|
attempt_number=attempt_number,
|
316
319
|
)
|
320
|
+
with contextlib.suppress(AttributeError):
|
321
|
+
# TODO: Remove this when min_airflow_version is 2.10.0 or higher in Amazon provider.
|
322
|
+
# running_state is added in Airflow 2.10 and only needed to support task adoption
|
323
|
+
# (an optional executor feature).
|
324
|
+
self.running_state(key, job_id)
|
317
325
|
if failure_reasons:
|
318
326
|
self.log.error(
|
319
327
|
"Pending Batch jobs failed to launch for the following reasons: %s. Retrying later.",
|
@@ -418,3 +426,39 @@ class AwsBatchExecutor(BaseExecutor):
|
|
418
426
|
" and value should be NULL or empty."
|
419
427
|
)
|
420
428
|
return submit_kwargs
|
429
|
+
|
430
|
+
def try_adopt_task_instances(self, tis: Sequence[TaskInstance]) -> Sequence[TaskInstance]:
|
431
|
+
"""
|
432
|
+
Adopt task instances which have an external_executor_id (the Batch job ID).
|
433
|
+
|
434
|
+
Anything that is not adopted will be cleared by the scheduler and becomes eligible for re-scheduling.
|
435
|
+
"""
|
436
|
+
with Stats.timer("batch_executor.adopt_task_instances.duration"):
|
437
|
+
adopted_tis: list[TaskInstance] = []
|
438
|
+
|
439
|
+
if job_ids := [ti.external_executor_id for ti in tis if ti.external_executor_id]:
|
440
|
+
batch_jobs = self._describe_jobs(job_ids)
|
441
|
+
|
442
|
+
for batch_job in batch_jobs:
|
443
|
+
ti = next(ti for ti in tis if ti.external_executor_id == batch_job.job_id)
|
444
|
+
self.active_workers.add_job(
|
445
|
+
job_id=batch_job.job_id,
|
446
|
+
airflow_task_key=ti.key,
|
447
|
+
airflow_cmd=ti.command_as_list(),
|
448
|
+
queue=ti.queue,
|
449
|
+
exec_config=ti.executor_config,
|
450
|
+
attempt_number=ti.prev_attempted_tries,
|
451
|
+
)
|
452
|
+
adopted_tis.append(ti)
|
453
|
+
|
454
|
+
if adopted_tis:
|
455
|
+
tasks = [f"{task} in state {task.state}" for task in adopted_tis]
|
456
|
+
task_instance_str = "\n\t".join(tasks)
|
457
|
+
self.log.info(
|
458
|
+
"Adopted the following %d tasks from a dead executor:\n\t%s",
|
459
|
+
len(adopted_tis),
|
460
|
+
task_instance_str,
|
461
|
+
)
|
462
|
+
|
463
|
+
not_adopted_tis = [ti for ti in tis if ti not in adopted_tis]
|
464
|
+
return not_adopted_tis
|
@@ -405,6 +405,7 @@ class AwsEcsExecutor(BaseExecutor):
|
|
405
405
|
except AttributeError:
|
406
406
|
# running_state is newly added, and only needed to support task adoption (an optional
|
407
407
|
# executor feature).
|
408
|
+
# TODO: remove when min airflow version >= 2.9.2
|
408
409
|
pass
|
409
410
|
if failure_reasons:
|
410
411
|
self.log.error(
|
@@ -77,3 +77,23 @@ class BedrockAgentHook(AwsBaseHook):
|
|
77
77
|
def __init__(self, *args, **kwargs) -> None:
|
78
78
|
kwargs["client_type"] = self.client_type
|
79
79
|
super().__init__(*args, **kwargs)
|
80
|
+
|
81
|
+
|
82
|
+
class BedrockAgentRuntimeHook(AwsBaseHook):
|
83
|
+
"""
|
84
|
+
Interact with the Amazon Agents for Bedrock API.
|
85
|
+
|
86
|
+
Provide thin wrapper around :external+boto3:py:class:`boto3.client("bedrock-agent-runtime") <AgentsforBedrockRuntime.Client>`.
|
87
|
+
|
88
|
+
Additional arguments (such as ``aws_conn_id``) may be specified and
|
89
|
+
are passed down to the underlying AwsBaseHook.
|
90
|
+
|
91
|
+
.. seealso::
|
92
|
+
- :class:`airflow.providers.amazon.aws.hooks.base_aws.AwsBaseHook`
|
93
|
+
"""
|
94
|
+
|
95
|
+
client_type = "bedrock-agent-runtime"
|
96
|
+
|
97
|
+
def __init__(self, *args, **kwargs) -> None:
|
98
|
+
kwargs["client_type"] = self.client_type
|
99
|
+
super().__init__(*args, **kwargs)
|
@@ -0,0 +1,37 @@
|
|
1
|
+
# Licensed to the Apache Software Foundation (ASF) under one
|
2
|
+
# or more contributor license agreements. See the NOTICE file
|
3
|
+
# distributed with this work for additional information
|
4
|
+
# regarding copyright ownership. The ASF licenses this file
|
5
|
+
# to you under the Apache License, Version 2.0 (the
|
6
|
+
# "License"); you may not use this file except in compliance
|
7
|
+
# with the License. You may obtain a copy of the License at
|
8
|
+
#
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10
|
+
#
|
11
|
+
# Unless required by applicable law or agreed to in writing,
|
12
|
+
# software distributed under the License is distributed on an
|
13
|
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
14
|
+
# KIND, either express or implied. See the License for the
|
15
|
+
# specific language governing permissions and limitations
|
16
|
+
# under the License.
|
17
|
+
from __future__ import annotations
|
18
|
+
|
19
|
+
from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook
|
20
|
+
|
21
|
+
|
22
|
+
class ComprehendHook(AwsBaseHook):
|
23
|
+
"""
|
24
|
+
Interact with AWS Comprehend.
|
25
|
+
|
26
|
+
Provide thin wrapper around :external+boto3:py:class:`boto3.client("comprehend") <Comprehend.Client>`.
|
27
|
+
|
28
|
+
Additional arguments (such as ``aws_conn_id``) may be specified and
|
29
|
+
are passed down to the underlying AwsBaseHook.
|
30
|
+
|
31
|
+
.. seealso::
|
32
|
+
- :class:`airflow.providers.amazon.aws.hooks.base_aws.AwsBaseHook`
|
33
|
+
"""
|
34
|
+
|
35
|
+
def __init__(self, *args, **kwargs) -> None:
|
36
|
+
kwargs["client_type"] = "comprehend"
|
37
|
+
super().__init__(*args, **kwargs)
|
@@ -34,6 +34,12 @@ class NeptuneHook(AwsBaseHook):
|
|
34
34
|
|
35
35
|
AVAILABLE_STATES = ["available"]
|
36
36
|
STOPPED_STATES = ["stopped"]
|
37
|
+
ERROR_STATES = [
|
38
|
+
"cloning-failed",
|
39
|
+
"inaccessible-encryption-credentials",
|
40
|
+
"inaccessible-encryption-credentials-recoverable",
|
41
|
+
"migration-failed",
|
42
|
+
]
|
37
43
|
|
38
44
|
def __init__(self, *args, **kwargs):
|
39
45
|
kwargs["client_type"] = "neptune"
|
@@ -82,4 +88,33 @@ class NeptuneHook(AwsBaseHook):
|
|
82
88
|
:param cluster_id: The ID of the cluster to get the status of.
|
83
89
|
:return: The status of the cluster.
|
84
90
|
"""
|
85
|
-
return self.
|
91
|
+
return self.conn.describe_db_clusters(DBClusterIdentifier=cluster_id)["DBClusters"][0]["Status"]
|
92
|
+
|
93
|
+
def get_db_instance_status(self, instance_id: str) -> str:
|
94
|
+
"""
|
95
|
+
Get the status of a Neptune instance.
|
96
|
+
|
97
|
+
:param instance_id: The ID of the instance to get the status of.
|
98
|
+
:return: The status of the instance.
|
99
|
+
"""
|
100
|
+
return self.conn.describe_db_instances(DBInstanceIdentifier=instance_id)["DBInstances"][0][
|
101
|
+
"DBInstanceStatus"
|
102
|
+
]
|
103
|
+
|
104
|
+
def wait_for_cluster_instance_availability(
|
105
|
+
self, cluster_id: str, delay: int = 30, max_attempts: int = 60
|
106
|
+
) -> None:
|
107
|
+
"""
|
108
|
+
Wait for Neptune instances in a cluster to be available.
|
109
|
+
|
110
|
+
:param cluster_id: The cluster ID of the instances to wait for.
|
111
|
+
:param delay: Time in seconds to delay between polls.
|
112
|
+
:param max_attempts: Maximum number of attempts to poll for completion.
|
113
|
+
:return: The status of the instances.
|
114
|
+
"""
|
115
|
+
filters = [{"Name": "db-cluster-id", "Values": [cluster_id]}]
|
116
|
+
self.log.info("Waiting for instances in cluster %s.", cluster_id)
|
117
|
+
self.get_waiter("db_instance_available").wait(
|
118
|
+
Filters=filters, WaiterConfig={"Delay": delay, "MaxAttempts": max_attempts}
|
119
|
+
)
|
120
|
+
self.log.info("Finished waiting for instances in cluster %s.", cluster_id)
|
@@ -266,7 +266,7 @@ class AthenaOperator(AwsBaseOperator[AthenaHook]):
|
|
266
266
|
|
267
267
|
if self.output_location:
|
268
268
|
parsed = urlparse(self.output_location)
|
269
|
-
outputs.append(Dataset(namespace=f"{parsed.scheme}://{parsed.netloc}", name=parsed.path))
|
269
|
+
outputs.append(Dataset(namespace=f"{parsed.scheme}://{parsed.netloc}", name=parsed.path or "/"))
|
270
270
|
|
271
271
|
return OperatorLineage(job_facets=job_facets, run_facets=run_facets, inputs=inputs, outputs=outputs)
|
272
272
|
|
@@ -206,9 +206,7 @@ class BatchOperator(BaseOperator):
|
|
206
206
|
self.scheduling_priority_override = scheduling_priority_override
|
207
207
|
self.array_properties = array_properties
|
208
208
|
self.parameters = parameters or {}
|
209
|
-
self.retry_strategy = retry_strategy
|
210
|
-
if not self.retry_strategy.get("attempts", None):
|
211
|
-
self.retry_strategy["attempts"] = 1
|
209
|
+
self.retry_strategy = retry_strategy
|
212
210
|
self.waiters = waiters
|
213
211
|
self.tags = tags or {}
|
214
212
|
self.wait_for_completion = wait_for_completion
|
@@ -20,11 +20,17 @@ import json
|
|
20
20
|
from time import sleep
|
21
21
|
from typing import TYPE_CHECKING, Any, Sequence
|
22
22
|
|
23
|
+
import botocore
|
23
24
|
from botocore.exceptions import ClientError
|
24
25
|
|
25
26
|
from airflow.configuration import conf
|
26
27
|
from airflow.exceptions import AirflowException
|
27
|
-
from airflow.providers.amazon.aws.hooks.bedrock import
|
28
|
+
from airflow.providers.amazon.aws.hooks.bedrock import (
|
29
|
+
BedrockAgentHook,
|
30
|
+
BedrockAgentRuntimeHook,
|
31
|
+
BedrockHook,
|
32
|
+
BedrockRuntimeHook,
|
33
|
+
)
|
28
34
|
from airflow.providers.amazon.aws.operators.base_aws import AwsBaseOperator
|
29
35
|
from airflow.providers.amazon.aws.triggers.bedrock import (
|
30
36
|
BedrockCustomizeModelCompletedTrigger,
|
@@ -32,7 +38,7 @@ from airflow.providers.amazon.aws.triggers.bedrock import (
|
|
32
38
|
BedrockKnowledgeBaseActiveTrigger,
|
33
39
|
BedrockProvisionModelThroughputCompletedTrigger,
|
34
40
|
)
|
35
|
-
from airflow.providers.amazon.aws.utils import validate_execute_complete_event
|
41
|
+
from airflow.providers.amazon.aws.utils import get_botocore_version, validate_execute_complete_event
|
36
42
|
from airflow.providers.amazon.aws.utils.mixins import aws_template_fields
|
37
43
|
from airflow.utils.helpers import prune_dict
|
38
44
|
from airflow.utils.timezone import utcnow
|
@@ -664,3 +670,213 @@ class BedrockIngestDataOperator(AwsBaseOperator[BedrockAgentHook]):
|
|
664
670
|
)
|
665
671
|
|
666
672
|
return ingestion_job_id
|
673
|
+
|
674
|
+
|
675
|
+
class BedrockRaGOperator(AwsBaseOperator[BedrockAgentRuntimeHook]):
|
676
|
+
"""
|
677
|
+
Query a knowledge base and generate responses based on the retrieved results with sources citations.
|
678
|
+
|
679
|
+
NOTE: Support for EXTERNAL SOURCES was added in botocore 1.34.90
|
680
|
+
|
681
|
+
.. seealso::
|
682
|
+
For more information on how to use this operator, take a look at the guide:
|
683
|
+
:ref:`howto/operator:BedrockRaGOperator`
|
684
|
+
|
685
|
+
:param input: The query to be made to the knowledge base. (templated)
|
686
|
+
:param source_type: The type of resource that is queried by the request. (templated)
|
687
|
+
Must be one of 'KNOWLEDGE_BASE' or 'EXTERNAL_SOURCES', and the appropriate config values must also be provided.
|
688
|
+
If set to 'KNOWLEDGE_BASE' then `knowledge_base_id` must be provided, and `vector_search_config` may be.
|
689
|
+
If set to `EXTERNAL_SOURCES` then `sources` must also be provided.
|
690
|
+
NOTE: Support for EXTERNAL SOURCES was added in botocore 1.34.90
|
691
|
+
:param model_arn: The ARN of the foundation model used to generate a response. (templated)
|
692
|
+
:param prompt_template: The template for the prompt that's sent to the model for response generation.
|
693
|
+
You can include prompt placeholders, which are replaced before the prompt is sent to the model
|
694
|
+
to provide instructions and context to the model. In addition, you can include XML tags to delineate
|
695
|
+
meaningful sections of the prompt template. (templated)
|
696
|
+
:param knowledge_base_id: The unique identifier of the knowledge base that is queried. (templated)
|
697
|
+
Can only be specified if source_type='KNOWLEDGE_BASE'.
|
698
|
+
:param vector_search_config: How the results from the vector search should be returned. (templated)
|
699
|
+
Can only be specified if source_type='KNOWLEDGE_BASE'.
|
700
|
+
For more information, see https://docs.aws.amazon.com/bedrock/latest/userguide/kb-test-config.html.
|
701
|
+
:param sources: The documents used as reference for the response. (templated)
|
702
|
+
Can only be specified if source_type='EXTERNAL_SOURCES'
|
703
|
+
NOTE: Support for EXTERNAL SOURCES was added in botocore 1.34.90
|
704
|
+
:param rag_kwargs: Additional keyword arguments to pass to the API call. (templated)
|
705
|
+
"""
|
706
|
+
|
707
|
+
aws_hook_class = BedrockAgentRuntimeHook
|
708
|
+
template_fields: Sequence[str] = aws_template_fields(
|
709
|
+
"input",
|
710
|
+
"source_type",
|
711
|
+
"model_arn",
|
712
|
+
"prompt_template",
|
713
|
+
"knowledge_base_id",
|
714
|
+
"vector_search_config",
|
715
|
+
"sources",
|
716
|
+
"rag_kwargs",
|
717
|
+
)
|
718
|
+
|
719
|
+
def __init__(
|
720
|
+
self,
|
721
|
+
input: str,
|
722
|
+
source_type: str,
|
723
|
+
model_arn: str,
|
724
|
+
prompt_template: str | None = None,
|
725
|
+
knowledge_base_id: str | None = None,
|
726
|
+
vector_search_config: dict[str, Any] | None = None,
|
727
|
+
sources: list[dict[str, Any]] | None = None,
|
728
|
+
rag_kwargs: dict[str, Any] | None = None,
|
729
|
+
**kwargs,
|
730
|
+
):
|
731
|
+
super().__init__(**kwargs)
|
732
|
+
self.input = input
|
733
|
+
self.prompt_template = prompt_template
|
734
|
+
self.source_type = source_type.upper()
|
735
|
+
self.knowledge_base_id = knowledge_base_id
|
736
|
+
self.model_arn = model_arn
|
737
|
+
self.vector_search_config = vector_search_config
|
738
|
+
self.sources = sources
|
739
|
+
self.rag_kwargs = rag_kwargs or {}
|
740
|
+
|
741
|
+
def validate_inputs(self):
|
742
|
+
if self.source_type == "KNOWLEDGE_BASE":
|
743
|
+
if self.knowledge_base_id is None:
|
744
|
+
raise AttributeError(
|
745
|
+
"If `source_type` is set to 'KNOWLEDGE_BASE' then `knowledge_base_id` must be provided."
|
746
|
+
)
|
747
|
+
if self.sources is not None:
|
748
|
+
raise AttributeError(
|
749
|
+
"`sources` can not be used when `source_type` is set to 'KNOWLEDGE_BASE'."
|
750
|
+
)
|
751
|
+
elif self.source_type == "EXTERNAL_SOURCES":
|
752
|
+
if not self.sources is not None:
|
753
|
+
raise AttributeError(
|
754
|
+
"If `source_type` is set to `EXTERNAL_SOURCES` then `sources` must also be provided."
|
755
|
+
)
|
756
|
+
if self.vector_search_config or self.knowledge_base_id:
|
757
|
+
raise AttributeError(
|
758
|
+
"`vector_search_config` and `knowledge_base_id` can not be used "
|
759
|
+
"when `source_type` is set to `EXTERNAL_SOURCES`"
|
760
|
+
)
|
761
|
+
else:
|
762
|
+
raise AttributeError(
|
763
|
+
"`source_type` must be one of 'KNOWLEDGE_BASE' or 'EXTERNAL_SOURCES', "
|
764
|
+
"and the appropriate config values must also be provided."
|
765
|
+
)
|
766
|
+
|
767
|
+
def build_rag_config(self) -> dict[str, Any]:
|
768
|
+
result: dict[str, Any] = {}
|
769
|
+
base_config: dict[str, Any] = {
|
770
|
+
"modelArn": self.model_arn,
|
771
|
+
}
|
772
|
+
|
773
|
+
if self.prompt_template:
|
774
|
+
base_config["generationConfiguration"] = {
|
775
|
+
"promptTemplate": {"textPromptTemplate": self.prompt_template}
|
776
|
+
}
|
777
|
+
|
778
|
+
if self.source_type == "KNOWLEDGE_BASE":
|
779
|
+
if self.vector_search_config:
|
780
|
+
base_config["retrievalConfiguration"] = {
|
781
|
+
"vectorSearchConfiguration": self.vector_search_config
|
782
|
+
}
|
783
|
+
|
784
|
+
result = {
|
785
|
+
"type": self.source_type,
|
786
|
+
"knowledgeBaseConfiguration": {
|
787
|
+
**base_config,
|
788
|
+
"knowledgeBaseId": self.knowledge_base_id,
|
789
|
+
},
|
790
|
+
}
|
791
|
+
|
792
|
+
if self.source_type == "EXTERNAL_SOURCES":
|
793
|
+
result = {
|
794
|
+
"type": self.source_type,
|
795
|
+
"externalSourcesConfiguration": {**base_config, "sources": self.sources},
|
796
|
+
}
|
797
|
+
return result
|
798
|
+
|
799
|
+
def execute(self, context: Context) -> Any:
|
800
|
+
self.validate_inputs()
|
801
|
+
|
802
|
+
try:
|
803
|
+
result = self.hook.conn.retrieve_and_generate(
|
804
|
+
input={"text": self.input},
|
805
|
+
retrieveAndGenerateConfiguration=self.build_rag_config(),
|
806
|
+
**self.rag_kwargs,
|
807
|
+
)
|
808
|
+
except botocore.exceptions.ParamValidationError as error:
|
809
|
+
if (
|
810
|
+
'Unknown parameter in retrieveAndGenerateConfiguration: "externalSourcesConfiguration"'
|
811
|
+
in str(error)
|
812
|
+
) and (self.source_type == "EXTERNAL_SOURCES"):
|
813
|
+
self.log.error(
|
814
|
+
"You are attempting to use External Sources and the BOTO API returned an "
|
815
|
+
"error message which may indicate the need to update botocore to do this. \n"
|
816
|
+
"Support for External Sources was added in botocore 1.34.90 and you are using botocore %s",
|
817
|
+
".".join(map(str, get_botocore_version())),
|
818
|
+
)
|
819
|
+
raise
|
820
|
+
|
821
|
+
self.log.info(
|
822
|
+
"\nPrompt: %s\nResponse: %s\nCitations: %s",
|
823
|
+
self.input,
|
824
|
+
result["output"]["text"],
|
825
|
+
result["citations"],
|
826
|
+
)
|
827
|
+
return result
|
828
|
+
|
829
|
+
|
830
|
+
class BedrockRetrieveOperator(AwsBaseOperator[BedrockAgentRuntimeHook]):
|
831
|
+
"""
|
832
|
+
Query a knowledge base and retrieve results with source citations.
|
833
|
+
|
834
|
+
.. seealso::
|
835
|
+
For more information on how to use this operator, take a look at the guide:
|
836
|
+
:ref:`howto/operator:BedrockRetrieveOperator`
|
837
|
+
|
838
|
+
:param retrieval_query: The query to be made to the knowledge base. (templated)
|
839
|
+
:param knowledge_base_id: The unique identifier of the knowledge base that is queried. (templated)
|
840
|
+
:param vector_search_config: How the results from the vector search should be returned. (templated)
|
841
|
+
For more information, see https://docs.aws.amazon.com/bedrock/latest/userguide/kb-test-config.html.
|
842
|
+
:param retrieve_kwargs: Additional keyword arguments to pass to the API call. (templated)
|
843
|
+
"""
|
844
|
+
|
845
|
+
aws_hook_class = BedrockAgentRuntimeHook
|
846
|
+
template_fields: Sequence[str] = aws_template_fields(
|
847
|
+
"retrieval_query",
|
848
|
+
"knowledge_base_id",
|
849
|
+
"vector_search_config",
|
850
|
+
"retrieve_kwargs",
|
851
|
+
)
|
852
|
+
|
853
|
+
def __init__(
|
854
|
+
self,
|
855
|
+
retrieval_query: str,
|
856
|
+
knowledge_base_id: str,
|
857
|
+
vector_search_config: dict[str, Any] | None = None,
|
858
|
+
retrieve_kwargs: dict[str, Any] | None = None,
|
859
|
+
**kwargs,
|
860
|
+
):
|
861
|
+
super().__init__(**kwargs)
|
862
|
+
self.retrieval_query = retrieval_query
|
863
|
+
self.knowledge_base_id = knowledge_base_id
|
864
|
+
self.vector_search_config = vector_search_config
|
865
|
+
self.retrieve_kwargs = retrieve_kwargs or {}
|
866
|
+
|
867
|
+
def execute(self, context: Context) -> Any:
|
868
|
+
retrieval_configuration = (
|
869
|
+
{"retrievalConfiguration": {"vectorSearchConfiguration": self.vector_search_config}}
|
870
|
+
if self.vector_search_config
|
871
|
+
else {}
|
872
|
+
)
|
873
|
+
|
874
|
+
result = self.hook.conn.retrieve(
|
875
|
+
retrievalQuery={"text": self.retrieval_query},
|
876
|
+
knowledgeBaseId=self.knowledge_base_id,
|
877
|
+
**retrieval_configuration,
|
878
|
+
**self.retrieve_kwargs,
|
879
|
+
)
|
880
|
+
|
881
|
+
self.log.info("\nQuery: %s\nRetrieved: %s", self.retrieval_query, result["retrievalResults"])
|
882
|
+
return result
|
@@ -0,0 +1,192 @@
|
|
1
|
+
# Licensed to the Apache Software Foundation (ASF) under one
|
2
|
+
# or more contributor license agreements. See the NOTICE file
|
3
|
+
# distributed with this work for additional information
|
4
|
+
# regarding copyright ownership. The ASF licenses this file
|
5
|
+
# to you under the Apache License, Version 2.0 (the
|
6
|
+
# "License"); you may not use this file except in compliance
|
7
|
+
# with the License. You may obtain a copy of the License at
|
8
|
+
#
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10
|
+
#
|
11
|
+
# Unless required by applicable law or agreed to in writing,
|
12
|
+
# software distributed under the License is distributed on an
|
13
|
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
14
|
+
# KIND, either express or implied. See the License for the
|
15
|
+
# specific language governing permissions and limitations
|
16
|
+
# under the License.
|
17
|
+
from __future__ import annotations
|
18
|
+
|
19
|
+
from functools import cached_property
|
20
|
+
from typing import TYPE_CHECKING, Any, Sequence
|
21
|
+
|
22
|
+
from airflow.configuration import conf
|
23
|
+
from airflow.exceptions import AirflowException
|
24
|
+
from airflow.providers.amazon.aws.hooks.comprehend import ComprehendHook
|
25
|
+
from airflow.providers.amazon.aws.operators.base_aws import AwsBaseOperator
|
26
|
+
from airflow.providers.amazon.aws.triggers.comprehend import ComprehendPiiEntitiesDetectionJobCompletedTrigger
|
27
|
+
from airflow.providers.amazon.aws.utils import validate_execute_complete_event
|
28
|
+
from airflow.providers.amazon.aws.utils.mixins import aws_template_fields
|
29
|
+
from airflow.utils.timezone import utcnow
|
30
|
+
|
31
|
+
if TYPE_CHECKING:
|
32
|
+
import boto3
|
33
|
+
|
34
|
+
from airflow.utils.context import Context
|
35
|
+
|
36
|
+
|
37
|
+
class ComprehendBaseOperator(AwsBaseOperator[ComprehendHook]):
|
38
|
+
"""
|
39
|
+
This is the base operator for Comprehend Service operators (not supposed to be used directly in DAGs).
|
40
|
+
|
41
|
+
:param input_data_config: The input properties for a PII entities detection job. (templated)
|
42
|
+
:param output_data_config: Provides `configuration` parameters for the output of PII entity detection
|
43
|
+
jobs. (templated)
|
44
|
+
:param data_access_role_arn: The Amazon Resource Name (ARN) of the IAM role that grants Amazon Comprehend
|
45
|
+
read access to your input data. (templated)
|
46
|
+
:param language_code: The language of the input documents. (templated)
|
47
|
+
"""
|
48
|
+
|
49
|
+
aws_hook_class = ComprehendHook
|
50
|
+
|
51
|
+
template_fields: Sequence[str] = aws_template_fields(
|
52
|
+
"input_data_config", "output_data_config", "data_access_role_arn", "language_code"
|
53
|
+
)
|
54
|
+
|
55
|
+
template_fields_renderers: dict = {"input_data_config": "json", "output_data_config": "json"}
|
56
|
+
|
57
|
+
def __init__(
|
58
|
+
self,
|
59
|
+
input_data_config: dict,
|
60
|
+
output_data_config: dict,
|
61
|
+
data_access_role_arn: str,
|
62
|
+
language_code: str,
|
63
|
+
**kwargs,
|
64
|
+
):
|
65
|
+
super().__init__(**kwargs)
|
66
|
+
self.input_data_config = input_data_config
|
67
|
+
self.output_data_config = output_data_config
|
68
|
+
self.data_access_role_arn = data_access_role_arn
|
69
|
+
self.language_code = language_code
|
70
|
+
|
71
|
+
@cached_property
|
72
|
+
def client(self) -> boto3.client:
|
73
|
+
"""Create and return the Comprehend client."""
|
74
|
+
return self.hook.conn
|
75
|
+
|
76
|
+
def execute(self, context: Context):
|
77
|
+
"""Must overwrite in child classes."""
|
78
|
+
raise NotImplementedError("Please implement execute() in subclass")
|
79
|
+
|
80
|
+
|
81
|
+
class ComprehendStartPiiEntitiesDetectionJobOperator(ComprehendBaseOperator):
|
82
|
+
"""
|
83
|
+
Create a comprehend pii entities detection job for a collection of documents.
|
84
|
+
|
85
|
+
.. seealso::
|
86
|
+
For more information on how to use this operator, take a look at the guide:
|
87
|
+
:ref:`howto/operator:ComprehendStartPiiEntitiesDetectionJobOperator`
|
88
|
+
|
89
|
+
:param input_data_config: The input properties for a PII entities detection job. (templated)
|
90
|
+
:param output_data_config: Provides `configuration` parameters for the output of PII entity detection
|
91
|
+
jobs. (templated)
|
92
|
+
:param mode: Specifies whether the output provides the locations (offsets) of PII entities or a file in
|
93
|
+
which PII entities are redacted. If you set the mode parameter to ONLY_REDACTION. In that case you
|
94
|
+
must provide a RedactionConfig in start_pii_entities_kwargs.
|
95
|
+
:param data_access_role_arn: The Amazon Resource Name (ARN) of the IAM role that grants Amazon Comprehend
|
96
|
+
read access to your input data. (templated)
|
97
|
+
:param language_code: The language of the input documents. (templated)
|
98
|
+
:param start_pii_entities_kwargs: Any optional parameters to pass to the job. If JobName is not provided
|
99
|
+
in start_pii_entities_kwargs, operator will create.
|
100
|
+
|
101
|
+
:param wait_for_completion: Whether to wait for job to stop. (default: True)
|
102
|
+
:param waiter_delay: Time in seconds to wait between status checks. (default: 60)
|
103
|
+
:param waiter_max_attempts: Maximum number of attempts to check for job completion. (default: 20)
|
104
|
+
:param deferrable: If True, the operator will wait asynchronously for the job to stop.
|
105
|
+
This implies waiting for completion. This mode requires aiobotocore module to be installed.
|
106
|
+
(default: False)
|
107
|
+
:param aws_conn_id: The Airflow connection used for AWS credentials.
|
108
|
+
If this is ``None`` or empty then the default boto3 behaviour is used. If
|
109
|
+
running Airflow in a distributed manner and aws_conn_id is None or
|
110
|
+
empty, then default boto3 configuration would be used (and must be
|
111
|
+
maintained on each worker node).
|
112
|
+
:param region_name: AWS region_name. If not specified then the default boto3 behaviour is used.
|
113
|
+
:param verify: Whether to verify SSL certificates. See:
|
114
|
+
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
|
115
|
+
:param botocore_config: Configuration dictionary (key-values) for botocore client. See:
|
116
|
+
https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html
|
117
|
+
"""
|
118
|
+
|
119
|
+
def __init__(
|
120
|
+
self,
|
121
|
+
input_data_config: dict,
|
122
|
+
output_data_config: dict,
|
123
|
+
mode: str,
|
124
|
+
data_access_role_arn: str,
|
125
|
+
language_code: str,
|
126
|
+
start_pii_entities_kwargs: dict[str, Any] | None = None,
|
127
|
+
wait_for_completion: bool = True,
|
128
|
+
waiter_delay: int = 60,
|
129
|
+
waiter_max_attempts: int = 20,
|
130
|
+
deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
|
131
|
+
**kwargs,
|
132
|
+
):
|
133
|
+
super().__init__(
|
134
|
+
input_data_config=input_data_config,
|
135
|
+
output_data_config=output_data_config,
|
136
|
+
data_access_role_arn=data_access_role_arn,
|
137
|
+
language_code=language_code,
|
138
|
+
**kwargs,
|
139
|
+
)
|
140
|
+
self.mode = mode
|
141
|
+
self.start_pii_entities_kwargs = start_pii_entities_kwargs or {}
|
142
|
+
self.wait_for_completion = wait_for_completion
|
143
|
+
self.waiter_delay = waiter_delay
|
144
|
+
self.waiter_max_attempts = waiter_max_attempts
|
145
|
+
self.deferrable = deferrable
|
146
|
+
|
147
|
+
def execute(self, context: Context) -> str:
|
148
|
+
if self.start_pii_entities_kwargs.get("JobName", None) is None:
|
149
|
+
self.start_pii_entities_kwargs["JobName"] = (
|
150
|
+
f"start_pii_entities_detection_job-{int(utcnow().timestamp())}"
|
151
|
+
)
|
152
|
+
|
153
|
+
self.log.info(
|
154
|
+
"Submitting start pii entities detection job '%s'.", self.start_pii_entities_kwargs["JobName"]
|
155
|
+
)
|
156
|
+
job_id = self.client.start_pii_entities_detection_job(
|
157
|
+
InputDataConfig=self.input_data_config,
|
158
|
+
OutputDataConfig=self.output_data_config,
|
159
|
+
Mode=self.mode,
|
160
|
+
DataAccessRoleArn=self.data_access_role_arn,
|
161
|
+
LanguageCode=self.language_code,
|
162
|
+
**self.start_pii_entities_kwargs,
|
163
|
+
)["JobId"]
|
164
|
+
|
165
|
+
message_description = f"start pii entities detection job {job_id} to complete."
|
166
|
+
if self.deferrable:
|
167
|
+
self.log.info("Deferring %s", message_description)
|
168
|
+
self.defer(
|
169
|
+
trigger=ComprehendPiiEntitiesDetectionJobCompletedTrigger(
|
170
|
+
job_id=job_id,
|
171
|
+
waiter_delay=self.waiter_delay,
|
172
|
+
waiter_max_attempts=self.waiter_max_attempts,
|
173
|
+
aws_conn_id=self.aws_conn_id,
|
174
|
+
),
|
175
|
+
method_name="execute_complete",
|
176
|
+
)
|
177
|
+
elif self.wait_for_completion:
|
178
|
+
self.log.info("Waiting for %s", message_description)
|
179
|
+
self.hook.get_waiter("pii_entities_detection_job_complete").wait(
|
180
|
+
JobId=job_id,
|
181
|
+
WaiterConfig={"Delay": self.waiter_delay, "MaxAttempts": self.waiter_max_attempts},
|
182
|
+
)
|
183
|
+
|
184
|
+
return job_id
|
185
|
+
|
186
|
+
def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> str:
|
187
|
+
event = validate_execute_complete_event(event)
|
188
|
+
if event["status"] != "success":
|
189
|
+
raise AirflowException("Error while running job: %s", event)
|
190
|
+
|
191
|
+
self.log.info("Comprehend pii entities detection job `%s` complete.", event["job_id"])
|
192
|
+
return event["job_id"]
|