anemoi-datasets 0.5.11__py3-none-any.whl → 0.5.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. anemoi/datasets/_version.py +2 -2
  2. anemoi/datasets/create/__init__.py +8 -4
  3. anemoi/datasets/create/check.py +1 -1
  4. anemoi/datasets/create/functions/__init__.py +15 -1
  5. anemoi/datasets/create/functions/filters/orog_to_z.py +58 -0
  6. anemoi/datasets/create/functions/filters/sum.py +71 -0
  7. anemoi/datasets/create/functions/filters/wz_to_w.py +79 -0
  8. anemoi/datasets/create/functions/sources/accumulations.py +1 -0
  9. anemoi/datasets/create/functions/sources/xarray/__init__.py +3 -3
  10. anemoi/datasets/create/functions/sources/xarray/field.py +5 -1
  11. anemoi/datasets/create/functions/sources/xarray/fieldlist.py +10 -1
  12. anemoi/datasets/create/functions/sources/xarray/metadata.py +5 -11
  13. anemoi/datasets/create/functions/sources/xarray/patch.py +44 -0
  14. anemoi/datasets/create/functions/sources/xarray/time.py +15 -0
  15. anemoi/datasets/create/functions/sources/xarray/variable.py +18 -2
  16. anemoi/datasets/create/input/repeated_dates.py +18 -0
  17. anemoi/datasets/create/statistics/__init__.py +2 -2
  18. anemoi/datasets/create/utils.py +4 -0
  19. anemoi/datasets/data/complement.py +164 -0
  20. anemoi/datasets/data/dataset.py +74 -6
  21. anemoi/datasets/data/ensemble.py +55 -0
  22. anemoi/datasets/data/grids.py +6 -4
  23. anemoi/datasets/data/join.py +7 -1
  24. anemoi/datasets/data/merge.py +3 -0
  25. anemoi/datasets/data/misc.py +10 -1
  26. anemoi/datasets/grids.py +23 -10
  27. {anemoi_datasets-0.5.11.dist-info → anemoi_datasets-0.5.13.dist-info}/METADATA +27 -28
  28. {anemoi_datasets-0.5.11.dist-info → anemoi_datasets-0.5.13.dist-info}/RECORD +32 -27
  29. {anemoi_datasets-0.5.11.dist-info → anemoi_datasets-0.5.13.dist-info}/WHEEL +1 -1
  30. {anemoi_datasets-0.5.11.dist-info → anemoi_datasets-0.5.13.dist-info}/LICENSE +0 -0
  31. {anemoi_datasets-0.5.11.dist-info → anemoi_datasets-0.5.13.dist-info}/entry_points.txt +0 -0
  32. {anemoi_datasets-0.5.11.dist-info → anemoi_datasets-0.5.13.dist-info}/top_level.txt +0 -0
@@ -12,5 +12,5 @@ __version__: str
12
12
  __version_tuple__: VERSION_TUPLE
13
13
  version_tuple: VERSION_TUPLE
14
14
 
15
- __version__ = version = '0.5.11'
16
- __version_tuple__ = version_tuple = (0, 5, 11)
15
+ __version__ = version = '0.5.13'
16
+ __version_tuple__ = version_tuple = (0, 5, 13)
@@ -622,10 +622,14 @@ class Load(Actor, HasRegistryMixin, HasStatisticTempMixin, HasElementForDataMixi
622
622
 
623
623
  check_shape(cube, dates, dates_in_data)
624
624
 
625
- def check_dates_in_data(lst, lst2):
626
- lst2 = [np.datetime64(_) for _ in lst2]
627
- lst = [np.datetime64(_) for _ in lst]
628
- assert lst == lst2, ("Dates in data are not the requested ones:", lst, lst2)
625
+ def check_dates_in_data(dates_in_data, requested_dates):
626
+ requested_dates = [np.datetime64(_) for _ in requested_dates]
627
+ dates_in_data = [np.datetime64(_) for _ in dates_in_data]
628
+ assert dates_in_data == requested_dates, (
629
+ "Dates in data are not the requested ones:",
630
+ dates_in_data,
631
+ requested_dates,
632
+ )
629
633
 
630
634
  check_dates_in_data(dates_in_data, dates)
631
635
 
@@ -58,7 +58,7 @@ class DatasetName:
58
58
  raise ValueError(self.error_message)
59
59
 
60
60
  def _parse(self, name):
61
- pattern = r"^(\w+)-([\w-]+)-(\w+)-(\w+)-(\d\d\d\d)-(\d\d\d\d)-(\d+h)-v(\d+)-?([a-zA-Z0-9-]+)?$"
61
+ pattern = r"^(\w+)-([\w-]+)-(\w+)-(\w+)-(\d\d\d\d)-(\d\d\d\d)-(\d+h|\d+m)-v(\d+)-?([a-zA-Z0-9-]+)?$"
62
62
  match = re.match(pattern, name)
63
63
 
64
64
  if not match:
@@ -22,6 +22,7 @@ def assert_is_fieldlist(obj):
22
22
  def import_function(name, kind):
23
23
 
24
24
  from anemoi.transform.filters import filter_registry
25
+ from anemoi.transform.sources import source_registry
25
26
 
26
27
  name = name.replace("-", "_")
27
28
 
@@ -45,7 +46,20 @@ def import_function(name, kind):
45
46
  if filter_registry.lookup(name, return_none=True):
46
47
 
47
48
  def proc(context, data, *args, **kwargs):
48
- return filter_registry.create(name, *args, **kwargs)(data)
49
+ filter = filter_registry.create(name, *args, **kwargs)
50
+ filter.context = context
51
+ # filter = filter_registry.create(context, name, *args, **kwargs)
52
+ return filter.forward(data)
53
+
54
+ return proc
55
+
56
+ if kind == "sources":
57
+ if source_registry.lookup(name, return_none=True):
58
+
59
+ def proc(context, data, *args, **kwargs):
60
+ source = source_registry.create(name, *args, **kwargs)
61
+ # source = source_registry.create(context, name, *args, **kwargs)
62
+ return source.forward(data)
49
63
 
50
64
  return proc
51
65
 
@@ -0,0 +1,58 @@
1
+ # (C) Copyright 2024 Anemoi contributors.
2
+ #
3
+ # This software is licensed under the terms of the Apache Licence Version 2.0
4
+ # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
5
+ #
6
+ # In applying this licence, ECMWF does not waive the privileges and immunities
7
+ # granted to it by virtue of its status as an intergovernmental organisation
8
+ # nor does it submit to any jurisdiction.
9
+
10
+
11
+ from collections import defaultdict
12
+
13
+ from earthkit.data.indexing.fieldlist import FieldArray
14
+
15
+
16
+ class NewDataField:
17
+ def __init__(self, field, data, new_name):
18
+ self.field = field
19
+ self.data = data
20
+ self.new_name = new_name
21
+
22
+ def to_numpy(self, *args, **kwargs):
23
+ return self.data
24
+
25
+ def metadata(self, key=None, **kwargs):
26
+ if key is None:
27
+ return self.field.metadata(**kwargs)
28
+
29
+ value = self.field.metadata(key, **kwargs)
30
+ if key == "param":
31
+ return self.new_name
32
+ return value
33
+
34
+ def __getattr__(self, name):
35
+ return getattr(self.field, name)
36
+
37
+
38
+ def execute(context, input, orog, z="z"):
39
+ """Convert orography [m] to z (geopotential height)"""
40
+ result = FieldArray()
41
+
42
+ processed_fields = defaultdict(dict)
43
+
44
+ for f in input:
45
+ key = f.metadata(namespace="mars")
46
+ param = key.pop("param")
47
+ if param == orog:
48
+ key = tuple(key.items())
49
+
50
+ if param in processed_fields[key]:
51
+ raise ValueError(f"Duplicate field {param} for {key}")
52
+
53
+ output = f.to_numpy(flatten=True) * 9.80665
54
+ result.append(NewDataField(f, output, z))
55
+ else:
56
+ result.append(f)
57
+
58
+ return result
@@ -0,0 +1,71 @@
1
+ # (C) Copyright 2024 Anemoi contributors.
2
+ #
3
+ # This software is licensed under the terms of the Apache Licence Version 2.0
4
+ # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
5
+ #
6
+ # In applying this licence, ECMWF does not waive the privileges and immunities
7
+ # granted to it by virtue of its status as an intergovernmental organisation
8
+ # nor does it submit to any jurisdiction.
9
+
10
+
11
+ from collections import defaultdict
12
+
13
+ from earthkit.data.indexing.fieldlist import FieldArray
14
+
15
+
16
+ class NewDataField:
17
+ def __init__(self, field, data, new_name):
18
+ self.field = field
19
+ self.data = data
20
+ self.new_name = new_name
21
+
22
+ def to_numpy(self, *args, **kwargs):
23
+ return self.data
24
+
25
+ def metadata(self, key=None, **kwargs):
26
+ if key is None:
27
+ return self.field.metadata(**kwargs)
28
+
29
+ value = self.field.metadata(key, **kwargs)
30
+ if key == "param":
31
+ return self.new_name
32
+ return value
33
+
34
+ def __getattr__(self, name):
35
+ return getattr(self.field, name)
36
+
37
+
38
+ def execute(context, input, params, output):
39
+ """Computes the sum over a set of variables"""
40
+ result = FieldArray()
41
+
42
+ needed_fields = defaultdict(dict)
43
+
44
+ for f in input:
45
+ key = f.metadata(namespace="mars")
46
+ param = key.pop("param")
47
+ if param in params:
48
+ key = tuple(key.items())
49
+
50
+ if param in needed_fields[key]:
51
+ raise ValueError(f"Duplicate field {param} for {key}")
52
+
53
+ needed_fields[key][param] = f
54
+ else:
55
+ result.append(f)
56
+
57
+ for keys, values in needed_fields.items():
58
+
59
+ if len(values) != len(params):
60
+ raise ValueError("Missing fields")
61
+
62
+ s = None
63
+ for k, v in values.items():
64
+ c = v.to_numpy(flatten=True)
65
+ if s is None:
66
+ s = c
67
+ else:
68
+ s += c
69
+ result.append(NewDataField(values[list(values.keys())[0]], s, output))
70
+
71
+ return result
@@ -0,0 +1,79 @@
1
+ # (C) Copyright 2024 Anemoi contributors.
2
+ #
3
+ # This software is licensed under the terms of the Apache Licence Version 2.0
4
+ # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
5
+ #
6
+ # In applying this licence, ECMWF does not waive the privileges and immunities
7
+ # granted to it by virtue of its status as an intergovernmental organisation
8
+ # nor does it submit to any jurisdiction.
9
+
10
+
11
+ from collections import defaultdict
12
+
13
+ from earthkit.data.indexing.fieldlist import FieldArray
14
+
15
+
16
+ class NewDataField:
17
+ def __init__(self, field, data, new_name):
18
+ self.field = field
19
+ self.data = data
20
+ self.new_name = new_name
21
+
22
+ def to_numpy(self, *args, **kwargs):
23
+ return self.data
24
+
25
+ def metadata(self, key=None, **kwargs):
26
+ if key is None:
27
+ return self.field.metadata(**kwargs)
28
+
29
+ value = self.field.metadata(key, **kwargs)
30
+ if key == "param":
31
+ return self.new_name
32
+ return value
33
+
34
+ def __getattr__(self, name):
35
+ return getattr(self.field, name)
36
+
37
+
38
+ def execute(context, input, wz, t, w="w"):
39
+ """Convert geometric vertical velocity (m/s) to vertical velocity (Pa / s)"""
40
+ result = FieldArray()
41
+
42
+ params = (wz, t)
43
+ pairs = defaultdict(dict)
44
+
45
+ for f in input:
46
+ key = f.metadata(namespace="mars")
47
+ param = key.pop("param")
48
+ if param in params:
49
+ key = tuple(key.items())
50
+
51
+ if param in pairs[key]:
52
+ raise ValueError(f"Duplicate field {param} for {key}")
53
+
54
+ pairs[key][param] = f
55
+ if param == t:
56
+ result.append(f)
57
+ else:
58
+ result.append(f)
59
+
60
+ for keys, values in pairs.items():
61
+
62
+ if len(values) != 2:
63
+ raise ValueError("Missing fields")
64
+
65
+ wz_pl = values[wz].to_numpy(flatten=True)
66
+ t_pl = values[t].to_numpy(flatten=True)
67
+ pressure = keys[4][1] * 100 # TODO: REMOVE HARDCODED INDICES
68
+
69
+ w_pl = wz_to_w(wz_pl, t_pl, pressure)
70
+ result.append(NewDataField(values[wz], w_pl, w))
71
+
72
+ return result
73
+
74
+
75
+ def wz_to_w(wz, t, pressure):
76
+ g = 9.81
77
+ Rd = 287.058
78
+
79
+ return -wz * g * pressure / (t * Rd)
@@ -379,6 +379,7 @@ def accumulations(context, dates, **request):
379
379
  KWARGS = {
380
380
  ("od", "oper"): dict(patch=_scda),
381
381
  ("od", "elda"): dict(base_times=(6, 18)),
382
+ ("od", "enfo"): dict(base_times=(0, 6, 12, 18)),
382
383
  ("ea", "oper"): dict(data_accumulation_period=1, base_times=(6, 18)),
383
384
  ("ea", "enda"): dict(data_accumulation_period=3, base_times=(6, 18)),
384
385
  ("rr", "oper"): dict(base_times=(0, 3, 6, 9, 12, 15, 18, 21)),
@@ -29,7 +29,7 @@ def check(what, ds, paths, **kwargs):
29
29
  raise ValueError(f"Expected {count} fields, got {len(ds)} (kwargs={kwargs}, {what}s={paths})")
30
30
 
31
31
 
32
- def load_one(emoji, context, dates, dataset, options={}, flavour=None, **kwargs):
32
+ def load_one(emoji, context, dates, dataset, *, options={}, flavour=None, patch=None, **kwargs):
33
33
  import xarray as xr
34
34
 
35
35
  """
@@ -54,10 +54,10 @@ def load_one(emoji, context, dates, dataset, options={}, flavour=None, **kwargs)
54
54
  else:
55
55
  data = xr.open_dataset(dataset, **options)
56
56
 
57
- fs = XarrayFieldList.from_xarray(data, flavour)
57
+ fs = XarrayFieldList.from_xarray(data, flavour=flavour, patch=patch)
58
58
 
59
59
  if len(dates) == 0:
60
- return fs.sel(**kwargs)
60
+ result = fs.sel(**kwargs)
61
61
  else:
62
62
  result = MultiFieldList([fs.sel(valid_datetime=date, **kwargs) for date in dates])
63
63
 
@@ -92,6 +92,10 @@ class XArrayField(Field):
92
92
  def grid_points(self):
93
93
  return self.owner.grid_points()
94
94
 
95
+ def to_latlon(self, flatten=True):
96
+ assert flatten
97
+ return dict(lat=self.latitudes, lon=self.longitudes)
98
+
95
99
  @property
96
100
  def resolution(self):
97
101
  return None
@@ -120,6 +124,6 @@ class XArrayField(Field):
120
124
  def __repr__(self):
121
125
  return repr(self._metadata)
122
126
 
123
- def _values(self):
127
+ def _values(self, dtype=None):
124
128
  # we don't use .values as this will download the data
125
129
  return self.selection
@@ -16,6 +16,7 @@ from earthkit.data.core.fieldlist import FieldList
16
16
 
17
17
  from .field import EmptyFieldList
18
18
  from .flavour import CoordinateGuesser
19
+ from .patch import patch_dataset
19
20
  from .time import Time
20
21
  from .variable import FilteredVariable
21
22
  from .variable import Variable
@@ -49,7 +50,11 @@ class XarrayFieldList(FieldList):
49
50
  raise IndexError(k)
50
51
 
51
52
  @classmethod
52
- def from_xarray(cls, ds, flavour=None):
53
+ def from_xarray(cls, ds, *, flavour=None, patch=None):
54
+
55
+ if patch is not None:
56
+ ds = patch_dataset(ds, patch)
57
+
53
58
  variables = []
54
59
 
55
60
  if isinstance(flavour, str):
@@ -83,6 +88,8 @@ class XarrayFieldList(FieldList):
83
88
  _skip_attr(variable, "bounds")
84
89
  _skip_attr(variable, "grid_mapping")
85
90
 
91
+ LOG.debug("Xarray data_vars: %s", ds.data_vars)
92
+
86
93
  # Select only geographical variables
87
94
  for name in ds.data_vars:
88
95
 
@@ -97,6 +104,7 @@ class XarrayFieldList(FieldList):
97
104
  c = guess.guess(ds[coord], coord)
98
105
  assert c, f"Could not guess coordinate for {coord}"
99
106
  if coord not in variable.dims:
107
+ LOG.debug("%s: coord=%s (not a dimension): dims=%s", variable, coord, variable.dims)
100
108
  c.is_dim = False
101
109
  coordinates.append(c)
102
110
 
@@ -104,6 +112,7 @@ class XarrayFieldList(FieldList):
104
112
  assert grid_coords <= 2
105
113
 
106
114
  if grid_coords < 2:
115
+ LOG.debug("Skipping %s (not 2D): %s", variable, [(c, c.is_grid, c.is_dim) for c in coordinates])
107
116
  continue
108
117
 
109
118
  v = Variable(
@@ -24,6 +24,7 @@ class _MDMapping:
24
24
  def __init__(self, variable):
25
25
  self.variable = variable
26
26
  self.time = variable.time
27
+ # Aliases
27
28
  self.mapping = dict(param="variable")
28
29
  for c in variable.coordinates:
29
30
  for v in c.mars_names:
@@ -34,7 +35,6 @@ class _MDMapping:
34
35
  return self.mapping.get(key, key)
35
36
 
36
37
  def from_user(self, kwargs):
37
- print("from_user", kwargs, self)
38
38
  return {self._from_user(k): v for k, v in kwargs.items()}
39
39
 
40
40
  def __repr__(self):
@@ -81,22 +81,16 @@ class XArrayMetadata(RawMetadata):
81
81
  def _valid_datetime(self):
82
82
  return self._get("valid_datetime")
83
83
 
84
- def _get(self, key, **kwargs):
84
+ def get(self, key, astype=None, **kwargs):
85
85
 
86
86
  if key in self._d:
87
+ if astype is not None:
88
+ return astype(self._d[key])
87
89
  return self._d[key]
88
90
 
89
- if key.startswith("mars."):
90
- key = key[5:]
91
- if key not in self.MARS_KEYS:
92
- if kwargs.get("raise_on_missing", False):
93
- raise KeyError(f"Invalid key '{key}' in namespace='mars'")
94
- else:
95
- return kwargs.get("default", None)
96
-
97
91
  key = self._mapping._from_user(key)
98
92
 
99
- return super()._get(key, **kwargs)
93
+ return super().get(key, astype=astype, **kwargs)
100
94
 
101
95
 
102
96
  class XArrayFieldGeography(Geography):
@@ -0,0 +1,44 @@
1
+ # (C) Copyright 2024 Anemoi contributors.
2
+ #
3
+ # This software is licensed under the terms of the Apache Licence Version 2.0
4
+ # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
5
+ #
6
+ # In applying this licence, ECMWF does not waive the privileges and immunities
7
+ # granted to it by virtue of its status as an intergovernmental organisation
8
+ # nor does it submit to any jurisdiction.
9
+
10
+
11
+ import logging
12
+
13
+ LOG = logging.getLogger(__name__)
14
+
15
+
16
+ def patch_attributes(ds, attributes):
17
+ for name, value in attributes.items():
18
+ variable = ds[name]
19
+ variable.attrs.update(value)
20
+
21
+ return ds
22
+
23
+
24
+ def patch_coordinates(ds, coordinates):
25
+ for name in coordinates:
26
+ ds = ds.assign_coords({name: ds[name]})
27
+
28
+ return ds
29
+
30
+
31
+ PATCHES = {
32
+ "attributes": patch_attributes,
33
+ "coordinates": patch_coordinates,
34
+ }
35
+
36
+
37
+ def patch_dataset(ds, patch):
38
+ for what, values in patch.items():
39
+ if what not in PATCHES:
40
+ raise ValueError(f"Unknown patch type {what!r}")
41
+
42
+ ds = PATCHES[what](ds, values)
43
+
44
+ return ds
@@ -62,12 +62,18 @@ class Time:
62
62
 
63
63
  raise NotImplementedError(f"{len(date_coordinate)=} {len(time_coordinate)=} {len(step_coordinate)=}")
64
64
 
65
+ def select_valid_datetime(self, variable):
66
+ raise NotImplementedError(f"{self.__class__.__name__}.select_valid_datetime()")
67
+
65
68
 
66
69
  class Constant(Time):
67
70
 
68
71
  def fill_time_metadata(self, coords_values, metadata):
69
72
  return None
70
73
 
74
+ def select_valid_datetime(self, variable):
75
+ return None
76
+
71
77
 
72
78
  class Analysis(Time):
73
79
 
@@ -83,6 +89,9 @@ class Analysis(Time):
83
89
 
84
90
  return valid_datetime
85
91
 
92
+ def select_valid_datetime(self, variable):
93
+ return self.time_coordinate_name
94
+
86
95
 
87
96
  class ForecastFromValidTimeAndStep(Time):
88
97
 
@@ -116,6 +125,9 @@ class ForecastFromValidTimeAndStep(Time):
116
125
 
117
126
  return valid_datetime
118
127
 
128
+ def select_valid_datetime(self, variable):
129
+ return self.time_coordinate_name
130
+
119
131
 
120
132
  class ForecastFromValidTimeAndBaseTime(Time):
121
133
 
@@ -138,6 +150,9 @@ class ForecastFromValidTimeAndBaseTime(Time):
138
150
 
139
151
  return valid_datetime
140
152
 
153
+ def select_valid_datetime(self, variable):
154
+ return self.time_coordinate_name
155
+
141
156
 
142
157
  class ForecastFromBaseTimeAndDate(Time):
143
158
 
@@ -37,7 +37,7 @@ class Variable:
37
37
  self.coordinates = coordinates
38
38
 
39
39
  self._metadata = metadata.copy()
40
- self._metadata.update({"variable": variable.name})
40
+ self._metadata.update({"variable": variable.name, "param": variable.name})
41
41
 
42
42
  self.time = time
43
43
 
@@ -45,6 +45,9 @@ class Variable:
45
45
  self.names = {c.variable.name: c for c in coordinates if c.is_dim and not c.scalar and not c.is_grid}
46
46
  self.by_name = {c.variable.name: c for c in coordinates}
47
47
 
48
+ # We need that alias for the time dimension
49
+ self._aliases = dict(valid_datetime="time")
50
+
48
51
  self.length = math.prod(self.shape)
49
52
 
50
53
  @property
@@ -96,15 +99,28 @@ class Variable:
96
99
 
97
100
  k, v = kwargs.popitem()
98
101
 
102
+ user_provided_k = k
103
+
104
+ if k == "valid_datetime":
105
+ # Ask the Time object to select the valid datetime
106
+ k = self.time.select_valid_datetime(self)
107
+ if k is None:
108
+ return None
109
+
99
110
  c = self.by_name.get(k)
100
111
 
112
+ # assert c is not None, f"Could not find coordinate {k} in {self.variable.name} {self.coordinates} {list(self.by_name)}"
113
+
101
114
  if c is None:
102
115
  missing[k] = v
103
116
  return self.sel(missing, **kwargs)
104
117
 
105
118
  i = c.index(v)
106
119
  if i is None:
107
- LOG.warning(f"Could not find {k}={v} in {c}")
120
+ if k != user_provided_k:
121
+ LOG.warning(f"Could not find {user_provided_k}={v} in {c} (alias of {k})")
122
+ else:
123
+ LOG.warning(f"Could not find {k}={v} in {c}")
108
124
  return None
109
125
 
110
126
  coordinates = [x.reduced(i) if c is x else x for x in self.coordinates]
@@ -72,6 +72,11 @@ class DateMapperClosest(DateMapper):
72
72
  end += self.frequency
73
73
 
74
74
  to_try = sorted(to_try - self.tried)
75
+ info = {k: "no-data" for k in to_try}
76
+
77
+ if not to_try:
78
+ LOG.warning(f"No new dates to try for {group_of_dates} in {self.source}")
79
+ # return []
75
80
 
76
81
  if to_try:
77
82
  result = self.source.select(
@@ -82,19 +87,32 @@ class DateMapperClosest(DateMapper):
82
87
  )
83
88
  )
84
89
 
90
+ cnt = 0
85
91
  for f in result.datasource:
92
+ cnt += 1
86
93
  # We could keep the fields in a dictionary, but we don't want to keep the fields in memory
87
94
  date = as_datetime(f.metadata("valid_datetime"))
88
95
 
89
96
  if self.skip_all_nans:
90
97
  if np.isnan(f.to_numpy()).all():
91
98
  LOG.warning(f"Skipping {date} because all values are NaN")
99
+ info[date] = "all-nans"
92
100
  continue
93
101
 
102
+ info[date] = "ok"
94
103
  self.found.add(date)
95
104
 
105
+ if cnt == 0:
106
+ raise ValueError(f"No data found for {group_of_dates} in {self.source}")
107
+
96
108
  self.tried.update(to_try)
97
109
 
110
+ if not self.found:
111
+ for k, v in info.items():
112
+ LOG.warning(f"{k}: {v}")
113
+
114
+ raise ValueError(f"No matching data found for {asked_dates} in {self.source}")
115
+
98
116
  new_dates = defaultdict(list)
99
117
 
100
118
  for date in asked_dates:
@@ -98,7 +98,7 @@ def fix_variance(x, name, count, sums, squares):
98
98
 
99
99
  variances = squares / count - mean * mean
100
100
  assert variances.shape == squares.shape == mean.shape
101
- if all(variances >= 0):
101
+ if np.all(variances >= 0):
102
102
  LOG.warning(f"All individual variances for {name} are positive, setting variance to 0.")
103
103
  return 0
104
104
 
@@ -108,7 +108,7 @@ def fix_variance(x, name, count, sums, squares):
108
108
  # return 0
109
109
 
110
110
  LOG.warning(f"ERROR at least one individual variance is negative ({np.nanmin(variances)}).")
111
- return x
111
+ return 0
112
112
 
113
113
 
114
114
  def check_variance(x, variables_names, minimum, maximum, mean, count, sums, squares):
@@ -54,6 +54,10 @@ def to_datetime(*args, **kwargs):
54
54
 
55
55
 
56
56
  def make_list_int(value):
57
+ # Convert a string like "1/2/3" or "1/to/3" or "1/to/10/by/2" to a list of integers.
58
+ # Moved to anemoi.utils.humanize
59
+ # replace with from anemoi.utils.humanize import make_list_int
60
+ # when anemoi-utils is released and pyproject.toml is updated
57
61
  if isinstance(value, str):
58
62
  if "/" not in value:
59
63
  return [value]