annofabcli 1.102.1__py3-none-any.whl → 1.104.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (136) hide show
  1. annofabcli/__main__.py +1 -1
  2. annofabcli/annotation/annotation_query.py +9 -29
  3. annofabcli/annotation/change_annotation_attributes.py +6 -14
  4. annofabcli/annotation/change_annotation_properties.py +5 -12
  5. annofabcli/annotation/copy_annotation.py +4 -10
  6. annofabcli/annotation/delete_annotation.py +10 -26
  7. annofabcli/annotation/dump_annotation.py +1 -4
  8. annofabcli/annotation/import_annotation.py +15 -39
  9. annofabcli/annotation/list_annotation.py +1 -4
  10. annofabcli/annotation/merge_segmentation.py +5 -15
  11. annofabcli/annotation/remove_segmentation_overlap.py +8 -29
  12. annofabcli/annotation/restore_annotation.py +3 -9
  13. annofabcli/annotation_specs/add_attribute_restriction.py +2 -8
  14. annofabcli/annotation_specs/attribute_restriction.py +2 -10
  15. annofabcli/annotation_specs/export_annotation_specs.py +1 -3
  16. annofabcli/annotation_specs/get_annotation_specs_with_attribute_id_replaced.py +3 -10
  17. annofabcli/annotation_specs/get_annotation_specs_with_choice_id_replaced.py +4 -10
  18. annofabcli/annotation_specs/get_annotation_specs_with_label_id_replaced.py +1 -3
  19. annofabcli/annotation_specs/list_annotation_specs_attribute.py +7 -18
  20. annofabcli/annotation_specs/list_annotation_specs_choice.py +3 -8
  21. annofabcli/annotation_specs/list_annotation_specs_history.py +0 -1
  22. annofabcli/annotation_specs/list_annotation_specs_label.py +3 -8
  23. annofabcli/annotation_specs/list_annotation_specs_label_attribute.py +4 -9
  24. annofabcli/annotation_specs/list_attribute_restriction.py +3 -9
  25. annofabcli/annotation_specs/put_label_color.py +1 -6
  26. annofabcli/comment/delete_comment.py +3 -9
  27. annofabcli/comment/list_all_comment.py +15 -5
  28. annofabcli/comment/list_comment.py +46 -7
  29. annofabcli/comment/put_comment.py +4 -13
  30. annofabcli/comment/put_comment_simply.py +2 -6
  31. annofabcli/comment/put_inspection_comment.py +2 -6
  32. annofabcli/comment/put_inspection_comment_simply.py +3 -6
  33. annofabcli/comment/put_onhold_comment.py +2 -6
  34. annofabcli/comment/put_onhold_comment_simply.py +2 -4
  35. annofabcli/common/cli.py +5 -43
  36. annofabcli/common/download.py +8 -25
  37. annofabcli/common/image.py +3 -7
  38. annofabcli/common/utils.py +2 -4
  39. annofabcli/common/visualize.py +2 -4
  40. annofabcli/filesystem/draw_annotation.py +6 -18
  41. annofabcli/filesystem/filter_annotation.py +7 -24
  42. annofabcli/filesystem/mask_user_info.py +2 -5
  43. annofabcli/filesystem/merge_annotation.py +2 -6
  44. annofabcli/input_data/change_input_data_name.py +3 -7
  45. annofabcli/input_data/copy_input_data.py +6 -14
  46. annofabcli/input_data/delete_input_data.py +7 -24
  47. annofabcli/input_data/delete_metadata_key_of_input_data.py +5 -16
  48. annofabcli/input_data/list_all_input_data.py +5 -14
  49. annofabcli/input_data/list_all_input_data_merged_task.py +8 -23
  50. annofabcli/input_data/list_input_data.py +5 -16
  51. annofabcli/input_data/put_input_data.py +7 -19
  52. annofabcli/input_data/update_metadata_of_input_data.py +6 -14
  53. annofabcli/instruction/list_instruction_history.py +0 -1
  54. annofabcli/instruction/upload_instruction.py +4 -7
  55. annofabcli/job/list_job.py +2 -3
  56. annofabcli/job/list_last_job.py +1 -3
  57. annofabcli/organization/list_organization.py +0 -1
  58. annofabcli/organization_member/change_organization_member.py +1 -3
  59. annofabcli/organization_member/delete_organization_member.py +2 -6
  60. annofabcli/organization_member/invite_organization_member.py +1 -3
  61. annofabcli/organization_member/list_organization_member.py +0 -1
  62. annofabcli/project/change_organization_of_project.py +257 -0
  63. annofabcli/project/change_project_status.py +2 -2
  64. annofabcli/project/copy_project.py +2 -7
  65. annofabcli/project/diff_projects.py +4 -16
  66. annofabcli/project/list_project.py +0 -1
  67. annofabcli/project/put_project.py +2 -6
  68. annofabcli/project/subcommand_project.py +2 -0
  69. annofabcli/project_member/change_project_members.py +1 -1
  70. annofabcli/project_member/copy_project_members.py +2 -7
  71. annofabcli/project_member/drop_project_members.py +1 -3
  72. annofabcli/project_member/invite_project_members.py +2 -4
  73. annofabcli/project_member/list_users.py +0 -1
  74. annofabcli/project_member/put_project_members.py +4 -12
  75. annofabcli/stat_visualization/mask_visualization_dir.py +6 -16
  76. annofabcli/stat_visualization/merge_visualization_dir.py +7 -19
  77. annofabcli/stat_visualization/summarize_whole_performance_csv.py +3 -7
  78. annofabcli/stat_visualization/write_graph.py +5 -15
  79. annofabcli/stat_visualization/write_performance_rating_csv.py +4 -12
  80. annofabcli/statistics/list_annotation_area.py +3 -7
  81. annofabcli/statistics/list_annotation_attribute.py +6 -15
  82. annofabcli/statistics/list_annotation_attribute_filled_count.py +9 -23
  83. annofabcli/statistics/list_annotation_count.py +18 -44
  84. annofabcli/statistics/list_annotation_duration.py +14 -40
  85. annofabcli/statistics/list_video_duration.py +2 -3
  86. annofabcli/statistics/list_worktime.py +0 -1
  87. annofabcli/statistics/scatter.py +3 -9
  88. annofabcli/statistics/summarize_task_count.py +7 -12
  89. annofabcli/statistics/summarize_task_count_by_task_id_group.py +3 -11
  90. annofabcli/statistics/summarize_task_count_by_user.py +1 -5
  91. annofabcli/statistics/visualization/dataframe/annotation_count.py +2 -4
  92. annofabcli/statistics/visualization/dataframe/cumulative_productivity.py +6 -12
  93. annofabcli/statistics/visualization/dataframe/productivity_per_date.py +10 -22
  94. annofabcli/statistics/visualization/dataframe/project_performance.py +1 -3
  95. annofabcli/statistics/visualization/dataframe/task.py +2 -5
  96. annofabcli/statistics/visualization/dataframe/task_history.py +1 -1
  97. annofabcli/statistics/visualization/dataframe/task_worktime_by_phase_user.py +6 -20
  98. annofabcli/statistics/visualization/dataframe/user_performance.py +29 -88
  99. annofabcli/statistics/visualization/dataframe/whole_performance.py +6 -12
  100. annofabcli/statistics/visualization/dataframe/whole_productivity_per_date.py +17 -49
  101. annofabcli/statistics/visualization/dataframe/worktime_per_date.py +4 -10
  102. annofabcli/statistics/visualization/filtering_query.py +2 -6
  103. annofabcli/statistics/visualization/project_dir.py +9 -26
  104. annofabcli/statistics/visualization/visualization_source_files.py +3 -10
  105. annofabcli/statistics/visualize_annotation_count.py +9 -23
  106. annofabcli/statistics/visualize_annotation_duration.py +5 -15
  107. annofabcli/statistics/visualize_statistics.py +18 -53
  108. annofabcli/statistics/visualize_video_duration.py +8 -19
  109. annofabcli/supplementary/delete_supplementary_data.py +7 -23
  110. annofabcli/supplementary/list_supplementary_data.py +1 -1
  111. annofabcli/supplementary/put_supplementary_data.py +5 -15
  112. annofabcli/task/cancel_acceptance.py +3 -4
  113. annofabcli/task/change_operator.py +3 -11
  114. annofabcli/task/change_status_to_break.py +1 -1
  115. annofabcli/task/change_status_to_on_hold.py +5 -18
  116. annofabcli/task/complete_tasks.py +8 -25
  117. annofabcli/task/copy_tasks.py +2 -3
  118. annofabcli/task/delete_metadata_key_of_task.py +2 -6
  119. annofabcli/task/delete_tasks.py +8 -26
  120. annofabcli/task/list_all_tasks.py +2 -4
  121. annofabcli/task/list_tasks.py +3 -7
  122. annofabcli/task/list_tasks_added_task_history.py +7 -21
  123. annofabcli/task/put_tasks.py +2 -3
  124. annofabcli/task/put_tasks_by_count.py +3 -7
  125. annofabcli/task/reject_tasks.py +7 -19
  126. annofabcli/task/update_metadata_of_task.py +2 -2
  127. annofabcli/task_history/list_all_task_history.py +2 -5
  128. annofabcli/task_history/list_task_history.py +0 -1
  129. annofabcli/task_history_event/list_all_task_history_event.py +4 -11
  130. annofabcli/task_history_event/list_worktime.py +4 -14
  131. {annofabcli-1.102.1.dist-info → annofabcli-1.104.0.dist-info}/METADATA +1 -1
  132. annofabcli-1.104.0.dist-info/RECORD +215 -0
  133. annofabcli-1.102.1.dist-info/RECORD +0 -214
  134. {annofabcli-1.102.1.dist-info → annofabcli-1.104.0.dist-info}/WHEEL +0 -0
  135. {annofabcli-1.102.1.dist-info → annofabcli-1.104.0.dist-info}/entry_points.txt +0 -0
  136. {annofabcli-1.102.1.dist-info → annofabcli-1.104.0.dist-info}/licenses/LICENSE +0 -0
@@ -41,9 +41,7 @@ def create_df_productivity_per_date(task_worktime_by_phase_user: TaskWorktimeByP
41
41
  df = df[df["phase"] == str_phase]
42
42
  df = df.rename(columns={"pointed_out_inspection_comment_count": "inspection_comment_count", "worktime_hour": f"{str_phase}_worktime_hour"})
43
43
 
44
- df[f"first_{str_phase}_started_date"] = df["started_datetime"].map(
45
- lambda e: datetime_to_date(e) if e is not None and isinstance(e, str) else None
46
- )
44
+ df[f"first_{str_phase}_started_date"] = df["started_datetime"].map(lambda e: datetime_to_date(e) if e is not None and isinstance(e, str) else None)
47
45
 
48
46
  # first_annotation_user_id と first_annotation_usernameの両方を指定している理由:
49
47
  # first_annotation_username を取得するため
@@ -82,9 +80,7 @@ class AbstractPhaseProductivityPerDate(abc.ABC):
82
80
  PLOT_WIDTH = 1200
83
81
  PLOT_HEIGHT = 600
84
82
 
85
- def __init__(
86
- self, df: pandas.DataFrame, phase: TaskPhase, *, custom_production_volume_list: Optional[list[ProductionVolumeColumn]] = None
87
- ) -> None:
83
+ def __init__(self, df: pandas.DataFrame, phase: TaskPhase, *, custom_production_volume_list: Optional[list[ProductionVolumeColumn]] = None) -> None:
88
84
  self.df = df
89
85
  self.phase = phase
90
86
  self.custom_production_volume_list = custom_production_volume_list if custom_production_volume_list is not None else []
@@ -209,9 +205,7 @@ class AbstractPhaseProductivityPerDate(abc.ABC):
209
205
  *self.production_volume_columns,
210
206
  ]
211
207
 
212
- velocity_columns = [
213
- f"{numerator}/{denominator}" for numerator in [f"{str_phase}_worktime_hour"] for denominator in self.production_volume_columns
214
- ]
208
+ velocity_columns = [f"{numerator}/{denominator}" for numerator in [f"{str_phase}_worktime_hour"] for denominator in self.production_volume_columns]
215
209
 
216
210
  columns = production_columns + velocity_columns
217
211
 
@@ -259,7 +253,7 @@ class AnnotatorProductivityPerDate(AbstractPhaseProductivityPerDate):
259
253
 
260
254
  df = self.df.copy()
261
255
 
262
- if target_user_id_list is not None: # noqa: SIM108
256
+ if target_user_id_list is not None:
263
257
  user_id_list = target_user_id_list
264
258
  else:
265
259
  user_id_list = df.sort_values(by="user_id")["user_id"].dropna().unique().tolist()
@@ -337,15 +331,13 @@ class AnnotatorProductivityPerDate(AbstractPhaseProductivityPerDate):
337
331
  continue
338
332
 
339
333
  df_subset = self._get_df_sequential_date(df_subset)
340
- df_subset[f"annotation_worktime_minute/{production_volume_column}"] = (
341
- df_subset["annotation_worktime_hour"] * 60 / df_subset[production_volume_column]
342
- )
334
+ df_subset[f"annotation_worktime_minute/{production_volume_column}"] = df_subset["annotation_worktime_hour"] * 60 / df_subset[production_volume_column]
343
335
  df_subset[f"annotation_worktime_minute/{production_volume_column}{WEEKLY_MOVING_AVERAGE_COLUMN_SUFFIX}"] = (
344
336
  get_weekly_sum(df_subset["annotation_worktime_hour"]) * 60 / get_weekly_sum(df_subset[production_volume_column])
345
337
  )
346
- df_subset[f"inspection_comment_count/{production_volume_column}{WEEKLY_MOVING_AVERAGE_COLUMN_SUFFIX}"] = get_weekly_sum(
347
- df_subset["inspection_comment_count"]
348
- ) / get_weekly_sum(df_subset[production_volume_column])
338
+ df_subset[f"inspection_comment_count/{production_volume_column}{WEEKLY_MOVING_AVERAGE_COLUMN_SUFFIX}"] = get_weekly_sum(df_subset["inspection_comment_count"]) / get_weekly_sum(
339
+ df_subset[production_volume_column]
340
+ )
349
341
 
350
342
  source = ColumnDataSource(data=df_subset)
351
343
  color = get_color_from_palette(user_index)
@@ -475,9 +467,7 @@ class InspectorProductivityPerDate(AbstractPhaseProductivityPerDate):
475
467
  continue
476
468
 
477
469
  df_subset = self._get_df_sequential_date(df_subset)
478
- df_subset[f"inspection_worktime_minute/{production_volume_column}"] = (
479
- df_subset["inspection_worktime_hour"] * 60 / df_subset[production_volume_column]
480
- )
470
+ df_subset[f"inspection_worktime_minute/{production_volume_column}"] = df_subset["inspection_worktime_hour"] * 60 / df_subset[production_volume_column]
481
471
  df_subset[f"inspection_worktime_minute/{production_volume_column}{WEEKLY_MOVING_AVERAGE_COLUMN_SUFFIX}"] = (
482
472
  get_weekly_sum(df_subset["inspection_worktime_hour"]) * 60 / get_weekly_sum(df_subset[production_volume_column])
483
473
  )
@@ -616,9 +606,7 @@ class AcceptorProductivityPerDate(AbstractPhaseProductivityPerDate):
616
606
  continue
617
607
 
618
608
  df_subset = self._get_df_sequential_date(df_subset)
619
- df_subset[f"acceptance_worktime_minute/{production_volume_column}"] = (
620
- df_subset["acceptance_worktime_hour"] * 60 / df_subset[production_volume_column]
621
- )
609
+ df_subset[f"acceptance_worktime_minute/{production_volume_column}"] = df_subset["acceptance_worktime_hour"] * 60 / df_subset[production_volume_column]
622
610
 
623
611
  df_subset[f"acceptance_worktime_minute/{production_volume_column}{WEEKLY_MOVING_AVERAGE_COLUMN_SUFFIX}"] = (
624
612
  get_weekly_sum(df_subset["acceptance_worktime_hour"]) * 60 / get_weekly_sum(df_subset[production_volume_column])
@@ -89,9 +89,7 @@ class ProjectPerformance:
89
89
  return [e.value for e in TaskPhase if e.value in tmp_set]
90
90
 
91
91
  @classmethod
92
- def from_project_dirs(
93
- cls, project_dir_list: list[ProjectDir], *, custom_production_volume_list: Optional[list[ProductionVolumeColumn]] = None
94
- ) -> ProjectPerformance:
92
+ def from_project_dirs(cls, project_dir_list: list[ProjectDir], *, custom_production_volume_list: Optional[list[ProductionVolumeColumn]] = None) -> ProjectPerformance:
95
93
  row_list: list[pandas.Series] = [cls._get_series_from_project_dir(project_dir) for project_dir in project_dir_list]
96
94
  return cls(pandas.DataFrame(row_list), custom_production_volume_list=custom_production_volume_list)
97
95
 
@@ -71,10 +71,7 @@ class Task:
71
71
  logger.warning("引数`df`に重複したキー(project_id, task_id)が含まれています。")
72
72
 
73
73
  if not self.required_columns_exist(df):
74
- raise ValueError(
75
- f"引数'df'の'columns'に次の列が存在していません。 {self.missing_required_columns(df)} :: "
76
- f"次の列が必須です。{self.required_columns} の列が必要です。"
77
- )
74
+ raise ValueError(f"引数'df'の'columns'に次の列が存在していません。 {self.missing_required_columns(df)} :: 次の列が必須です。{self.required_columns} の列が必要です。")
78
75
 
79
76
  self.df = df
80
77
 
@@ -409,7 +406,7 @@ class Task:
409
406
 
410
407
  # タイムゾーンを指定している理由::
411
408
  # すべてがNaNのseriesをdatetimeに変換すると、型にタイムゾーンが指定されない。
412
- # その状態で加算すると、`TypeError: DatetimeArray subtraction must have the same timezones or no timezones`というエラーが発生するため # noqa: E501
409
+ # その状態で加算すると、`TypeError: DatetimeArray subtraction must have the same timezones or no timezones`というエラーが発生するため
413
410
  if not isinstance(dt1.dtype, pandas.DatetimeTZDtype):
414
411
  dt1 = dt1.dt.tz_localize(pytz.FixedOffset(540))
415
412
  if not isinstance(dt2.dtype, pandas.DatetimeTZDtype):
@@ -67,7 +67,7 @@ class TaskHistory:
67
67
  new_task_history["worktime_hour"] = isoduration_to_hour(task_history["accumulated_labor_time_milliseconds"])
68
68
  all_task_history_list.append(new_task_history)
69
69
 
70
- if len(all_task_history_list) > 0: # noqa: SIM108
70
+ if len(all_task_history_list) > 0:
71
71
  df = pandas.DataFrame(all_task_history_list)
72
72
  else:
73
73
  df = cls.empty()
@@ -107,9 +107,7 @@ class TaskWorktimeByPhaseUser:
107
107
  logger.warning("引数`df`に重複したキー(project_id, task_id, phase, phase_stage, account_id)が含まれています。")
108
108
 
109
109
  if not self.required_columns_exist(df):
110
- raise ValueError(
111
- f"引数'df'の'columns'に次の列が存在していません。 {self.missing_columns(df)} :: 次の列が必須です。{self.columns}の列が必要です。"
112
- )
110
+ raise ValueError(f"引数'df'の'columns'に次の列が存在していません。 {self.missing_columns(df)} :: 次の列が必須です。{self.columns}の列が必要です。")
113
111
 
114
112
  self.df = df
115
113
 
@@ -141,9 +139,7 @@ class TaskWorktimeByPhaseUser:
141
139
  project_id
142
140
  """
143
141
  df_task = task.df
144
- df_worktime_ratio = cls._create_annotation_count_ratio_df(
145
- task_history.df, task.df, custom_production_volume_columns=[e.value for e in task.custom_production_volume_list]
146
- )
142
+ df_worktime_ratio = cls._create_annotation_count_ratio_df(task_history.df, task.df, custom_production_volume_columns=[e.value for e in task.custom_production_volume_list])
147
143
  if len(df_worktime_ratio) == 0:
148
144
  return cls.empty()
149
145
 
@@ -239,9 +235,7 @@ class TaskWorktimeByPhaseUser:
239
235
  return TaskWorktimeByPhaseUser(df, custom_production_volume_list=self.custom_production_volume_list)
240
236
 
241
237
  @staticmethod
242
- def _create_annotation_count_ratio_df(
243
- task_history_df: pandas.DataFrame, task_df: pandas.DataFrame, *, custom_production_volume_columns: Optional[list[str]]
244
- ) -> pandas.DataFrame:
238
+ def _create_annotation_count_ratio_df(task_history_df: pandas.DataFrame, task_df: pandas.DataFrame, *, custom_production_volume_columns: Optional[list[str]]) -> pandas.DataFrame:
245
239
  """
246
240
  task_id, phase, (phase_index), user_idの作業時間比から、アノテーション数などの生産量を求める
247
241
 
@@ -273,11 +267,7 @@ class TaskWorktimeByPhaseUser:
273
267
 
274
268
  task_history_df = task_history_df[task_history_df["task_id"].isin(set(task_df["task_id"]))]
275
269
 
276
- group_obj = (
277
- task_history_df.sort_values("started_datetime")
278
- .groupby(["task_id", "phase", "phase_stage", "account_id"])
279
- .agg({"worktime_hour": "sum", "started_datetime": "first"})
280
- )
270
+ group_obj = task_history_df.sort_values("started_datetime").groupby(["task_id", "phase", "phase_stage", "account_id"]).agg({"worktime_hour": "sum", "started_datetime": "first"})
281
271
  # 担当者だけ変更して作業していないケースを除外する
282
272
  group_obj = group_obj[group_obj["worktime_hour"] > 0]
283
273
 
@@ -285,9 +275,7 @@ class TaskWorktimeByPhaseUser:
285
275
  logger.warning("タスク履歴情報に作業しているタスクがありませんでした。タスク履歴全件ファイルが更新されていない可能性があります。")
286
276
  return pandas.DataFrame()
287
277
 
288
- group_obj["task_count"] = group_obj.groupby(level=["task_id", "phase", "phase_stage"], group_keys=False)[["worktime_hour"]].apply(
289
- lambda e: e / e["worktime_hour"].sum()
290
- )
278
+ group_obj["task_count"] = group_obj.groupby(level=["task_id", "phase", "phase_stage"], group_keys=False)[["worktime_hour"]].apply(lambda e: e / e["worktime_hour"].sum())
291
279
 
292
280
  quantity_columns = [
293
281
  "annotation_count",
@@ -302,9 +290,7 @@ class TaskWorktimeByPhaseUser:
302
290
  group_obj[col] = group_obj.apply(sub_get_quantity_value, axis="columns")
303
291
 
304
292
  new_df = group_obj.reset_index()
305
- new_df["pointed_out_inspection_comment_count"] = new_df["pointed_out_inspection_comment_count"] * new_df["phase"].apply(
306
- lambda e: 1 if e == TaskPhase.ANNOTATION.value else 0
307
- )
293
+ new_df["pointed_out_inspection_comment_count"] = new_df["pointed_out_inspection_comment_count"] * new_df["phase"].apply(lambda e: 1 if e == TaskPhase.ANNOTATION.value else 0)
308
294
  new_df["rejected_count"] = new_df["rejected_count"] * new_df["phase"].apply(lambda e: 1 if e == TaskPhase.ANNOTATION.value else 0)
309
295
 
310
296
  return new_df
@@ -100,9 +100,7 @@ class UserPerformance:
100
100
  self.custom_production_volume_list = custom_production_volume_list if custom_production_volume_list is not None else []
101
101
  self.phase_list = phase_list
102
102
  if not self.required_columns_exist(df):
103
- raise ValueError(
104
- f"引数'df'の'columns'に次の列が存在していません。 {self.missing_columns(df)} :: 次の列が必須です。{self.columns}の列が必要です。"
105
- )
103
+ raise ValueError(f"引数'df'の'columns'に次の列が存在していません。 {self.missing_columns(df)} :: 次の列が必須です。{self.columns}の列が必要です。")
106
104
 
107
105
  self.df = df
108
106
 
@@ -116,18 +114,14 @@ class UserPerformance:
116
114
  return len(self.df) == 0
117
115
 
118
116
  @staticmethod
119
- def _add_ratio_column_for_productivity_per_user(
120
- df: pandas.DataFrame, phase_list: Sequence[TaskPhaseString], production_volume_columns: list[str]
121
- ) -> None:
117
+ def _add_ratio_column_for_productivity_per_user(df: pandas.DataFrame, phase_list: Sequence[TaskPhaseString], production_volume_columns: list[str]) -> None:
122
118
  """
123
119
  ユーザーの生産性に関する列を、DataFrameに追加します。
124
120
  """
125
121
 
126
122
  # 集計対象タスクから算出した計測作業時間(`monitored_worktime_hour`)に対応する実績作業時間を推定で算出する
127
123
  # 具体的には、実際の計測作業時間と十先作業時間の比(`real_monitored_worktime_hour/real_actual_worktime_hour`)になるように按分する
128
- df[("actual_worktime_hour", "sum")] = (
129
- df[("monitored_worktime_hour", "sum")] / df[("real_monitored_worktime_hour/real_actual_worktime_hour", "sum")]
130
- )
124
+ df[("actual_worktime_hour", "sum")] = df[("monitored_worktime_hour", "sum")] / df[("real_monitored_worktime_hour/real_actual_worktime_hour", "sum")]
131
125
 
132
126
  for phase in phase_list:
133
127
 
@@ -156,23 +150,15 @@ class UserPerformance:
156
150
  # 生産性を算出
157
151
  ratio__actual_vs_monitored_worktime = df[("actual_worktime_hour", phase)] / df[("monitored_worktime_hour", phase)]
158
152
  for production_volume_column in production_volume_columns:
159
- df[(f"monitored_worktime_hour/{production_volume_column}", phase)] = (
160
- df[("monitored_worktime_hour", phase)] / df[(production_volume_column, phase)]
161
- )
162
- df[(f"actual_worktime_hour/{production_volume_column}", phase)] = (
163
- df[("actual_worktime_hour", phase)] / df[(production_volume_column, phase)]
164
- )
153
+ df[(f"monitored_worktime_hour/{production_volume_column}", phase)] = df[("monitored_worktime_hour", phase)] / df[(production_volume_column, phase)]
154
+ df[(f"actual_worktime_hour/{production_volume_column}", phase)] = df[("actual_worktime_hour", phase)] / df[(production_volume_column, phase)]
165
155
 
166
- df[(f"stdev__actual_worktime_hour/{production_volume_column}", phase)] = (
167
- df[(f"stdev__monitored_worktime_hour/{production_volume_column}", phase)] * ratio__actual_vs_monitored_worktime
168
- )
156
+ df[(f"stdev__actual_worktime_hour/{production_volume_column}", phase)] = df[(f"stdev__monitored_worktime_hour/{production_volume_column}", phase)] * ratio__actual_vs_monitored_worktime
169
157
 
170
158
  # 品質に関する情報
171
159
  phase = TaskPhase.ANNOTATION.value
172
160
  for production_volume_column in production_volume_columns:
173
- df[(f"pointed_out_inspection_comment_count/{production_volume_column}", phase)] = (
174
- df[("pointed_out_inspection_comment_count", phase)] / df[(production_volume_column, phase)]
175
- )
161
+ df[(f"pointed_out_inspection_comment_count/{production_volume_column}", phase)] = df[("pointed_out_inspection_comment_count", phase)] / df[(production_volume_column, phase)]
176
162
 
177
163
  df[("rejected_count/task_count", phase)] = df[("rejected_count", phase)] / df[("task_count", phase)]
178
164
 
@@ -204,9 +190,7 @@ class UserPerformance:
204
190
  return cls(df, task_completion_criteria, custom_production_volume_list=custom_production_volume_list)
205
191
 
206
192
  @classmethod
207
- def empty(
208
- cls, task_completion_criteria: TaskCompletionCriteria, *, custom_production_volume_list: Optional[list[ProductionVolumeColumn]] = None
209
- ) -> UserPerformance:
193
+ def empty(cls, task_completion_criteria: TaskCompletionCriteria, *, custom_production_volume_list: Optional[list[ProductionVolumeColumn]] = None) -> UserPerformance:
210
194
  """空のデータフレームを持つインスタンスを生成します。"""
211
195
  production_volume_columns = ["input_data_count", "annotation_count"]
212
196
  if custom_production_volume_list is not None:
@@ -321,10 +305,7 @@ class UserPerformance:
321
305
  # `to_csv()`で出力したときにKeyErrorが発生内容にするため、事前に列を追加しておく
322
306
  phase = TaskPhase.ANNOTATION.value
323
307
  columns = pandas.MultiIndex.from_tuples(
324
- [
325
- (f"stdev__monitored_worktime_hour/{production_volume_column}", phase)
326
- for production_volume_column in task_worktime_by_phase_user.production_volume_columns
327
- ]
308
+ [(f"stdev__monitored_worktime_hour/{production_volume_column}", phase) for production_volume_column in task_worktime_by_phase_user.production_volume_columns]
328
309
  )
329
310
  df_empty = pandas.DataFrame(columns=columns, index=pandas.Index([], name="account_id"), dtype="float64")
330
311
  return df_empty
@@ -340,9 +321,7 @@ class UserPerformance:
340
321
  df_stdev_per_volume_count_list = []
341
322
  for production_volume_column in task_worktime_by_phase_user.production_volume_columns:
342
323
  df_stdev_per_input_data_count = (
343
- df2[df2[f"worktime_hour/{production_volume_column}"] != float("inf")]
344
- .groupby(["account_id", "phase"])[[f"worktime_hour/{production_volume_column}"]]
345
- .std(ddof=0)
324
+ df2[df2[f"worktime_hour/{production_volume_column}"] != float("inf")].groupby(["account_id", "phase"])[[f"worktime_hour/{production_volume_column}"]].std(ddof=0)
346
325
  )
347
326
  df_stdev_per_volume_count_list.append(df_stdev_per_input_data_count)
348
327
  df_stdev = pandas.concat(df_stdev_per_volume_count_list, axis=1)
@@ -351,9 +330,7 @@ class UserPerformance:
351
330
  # 前述の処理でinfを除外しているので、NaNが含まれることはないはず
352
331
  df_stdev2 = pandas.pivot_table(
353
332
  df_stdev,
354
- values=[
355
- f"worktime_hour/{production_volume_column}" for production_volume_column in task_worktime_by_phase_user.production_volume_columns
356
- ],
333
+ values=[f"worktime_hour/{production_volume_column}" for production_volume_column in task_worktime_by_phase_user.production_volume_columns],
357
334
  index="account_id",
358
335
  columns="phase",
359
336
  dropna=False,
@@ -501,10 +478,7 @@ class UserPerformance:
501
478
 
502
479
  df = worktime_per_date.df
503
480
 
504
- df4_list = [
505
- _create_df_first_last_working_date(phase)
506
- for phase in [None, TaskPhase.ANNOTATION.value, TaskPhase.INSPECTION.value, TaskPhase.ACCEPTANCE.value]
507
- ]
481
+ df4_list = [_create_df_first_last_working_date(phase) for phase in [None, TaskPhase.ANNOTATION.value, TaskPhase.INSPECTION.value, TaskPhase.ACCEPTANCE.value]]
508
482
 
509
483
  # joinしない理由: レベル1の列名が空文字のDataFrameをjoinすると、Python3.12のpandas2.2.0で、列名が期待通りにならないため
510
484
  # https://github.com/pandas-dev/pandas/issues/57500
@@ -546,7 +520,7 @@ class UserPerformance:
546
520
  task_worktime_by_phase_user: タスク、フェーズ、ユーザーごとの作業時間や生産量が格納されたオブジェクト。生産量やタスクにかかった作業時間の取得に利用します。
547
521
 
548
522
 
549
- """ # noqa: E501
523
+ """
550
524
 
551
525
  def drop_unnecessary_columns(df: pandas.DataFrame) -> pandas.DataFrame:
552
526
  """
@@ -593,9 +567,7 @@ class UserPerformance:
593
567
  df = df.join(cls._create_df_stdev_monitored_worktime(task_worktime_by_phase_user))
594
568
 
595
569
  # 比例関係の列を計算して追加する
596
- cls._add_ratio_column_for_productivity_per_user(
597
- df, phase_list=phase_list, production_volume_columns=task_worktime_by_phase_user.production_volume_columns
598
- )
570
+ cls._add_ratio_column_for_productivity_per_user(df, phase_list=phase_list, production_volume_columns=task_worktime_by_phase_user.production_volume_columns)
599
571
 
600
572
  # 出力に不要な列を削除する
601
573
  df = drop_unnecessary_columns(df)
@@ -611,9 +583,7 @@ class UserPerformance:
611
583
 
612
584
  df = df.sort_values(["user_id"])
613
585
  # `df.reset_index()`を実行する理由:indexである`account_id`を列にするため
614
- return cls(
615
- df.reset_index(), task_completion_criteria, custom_production_volume_list=task_worktime_by_phase_user.custom_production_volume_list
616
- )
586
+ return cls(df.reset_index(), task_completion_criteria, custom_production_volume_list=task_worktime_by_phase_user.custom_production_volume_list)
617
587
 
618
588
  @classmethod
619
589
  def _convert_column_dtypes(cls, df: pandas.DataFrame) -> pandas.DataFrame:
@@ -663,11 +633,7 @@ class UserPerformance:
663
633
  ("real_monitored_worktime_hour", "acceptance"),
664
634
  ]
665
635
 
666
- monitored_worktime_columns = (
667
- [("monitored_worktime_hour", "sum")]
668
- + [("monitored_worktime_hour", phase) for phase in phase_list]
669
- + [("monitored_worktime_ratio", phase) for phase in phase_list]
670
- )
636
+ monitored_worktime_columns = [("monitored_worktime_hour", "sum")] + [("monitored_worktime_hour", phase) for phase in phase_list] + [("monitored_worktime_ratio", phase) for phase in phase_list]
671
637
  production_columns = [("task_count", phase) for phase in phase_list]
672
638
  for production_volume_column in production_volume_columns:
673
639
  production_columns.extend([(production_volume_column, phase) for phase in phase_list])
@@ -685,10 +651,7 @@ class UserPerformance:
685
651
 
686
652
  inspection_comment_columns = [
687
653
  ("pointed_out_inspection_comment_count", TaskPhase.ANNOTATION.value),
688
- *[
689
- (f"pointed_out_inspection_comment_count/{production_volume_column}", TaskPhase.ANNOTATION.value)
690
- for production_volume_column in production_volume_columns
691
- ],
654
+ *[(f"pointed_out_inspection_comment_count/{production_volume_column}", TaskPhase.ANNOTATION.value) for production_volume_column in production_volume_columns],
692
655
  ]
693
656
 
694
657
  rejected_count_columns = [
@@ -815,48 +778,32 @@ class UserPerformance:
815
778
  """
816
779
  # ゼロ割の警告を無視する
817
780
  with numpy.errstate(divide="ignore", invalid="ignore"):
818
- series[("real_monitored_worktime_hour/real_actual_worktime_hour", "sum")] = (
819
- series[("real_monitored_worktime_hour", "sum")] / series[("real_actual_worktime_hour", "sum")]
820
- )
781
+ series[("real_monitored_worktime_hour/real_actual_worktime_hour", "sum")] = series[("real_monitored_worktime_hour", "sum")] / series[("real_actual_worktime_hour", "sum")]
821
782
 
822
783
  for phase in phase_list:
823
784
  # Annofab時間の比率を算出
824
- # 計測作業時間の合計値が0により、monitored_worktime_ratioはnanになる場合は、教師付の実績作業時間を実績作業時間の合計値になるようなmonitored_worktime_ratioに変更する # noqa: E501
785
+ # 計測作業時間の合計値が0により、monitored_worktime_ratioはnanになる場合は、教師付の実績作業時間を実績作業時間の合計値になるようなmonitored_worktime_ratioに変更する
825
786
  if series[("monitored_worktime_hour", "sum")] == 0:
826
787
  if phase == TaskPhase.ANNOTATION.value:
827
788
  series[("monitored_worktime_ratio", phase)] = 1
828
789
  else:
829
790
  series[("monitored_worktime_ratio", phase)] = 0
830
791
  else:
831
- series[("monitored_worktime_ratio", phase)] = (
832
- series[("monitored_worktime_hour", phase)] / series[("monitored_worktime_hour", "sum")]
833
- )
792
+ series[("monitored_worktime_ratio", phase)] = series[("monitored_worktime_hour", phase)] / series[("monitored_worktime_hour", "sum")]
834
793
 
835
794
  # Annofab時間の比率から、Annowork時間を予測する
836
795
  series[("actual_worktime_hour", phase)] = series[("actual_worktime_hour", "sum")] * series[("monitored_worktime_ratio", phase)]
837
796
 
838
797
  # 生産性を算出
839
- series[("monitored_worktime_hour/input_data_count", phase)] = (
840
- series[("monitored_worktime_hour", phase)] / series[("input_data_count", phase)]
841
- )
842
- series[("actual_worktime_hour/input_data_count", phase)] = (
843
- series[("actual_worktime_hour", phase)] / series[("input_data_count", phase)]
844
- )
798
+ series[("monitored_worktime_hour/input_data_count", phase)] = series[("monitored_worktime_hour", phase)] / series[("input_data_count", phase)]
799
+ series[("actual_worktime_hour/input_data_count", phase)] = series[("actual_worktime_hour", phase)] / series[("input_data_count", phase)]
845
800
 
846
- series[("monitored_worktime_hour/annotation_count", phase)] = (
847
- series[("monitored_worktime_hour", phase)] / series[("annotation_count", phase)]
848
- )
849
- series[("actual_worktime_hour/annotation_count", phase)] = (
850
- series[("actual_worktime_hour", phase)] / series[("annotation_count", phase)]
851
- )
801
+ series[("monitored_worktime_hour/annotation_count", phase)] = series[("monitored_worktime_hour", phase)] / series[("annotation_count", phase)]
802
+ series[("actual_worktime_hour/annotation_count", phase)] = series[("actual_worktime_hour", phase)] / series[("annotation_count", phase)]
852
803
 
853
804
  phase = TaskPhase.ANNOTATION.value
854
- series[("pointed_out_inspection_comment_count/annotation_count", phase)] = (
855
- series[("pointed_out_inspection_comment_count", phase)] / series[("annotation_count", phase)]
856
- )
857
- series[("pointed_out_inspection_comment_count/input_data_count", phase)] = (
858
- series[("pointed_out_inspection_comment_count", phase)] / series[("input_data_count", phase)]
859
- )
805
+ series[("pointed_out_inspection_comment_count/annotation_count", phase)] = series[("pointed_out_inspection_comment_count", phase)] / series[("annotation_count", phase)]
806
+ series[("pointed_out_inspection_comment_count/input_data_count", phase)] = series[("pointed_out_inspection_comment_count", phase)] / series[("input_data_count", phase)]
860
807
  series[("rejected_count/task_count", phase)] = series[("rejected_count", phase)] / series[("task_count", phase)]
861
808
 
862
809
  def get_production_volume_name(self, production_volume_column: str) -> str:
@@ -929,9 +876,7 @@ class UserPerformance:
929
876
  y_column = f"{worktime_type.value}_worktime_minute/{production_volume_column}"
930
877
  # 分単位の生産性を算出する
931
878
  for phase in self.phase_list:
932
- df[(f"{worktime_type.value}_worktime_minute/{production_volume_column}", phase)] = (
933
- df[(f"{worktime_type.value}_worktime_hour/{production_volume_column}", phase)] * 60
934
- )
879
+ df[(f"{worktime_type.value}_worktime_minute/{production_volume_column}", phase)] = df[(f"{worktime_type.value}_worktime_hour/{production_volume_column}", phase)] * 60
935
880
 
936
881
  for biography_index, biography in enumerate(sorted(set(df["biography"]))):
937
882
  for scatter_obj, phase in zip(scatter_obj_list, self.phase_list):
@@ -1074,9 +1019,7 @@ class UserPerformance:
1074
1019
 
1075
1020
  write_bokeh_graph(bokeh.layouts.column(element_list), output_file)
1076
1021
 
1077
- def plot_quality_and_productivity(
1078
- self, output_file: Path, worktime_type: WorktimeType, production_volume_column: str, *, metadata: Optional[dict[str, Any]] = None
1079
- ) -> None:
1022
+ def plot_quality_and_productivity(self, output_file: Path, worktime_type: WorktimeType, production_volume_column: str, *, metadata: Optional[dict[str, Any]] = None) -> None:
1080
1023
  """
1081
1024
  作業時間を元に算出した生産性と品質の関係を、メンバごとにプロットする
1082
1025
  """
@@ -1157,9 +1100,7 @@ class UserPerformance:
1157
1100
  df = self.convert_df_suitable_for_bokeh(self.df)
1158
1101
  PHASE = TaskPhase.ANNOTATION.value # noqa: N806
1159
1102
 
1160
- df[(f"{worktime_type.value}_worktime_minute/{production_volume_column}", PHASE)] = (
1161
- df[(f"{worktime_type.value}_worktime_hour/{production_volume_column}", PHASE)] * 60
1162
- )
1103
+ df[(f"{worktime_type.value}_worktime_minute/{production_volume_column}", PHASE)] = df[(f"{worktime_type.value}_worktime_hour/{production_volume_column}", PHASE)] * 60
1163
1104
  logger.debug(f"{output_file} を出力します。")
1164
1105
 
1165
1106
  production_volume_name = self.get_production_volume_name(production_volume_column)
@@ -84,9 +84,7 @@ class WholePerformance:
84
84
  df_task = df_task_worktime_by_phase_user[["project_id", "task_id", "status"]].drop_duplicates()
85
85
 
86
86
  unique_keys_for_worktime = ["project_id", "task_id", "phase", "phase_stage"]
87
- addable_columns_for_task = list(
88
- set(df_task_worktime_by_phase_user.columns) - set(user_info_columns) - set(unique_keys_for_worktime) - {"status"}
89
- )
87
+ addable_columns_for_task = list(set(df_task_worktime_by_phase_user.columns) - set(user_info_columns) - set(unique_keys_for_worktime) - {"status"})
90
88
  df_task_worktime_by_phase_user = df_task_worktime_by_phase_user.groupby(unique_keys_for_worktime)[addable_columns_for_task].sum()
91
89
  df_task_worktime_by_phase_user[user_info_columns] = PSEUDO_VALUE
92
90
  df_task_worktime_by_phase_user = df_task_worktime_by_phase_user.reset_index()
@@ -95,9 +93,7 @@ class WholePerformance:
95
93
 
96
94
  return UserPerformance.from_df_wrapper(
97
95
  worktime_per_date=WorktimePerDate(df_worktime_per_date),
98
- task_worktime_by_phase_user=TaskWorktimeByPhaseUser(
99
- df_task_worktime_by_phase_user, custom_production_volume_list=task_worktime_by_phase_user.custom_production_volume_list
100
- ),
96
+ task_worktime_by_phase_user=TaskWorktimeByPhaseUser(df_task_worktime_by_phase_user, custom_production_volume_list=task_worktime_by_phase_user.custom_production_volume_list),
101
97
  task_completion_criteria=task_completion_criteria,
102
98
  )
103
99
 
@@ -115,7 +111,7 @@ class WholePerformance:
115
111
  worktime_per_date: 日ごとの作業時間が記載されたDataFrameを格納したオブジェクト。ユーザー情報の取得や、実際の作業時間(集計タスクに影響しない)の算出に利用します。
116
112
  task_worktime_by_phase_user: タスク、フェーズ、ユーザーごとの作業時間や生産量が格納されたオブジェクト。生産量やタスクにかかった作業時間の取得に利用します。
117
113
 
118
- """ # noqa: E501
114
+ """
119
115
  # 1人が作業した場合のパフォーマンス情報を生成する
120
116
  all_user_performance = cls._create_all_user_performance(worktime_per_date, task_worktime_by_phase_user, task_completion_criteria)
121
117
 
@@ -142,9 +138,7 @@ class WholePerformance:
142
138
  return cls(df_all.iloc[0], task_completion_criteria, custom_production_volume_list=task_worktime_by_phase_user.custom_production_volume_list)
143
139
 
144
140
  @classmethod
145
- def empty(
146
- cls, task_completion_criteria: TaskCompletionCriteria, *, custom_production_volume_list: Optional[list[ProductionVolumeColumn]] = None
147
- ) -> WholePerformance:
141
+ def empty(cls, task_completion_criteria: TaskCompletionCriteria, *, custom_production_volume_list: Optional[list[ProductionVolumeColumn]] = None) -> WholePerformance:
148
142
  """空のデータフレームを持つインスタンスを生成します。"""
149
143
 
150
144
  production_volume_columns = ["input_data_count", "annotation_count"]
@@ -219,12 +213,12 @@ class WholePerformance:
219
213
  # CSVファイル読み込み直後では、数値も文字列として格納されているので、文字列情報以外は数値に変換する
220
214
  for key, value in series.items():
221
215
  # `first_working_date`など2列目が空欄の場合は、key[1]がnumpy.nanになるため、keyを変換する
222
- if isinstance(key[1], float) and numpy.isnan(key[1]): # noqa: SIM108
216
+ if isinstance(key[1], float) and numpy.isnan(key[1]):
223
217
  key2 = (key[0], "")
224
218
  else:
225
219
  key2 = key
226
220
 
227
- if key2 in cls.STRING_KEYS: # noqa: SIM108
221
+ if key2 in cls.STRING_KEYS:
228
222
  value2 = value
229
223
  else:
230
224
  value2 = float(value)