analyser_hj3415 4.5.4__py3-none-any.whl → 4.6.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- analyser_hj3415/analyser/eval/blue.py +22 -21
- analyser_hj3415/analyser/eval/growth.py +3 -3
- analyser_hj3415/analyser/eval/mil.py +14 -14
- analyser_hj3415/analyser/eval/red.py +11 -11
- analyser_hj3415/analyser/tsa/common.py +96 -16
- analyser_hj3415/analyser/tsa/lstm.py +2 -38
- analyser_hj3415/analyser/tsa/myprophet.py +1 -29
- {analyser_hj3415-4.5.4.dist-info → analyser_hj3415-4.6.1.dist-info}/METADATA +4 -3
- analyser_hj3415-4.6.1.dist-info/RECORD +18 -0
- {analyser_hj3415-4.5.4.dist-info → analyser_hj3415-4.6.1.dist-info}/WHEEL +1 -1
- analyser_hj3415-4.5.4.dist-info/RECORD +0 -18
- {analyser_hj3415-4.5.4.dist-info → analyser_hj3415-4.6.1.dist-info}/entry_points.txt +0 -0
@@ -10,7 +10,7 @@ from analyser_hj3415.analyser.eval.common import Tools
|
|
10
10
|
|
11
11
|
mylogger = setup_logger(__name__,'WARNING')
|
12
12
|
|
13
|
-
@dataclass
|
13
|
+
@dataclass
|
14
14
|
class BlueData:
|
15
15
|
"""
|
16
16
|
기업의 주요 안정성 지표와 관련된 데이터를 저장하는 데이터 클래스.
|
@@ -139,16 +139,17 @@ class Blue:
|
|
139
139
|
except ZeroDivisionError:
|
140
140
|
mylogger.info(f'유동자산: {유동자산value} + 추정영업현금흐름: {추정영업현금흐름value} / 유동부채: {유동부채value}')
|
141
141
|
계산된유동비율 = float('inf')
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
142
|
+
|
143
|
+
mylogger.debug(f'{self} 계산된 유동비율 : {계산된유동비율}')
|
144
|
+
|
145
|
+
try:
|
146
|
+
date, *_ = Tools.date_set(유동자산date, 유동부채date, 추정영업현금흐름date)
|
147
|
+
except ValueError:
|
148
|
+
# 날짜 데이터가 없는경우
|
149
|
+
date = ''
|
150
|
+
|
151
|
+
mylogger.warning(f'{self} 유동비율 이상(100 이하 또는 nan) : {유동비율value} -> 재계산 : {계산된유동비율}')
|
152
|
+
return date, 계산된유동비율
|
152
153
|
else:
|
153
154
|
return 유동비율date, 유동비율value
|
154
155
|
|
@@ -207,19 +208,19 @@ class Blue:
|
|
207
208
|
return BlueData(
|
208
209
|
code= self.code,
|
209
210
|
name= self.name,
|
210
|
-
유동비율=
|
211
|
-
이자보상배율_r= 이자보상배율_r,
|
212
|
-
이자보상배율_dict= 이자보상배율_dict,
|
211
|
+
유동비율= tools.replace_nan_to_none(유동비율),
|
212
|
+
이자보상배율_r= tools.replace_nan_to_none(이자보상배율_r),
|
213
|
+
이자보상배율_dict= tools.replace_nan_to_none(이자보상배율_dict),
|
213
214
|
|
214
|
-
순운전자본회전율_r= 순운전자본회전율_r,
|
215
|
-
순운전자본회전율_dict= 순운전자본회전율_dict,
|
215
|
+
순운전자본회전율_r= tools.replace_nan_to_none(순운전자본회전율_r),
|
216
|
+
순운전자본회전율_dict= tools.replace_nan_to_none(순운전자본회전율_dict),
|
216
217
|
|
217
|
-
재고자산회전율_r= 재고자산회전율_r,
|
218
|
-
재고자산회전율_dict= 재고자산회전율_dict,
|
219
|
-
재고자산회전율_c106= 재고자산회전율_c106,
|
218
|
+
재고자산회전율_r= tools.replace_nan_to_none(재고자산회전율_r),
|
219
|
+
재고자산회전율_dict= tools.replace_nan_to_none(재고자산회전율_dict),
|
220
|
+
재고자산회전율_c106= tools.replace_nan_to_none(재고자산회전율_c106),
|
220
221
|
|
221
|
-
순부채비율_r= 순부채비율_r,
|
222
|
-
순부채비율_dict= 순부채비율_dict,
|
222
|
+
순부채비율_r= tools.replace_nan_to_none(순부채비율_r),
|
223
|
+
순부채비율_dict= tools.replace_nan_to_none(순부채비율_dict),
|
223
224
|
|
224
225
|
score= score,
|
225
226
|
date= date_list,
|
@@ -142,10 +142,10 @@ class Growth:
|
|
142
142
|
code= self.code,
|
143
143
|
name= self.name,
|
144
144
|
|
145
|
-
매출액증가율_r= 매출액증가율_r,
|
146
|
-
매출액증가율_dict= 매출액증가율_dict,
|
145
|
+
매출액증가율_r= tools.replace_nan_to_none(매출액증가율_r),
|
146
|
+
매출액증가율_dict= tools.replace_nan_to_none(매출액증가율_dict),
|
147
147
|
|
148
|
-
영업이익률_c106= 영업이익률_c106,
|
148
|
+
영업이익률_c106= tools.replace_nan_to_none(영업이익률_c106),
|
149
149
|
|
150
150
|
score= score,
|
151
151
|
date= date_list,
|
@@ -323,24 +323,24 @@ class Mil:
|
|
323
323
|
code= self.code,
|
324
324
|
name= self.name,
|
325
325
|
|
326
|
-
시가총액억= 시가총액_
|
326
|
+
시가총액억= tools.replace_nan_to_none(시가총액_억),
|
327
327
|
|
328
|
-
주주수익률=
|
329
|
-
재무활동현금흐름=
|
328
|
+
주주수익률= tools.replace_nan_to_none(주주수익률),
|
329
|
+
재무활동현금흐름= tools.replace_nan_to_none(재무활동현금흐름),
|
330
330
|
|
331
|
-
이익지표=
|
332
|
-
영업활동현금흐름=
|
333
|
-
지배주주당기순이익=
|
331
|
+
이익지표= tools.replace_nan_to_none(이익지표),
|
332
|
+
영업활동현금흐름= tools.replace_nan_to_none(영업활동현금흐름),
|
333
|
+
지배주주당기순이익= tools.replace_nan_to_none(지배주주당기순이익),
|
334
334
|
|
335
|
-
roic_r= roic_r,
|
336
|
-
roic_dict= roic_dict,
|
337
|
-
roe_r= roe_r,
|
338
|
-
roe_106= roe106,
|
339
|
-
roa_r= roa_r,
|
335
|
+
roic_r= tools.replace_nan_to_none(roic_r),
|
336
|
+
roic_dict= tools.replace_nan_to_none(roic_dict),
|
337
|
+
roe_r= tools.replace_nan_to_none(roe_r),
|
338
|
+
roe_106= tools.replace_nan_to_none(roe106),
|
339
|
+
roa_r= tools.replace_nan_to_none(roa_r),
|
340
340
|
|
341
|
-
fcf_dict= fcf_dict,
|
342
|
-
pfcf_dict= pfcf_dict,
|
343
|
-
pcr_dict= pcr_dict,
|
341
|
+
fcf_dict= tools.replace_nan_to_none(fcf_dict),
|
342
|
+
pfcf_dict= tools.replace_nan_to_none(pfcf_dict),
|
343
|
+
pcr_dict= tools.replace_nan_to_none(pcr_dict),
|
344
344
|
|
345
345
|
score= score,
|
346
346
|
date = date_list,
|
@@ -247,19 +247,19 @@ class Red:
|
|
247
247
|
return RedData(
|
248
248
|
code = self.code,
|
249
249
|
name = self.name,
|
250
|
-
사업가치 =
|
251
|
-
지배주주당기순이익 =
|
252
|
-
expect_earn = self.expect_earn,
|
253
|
-
재산가치 =
|
254
|
-
유동자산 =
|
255
|
-
유동부채 =
|
256
|
-
투자자산 =
|
257
|
-
투자부동산 =
|
258
|
-
부채평가 =
|
250
|
+
사업가치 = tools.replace_nan_to_none(사업가치),
|
251
|
+
지배주주당기순이익 = tools.replace_nan_to_none(지배주주당기순이익),
|
252
|
+
expect_earn = tools.replace_nan_to_none(self.expect_earn),
|
253
|
+
재산가치 = tools.replace_nan_to_none(재산가치),
|
254
|
+
유동자산 = tools.replace_nan_to_none(유동자산),
|
255
|
+
유동부채 = tools.replace_nan_to_none(유동부채),
|
256
|
+
투자자산 = tools.replace_nan_to_none(투자자산),
|
257
|
+
투자부동산 = tools.replace_nan_to_none(투자부동산),
|
258
|
+
부채평가 = tools.replace_nan_to_none(부채평가),
|
259
259
|
발행주식수 = 발행주식수,
|
260
260
|
date = date_list,
|
261
|
-
red_price = red_price,
|
262
|
-
주가 = self.recent_price,
|
261
|
+
red_price = tools.replace_nan_to_none(red_price),
|
262
|
+
주가 = tools.replace_nan_to_none(self.recent_price),
|
263
263
|
score = score,
|
264
264
|
)
|
265
265
|
|
@@ -1,11 +1,26 @@
|
|
1
1
|
import numpy as np
|
2
|
-
from dataclasses import dataclass, field
|
3
|
-
from typing import Optional
|
4
2
|
import pandas as pd
|
5
|
-
from
|
3
|
+
from dataclasses_json import config
|
4
|
+
from dataclasses import dataclass, field
|
5
|
+
from typing import Optional, List
|
6
|
+
from dataclasses_json import dataclass_json
|
7
|
+
from datetime import date
|
8
|
+
from dataclasses_json import config
|
9
|
+
from dataclasses import dataclass, field
|
10
|
+
from dataclasses_json import dataclass_json
|
6
11
|
|
7
12
|
|
8
13
|
def is_up_by_OLS(data: dict) -> bool:
|
14
|
+
"""
|
15
|
+
주어진 데이터의 값들을 날짜 순으로 정렬한 후, 최소제곱법(OLS)을 이용해 선형 회귀 기울기를 계산합니다.
|
16
|
+
데이터가 비어있거나 계산에 필요한 데이터 포인트(1개 이하)가 있는 경우에는 추세를 판단할 수 없으므로 False를 반환합니다.
|
17
|
+
|
18
|
+
Parameters:
|
19
|
+
data (dict): 날짜(문자열)를 키로, 해당 날짜의 값(숫자)을 값으로 하는 딕셔너리.
|
20
|
+
|
21
|
+
Returns:
|
22
|
+
bool: 계산된 기울기가 양수이면 True (우상향 추세), 그렇지 않으면 False.
|
23
|
+
"""
|
9
24
|
if not data:
|
10
25
|
# 데이터가 비어있으면 추세를 판단할 수 없음
|
11
26
|
return False
|
@@ -36,25 +51,90 @@ def is_up_by_OLS(data: dict) -> bool:
|
|
36
51
|
# 4) 기울기가 양수면 "우상향 추세"로 판별
|
37
52
|
return slope > 0
|
38
53
|
|
54
|
+
|
55
|
+
@dataclass
|
56
|
+
class LSTMGrade:
|
57
|
+
"""
|
58
|
+
LSTM 모델 학습 결과를 평가하기 위한 데이터 클래스.
|
59
|
+
|
60
|
+
속성:
|
61
|
+
ticker (str): 주식 티커(symbol).
|
62
|
+
train_mse (float): 학습 데이터에 대한 평균 제곱 오차(MSE).
|
63
|
+
train_mae (float): 학습 데이터에 대한 평균 절대 오차(MAE).
|
64
|
+
train_r2 (float): 학습 데이터에 대한 결정 계수(R²).
|
65
|
+
test_mse (float): 테스트 데이터에 대한 평균 제곱 오차(MSE).
|
66
|
+
test_mae (float): 테스트 데이터에 대한 평균 절대 오차(MAE).
|
67
|
+
test_r2 (float): 테스트 데이터에 대한 결정 계수(R²).
|
68
|
+
"""
|
69
|
+
ticker: str
|
70
|
+
train_mse: float
|
71
|
+
train_mae: float
|
72
|
+
train_r2: float
|
73
|
+
test_mse: float
|
74
|
+
test_mae: float
|
75
|
+
test_r2: float
|
76
|
+
|
77
|
+
|
78
|
+
# ⓐ 단일 Timestamp ↔ ISO-8601 문자열
|
79
|
+
ts_enc = lambda ts: ts.isoformat()
|
80
|
+
ts_dec = lambda s: pd.Timestamp(s)
|
81
|
+
|
82
|
+
# ⓑ Timestamp 리스트 ↔ 문자열 리스트
|
83
|
+
list_enc = lambda seq: [ts.isoformat() for ts in seq]
|
84
|
+
list_dec = lambda seq: [pd.Timestamp(s) for s in seq]
|
85
|
+
|
86
|
+
|
87
|
+
@dataclass_json
|
88
|
+
@dataclass
|
89
|
+
class ChartPoint:
|
90
|
+
"""prices 리스트의 각 원소(x, y)를 표현"""
|
91
|
+
x: pd.Timestamp = field(metadata=config(encoder=ts_enc, decoder=ts_dec))
|
92
|
+
y: Optional[float] = None
|
93
|
+
|
94
|
+
|
95
|
+
@dataclass_json
|
39
96
|
@dataclass
|
40
|
-
class
|
41
|
-
|
97
|
+
class ProphetChartData:
|
98
|
+
ticker: str
|
99
|
+
|
100
|
+
labels: List[pd.Timestamp] = field(metadata=config(encoder=list_enc, decoder=list_dec))
|
101
|
+
prices: List[ChartPoint]
|
102
|
+
yhats: List[ChartPoint]
|
103
|
+
yhat_uppers: List[ChartPoint]
|
104
|
+
yhat_lowers: List[ChartPoint]
|
42
105
|
|
43
|
-
|
44
|
-
# 꼭 부모의 __init__을 호출해야 함
|
45
|
-
super().__init__(*args, **kwargs)
|
106
|
+
is_prophet_up: bool
|
46
107
|
|
47
|
-
def _serialize(self, value, attr, obj, **kwargs):
|
48
|
-
return value.isoformat() if isinstance(value, pd.Timestamp) else None
|
49
108
|
|
50
|
-
|
51
|
-
|
109
|
+
# ISO-8601(YYYY-MM-DD) 포맷으로 직렬화·역직렬화
|
110
|
+
date_enc = lambda d: d.isoformat()
|
111
|
+
date_dec = lambda s: date.fromisoformat(s)
|
52
112
|
|
113
|
+
|
114
|
+
@dataclass_json
|
53
115
|
@dataclass
|
54
|
-
class
|
55
|
-
|
56
|
-
|
57
|
-
|
116
|
+
class LSTMChartData:
|
117
|
+
ticker: str
|
118
|
+
|
119
|
+
labels: List[pd.Timestamp] = field(metadata=config(encoder=list_enc, decoder=list_dec))
|
120
|
+
prices: List[ChartPoint]
|
121
|
+
future_prices: List[ChartPoint]
|
122
|
+
grade: LSTMGrade
|
123
|
+
num: int
|
124
|
+
is_lstm_up: bool
|
125
|
+
|
126
|
+
|
127
|
+
@dataclass_json
|
128
|
+
@dataclass
|
129
|
+
class ProphetLatestData:
|
130
|
+
ticker: str
|
58
131
|
|
132
|
+
date: date = field(metadata=config(encoder=date_enc, decoder=date_dec))
|
59
133
|
|
134
|
+
price: float
|
135
|
+
yhat: float
|
136
|
+
yhat_upper: float
|
137
|
+
yhat_lower: float
|
60
138
|
|
139
|
+
trading_action: str = ''
|
140
|
+
score: int | None = None
|
@@ -10,14 +10,13 @@ from tensorflow.keras.layers import LSTM, Dense, Dropout # type: ignore
|
|
10
10
|
from tensorflow.keras.callbacks import EarlyStopping # type: ignore
|
11
11
|
from tensorflow.keras import Input # type: ignore
|
12
12
|
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
13
|
-
from dataclasses import dataclass
|
14
|
-
from marshmallow import fields
|
13
|
+
from dataclasses import dataclass
|
15
14
|
|
16
15
|
from utils_hj3415 import tools, setup_logger
|
17
16
|
from db_hj3415 import myredis
|
18
17
|
from db_hj3415.mymongo.flask import Favorites
|
19
18
|
from analyser_hj3415.analyser import MIs, tsa
|
20
|
-
from analyser_hj3415.analyser.tsa.common import
|
19
|
+
from analyser_hj3415.analyser.tsa.common import LSTMChartData, LSTMGrade
|
21
20
|
|
22
21
|
mylogger = setup_logger(__name__,'WARNING')
|
23
22
|
|
@@ -51,41 +50,6 @@ class LSTMData:
|
|
51
50
|
y_test_1d: np.ndarray
|
52
51
|
|
53
52
|
|
54
|
-
@dataclass
|
55
|
-
class LSTMGrade:
|
56
|
-
"""
|
57
|
-
LSTM 모델 학습 결과를 평가하기 위한 데이터 클래스.
|
58
|
-
|
59
|
-
속성:
|
60
|
-
ticker (str): 주식 티커(symbol).
|
61
|
-
train_mse (float): 학습 데이터에 대한 평균 제곱 오차(MSE).
|
62
|
-
train_mae (float): 학습 데이터에 대한 평균 절대 오차(MAE).
|
63
|
-
train_r2 (float): 학습 데이터에 대한 결정 계수(R²).
|
64
|
-
test_mse (float): 테스트 데이터에 대한 평균 제곱 오차(MSE).
|
65
|
-
test_mae (float): 테스트 데이터에 대한 평균 절대 오차(MAE).
|
66
|
-
test_r2 (float): 테스트 데이터에 대한 결정 계수(R²).
|
67
|
-
"""
|
68
|
-
ticker: str
|
69
|
-
train_mse: float
|
70
|
-
train_mae: float
|
71
|
-
train_r2: float
|
72
|
-
test_mse: float
|
73
|
-
test_mae: float
|
74
|
-
test_r2: float
|
75
|
-
|
76
|
-
|
77
|
-
@dataclass
|
78
|
-
class LSTMChartData:
|
79
|
-
ticker: str
|
80
|
-
|
81
|
-
labels: List[pd.Timestamp] = field(metadata={"marshmallow_field": fields.List(PandasTimestampField())})
|
82
|
-
prices: List[ChartPoint]
|
83
|
-
future_prices: List[ChartPoint]
|
84
|
-
grade: LSTMGrade
|
85
|
-
num: int
|
86
|
-
is_lstm_up: bool
|
87
|
-
|
88
|
-
|
89
53
|
class MyLSTM:
|
90
54
|
"""
|
91
55
|
주가 데이터를 기반으로 LSTM 모델을 생성, 학습 및 예측하는 클래스.
|
@@ -7,44 +7,16 @@ import yfinance as yf
|
|
7
7
|
import pandas as pd
|
8
8
|
from prophet import Prophet
|
9
9
|
from sklearn.preprocessing import StandardScaler
|
10
|
-
from dataclasses import dataclass, field
|
11
|
-
from marshmallow import fields
|
12
10
|
|
13
11
|
from utils_hj3415 import tools, setup_logger
|
14
12
|
from db_hj3415 import myredis
|
15
13
|
|
16
14
|
from analyser_hj3415.analyser import eval, MIs, tsa
|
17
|
-
from analyser_hj3415.analyser.tsa.common import
|
15
|
+
from analyser_hj3415.analyser.tsa.common import ProphetChartData, ProphetLatestData
|
18
16
|
|
19
17
|
|
20
18
|
mylogger = setup_logger(__name__,'WARNING')
|
21
19
|
|
22
|
-
@dataclass
|
23
|
-
class ProphetLatestData:
|
24
|
-
ticker: str
|
25
|
-
|
26
|
-
date: datetime.date = field(metadata={"marshmallow_field": fields.Date()})
|
27
|
-
price: float
|
28
|
-
yhat: float
|
29
|
-
yhat_upper: float
|
30
|
-
yhat_lower: float
|
31
|
-
|
32
|
-
trading_action: str = ''
|
33
|
-
score: int = None
|
34
|
-
|
35
|
-
|
36
|
-
@dataclass
|
37
|
-
class ProphetChartData:
|
38
|
-
ticker: str
|
39
|
-
|
40
|
-
labels: List[pd.Timestamp] = field(metadata={"marshmallow_field": fields.List(PandasTimestampField())})
|
41
|
-
prices: List[ChartPoint]
|
42
|
-
yhats: List[ChartPoint]
|
43
|
-
yhat_uppers: List[ChartPoint]
|
44
|
-
yhat_lowers: List[ChartPoint]
|
45
|
-
|
46
|
-
is_prophet_up: bool
|
47
|
-
|
48
20
|
|
49
21
|
class MyProphet:
|
50
22
|
|
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.4
|
2
2
|
Name: analyser_hj3415
|
3
|
-
Version: 4.
|
3
|
+
Version: 4.6.1
|
4
4
|
Summary: Stock analyser and database processing programs
|
5
5
|
Requires-Python: >=3.6
|
6
6
|
Description-Content-Type: text/markdown
|
@@ -12,7 +12,8 @@ Requires-Dist: yfinance>=0.2.54
|
|
12
12
|
Requires-Dist: prophet>=1.1.6
|
13
13
|
Requires-Dist: kaleido>=0.2.1
|
14
14
|
Requires-Dist: matplotlib>=3.9.2
|
15
|
-
Requires-Dist:
|
15
|
+
Requires-Dist: dataclasses_json>=0.6.7
|
16
|
+
Requires-Dist: pandas>=2.2.3
|
16
17
|
Requires-Dist: tensorflow-macos>=2.16.2; platform_machine == 'arm64' and sys_platform == 'darwin'
|
17
18
|
Requires-Dist: tensorflow-metal>=0.5.0; platform_machine == 'arm64' and sys_platform == 'darwin'
|
18
19
|
Requires-Dist: tensorflow>=2.18.0; platform_machine != 'arm64' or sys_platform != 'darwin'
|
@@ -0,0 +1,18 @@
|
|
1
|
+
analyser_hj3415/.DS_Store,sha256=fppknfhS_OdwBFgHHQaBDBRZG0WleCeML46EOj8nxIo,6148
|
2
|
+
analyser_hj3415/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
|
+
analyser_hj3415/cli.py,sha256=drfh0cqZ0LUHUJMJeyXcv1QTD7VYJMr58gcY4WHsVk4,11956
|
4
|
+
analyser_hj3415/analyser/__init__.py,sha256=N0XyBfWJNpDS_6JYziKETWePO_jtFB1m7E8Qbwt1w0Q,1096
|
5
|
+
analyser_hj3415/analyser/eval/__init__.py,sha256=IP1d0Q3nOCAD3zK1qxrC685MkJQfUh-qaXc7xptTxk8,80
|
6
|
+
analyser_hj3415/analyser/eval/blue.py,sha256=UT_j73Ugd7qL6-TcSJfIuEfbTjW44dfrADkzjSaaTfI,10861
|
7
|
+
analyser_hj3415/analyser/eval/common.py,sha256=sNXapoofShA43ww_SLjXmIjkrAr1AhAcezdaN_X_3Us,11443
|
8
|
+
analyser_hj3415/analyser/eval/growth.py,sha256=JrcPh-1qy1AJXMkhtP8LMZPH6VZYqA8OkzlrN0YDD2Y,6307
|
9
|
+
analyser_hj3415/analyser/eval/mil.py,sha256=9qM4SFb_DYW0a6T2kgi--rTbvbP66eSeQ4N67zIit3k,15667
|
10
|
+
analyser_hj3415/analyser/eval/red.py,sha256=Vzxlg_R7Labwg3Ae3BHTkFJmC-kRsltNmfiy68FFU8Q,12348
|
11
|
+
analyser_hj3415/analyser/tsa/__init__.py,sha256=7j-WshikzsDGGo_wuFoMPNmYfY-bLSEMd6o1MKSQKLI,150
|
12
|
+
analyser_hj3415/analyser/tsa/common.py,sha256=NxssIm7z1V3W-Vt8B89eT_bUa4YJRTeUbfyBZdXns90,4180
|
13
|
+
analyser_hj3415/analyser/tsa/lstm.py,sha256=l0P79Zm1X3PMbyX6d449j8V5pI1yiQfYdtQZr06khw4,28819
|
14
|
+
analyser_hj3415/analyser/tsa/myprophet.py,sha256=INwn7tM6i9WCZkGb9uQm_Q4mmPRvZn06kW1__vnzloA,18445
|
15
|
+
analyser_hj3415-4.6.1.dist-info/entry_points.txt,sha256=ZfjPnJuH8SzvhE9vftIPMBIofsc65IAWYOhqOC_L5ck,65
|
16
|
+
analyser_hj3415-4.6.1.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
17
|
+
analyser_hj3415-4.6.1.dist-info/METADATA,sha256=v1UMkH1qS4roVJSv079-vluIEscFXp9hxXOpVPvQyEM,6844
|
18
|
+
analyser_hj3415-4.6.1.dist-info/RECORD,,
|
@@ -1,18 +0,0 @@
|
|
1
|
-
analyser_hj3415/.DS_Store,sha256=fppknfhS_OdwBFgHHQaBDBRZG0WleCeML46EOj8nxIo,6148
|
2
|
-
analyser_hj3415/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
|
-
analyser_hj3415/cli.py,sha256=drfh0cqZ0LUHUJMJeyXcv1QTD7VYJMr58gcY4WHsVk4,11956
|
4
|
-
analyser_hj3415/analyser/__init__.py,sha256=N0XyBfWJNpDS_6JYziKETWePO_jtFB1m7E8Qbwt1w0Q,1096
|
5
|
-
analyser_hj3415/analyser/eval/__init__.py,sha256=IP1d0Q3nOCAD3zK1qxrC685MkJQfUh-qaXc7xptTxk8,80
|
6
|
-
analyser_hj3415/analyser/eval/blue.py,sha256=KBoKevikS74ys9zcVls6GaEdBkW-avcxHWkSPywOcPU,10644
|
7
|
-
analyser_hj3415/analyser/eval/common.py,sha256=sNXapoofShA43ww_SLjXmIjkrAr1AhAcezdaN_X_3Us,11443
|
8
|
-
analyser_hj3415/analyser/eval/growth.py,sha256=LunZcZvhly_2PWUZBbd0gW9ZImWYT5sAu_iixVLxGuc,6226
|
9
|
-
analyser_hj3415/analyser/eval/mil.py,sha256=6_1SuWqG1fsuZUKuaABhSqNsYCgj5np35auWhnE5wdk,15289
|
10
|
-
analyser_hj3415/analyser/eval/red.py,sha256=YXk7QX1No9mzGJlWnwfJ2aTUTbSS_LnPUL4PKzx0Aws,12051
|
11
|
-
analyser_hj3415/analyser/tsa/__init__.py,sha256=7j-WshikzsDGGo_wuFoMPNmYfY-bLSEMd6o1MKSQKLI,150
|
12
|
-
analyser_hj3415/analyser/tsa/common.py,sha256=iRwk88zBtEIqzSmTQWmQIWiiqZ9gN7GLtDUa5rx8IGM,1918
|
13
|
-
analyser_hj3415/analyser/tsa/lstm.py,sha256=KPBTwOQT60WToRFQ4AAInK_JP7yA6wDpyTMsl_oNscY,29935
|
14
|
-
analyser_hj3415/analyser/tsa/myprophet.py,sha256=2wIky5i5ZFn72BLPMEfxNvrK4Hdaww6i5wR_l1IysqA,19088
|
15
|
-
analyser_hj3415-4.5.4.dist-info/entry_points.txt,sha256=ZfjPnJuH8SzvhE9vftIPMBIofsc65IAWYOhqOC_L5ck,65
|
16
|
-
analyser_hj3415-4.5.4.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
|
17
|
-
analyser_hj3415-4.5.4.dist-info/METADATA,sha256=hhMyS0mF8yBsekMi1XbiUDlYeLqt60Pa3BPrJSlNbZA,6811
|
18
|
-
analyser_hj3415-4.5.4.dist-info/RECORD,,
|
File without changes
|