analyser_hj3415 3.2.2__py3-none-any.whl → 3.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,12 +1,30 @@
1
- MIs = {
2
- "wti": "CL=F",
3
- "gold": "GC=F",
4
- "silver": "SI=F",
5
- "usdidx": "DX-Y.NYB",
6
- "usdkrw": "KRW=X",
7
- "sp500": "^GSPC",
8
- "kospi": "^KS11",
9
- "nikkei": "^N225",
10
- "china": "^HSI",
11
- "irx": "^IRX",
12
- }
1
+ from typing import NamedTuple
2
+
3
+ class MarketIndices(NamedTuple):
4
+ """
5
+ 주요 시장 지수를 나타내는 NamedTuple입니다.
6
+
7
+ 속성:
8
+ WTI (str): 서부 텍사스 중질유(WTI) 선물 지수 (심볼: "CL=F").
9
+ GOLD (str): 금 선물 지수 (심볼: "GC=F").
10
+ SILVER (str): 은 선물 지수 (심볼: "SI=F").
11
+ USD_IDX (str): 미국 달러 인덱스 (심볼: "DX-Y.NYB").
12
+ USD_KRW (str): 달러-원 환율 (심볼: "KRW=X").
13
+ SP500 (str): S&P 500 주가지수 (심볼: "^GSPC").
14
+ KOSPI (str): 코스피 지수 (심볼: "^KS11").
15
+ NIKKEI (str): 닛케이 225 지수 (일본) (심볼: "^N225").
16
+ CHINA (str): 항셍 지수 (홍콩) (심볼: "^HSI").
17
+ IRX (str): 미국 단기 국채 금리 지수 (13주 T-빌 금리) (심볼: "^IRX").
18
+ """
19
+ WTI: str = "CL=F"
20
+ GOLD: str = "GC=F"
21
+ SILVER: str = "SI=F"
22
+ USD_IDX: str = "DX-Y.NYB"
23
+ USD_KRW: str = "KRW=X"
24
+ SP500: str = "^GSPC"
25
+ KOSPI: str = "^KS11"
26
+ NIKKEI: str = "^N225"
27
+ CHINA: str = "^HSI"
28
+ IRX: str = "^IRX"
29
+
30
+ MIs = MarketIndices()
@@ -1,8 +1,9 @@
1
1
  import os
2
2
  from collections import OrderedDict
3
3
  from typing import Union
4
+ from dataclasses import dataclass
4
5
 
5
- from db_hj3415 import myredis,mymongo
6
+ from db_hj3415 import myredis
6
7
  from utils_hj3415 import tools, setup_logger
7
8
 
8
9
  from analyser_hj3415.analyser import tsa, eval, MIs
@@ -10,183 +11,259 @@ from analyser_hj3415.analyser import tsa, eval, MIs
10
11
  mylogger = setup_logger(__name__,'WARNING')
11
12
  expire_time = tools.to_int(os.getenv('DEFAULT_EXPIRE_TIME_H', 48)) * 3600
12
13
 
14
+ @dataclass
15
+ class MICompileData:
16
+ """
17
+ MI(Market Index) 데이터를 컴파일하여 저장하는 데이터 클래스.
18
+
19
+ 속성:
20
+ mi_type (str): 시장 지수 유형.
21
+ prophet_data (tsa.ProphetData): Prophet 예측 데이터.
22
+ lstm_grade (tsa.LSTMGrade): LSTM 등급 데이터.
23
+ is_lstm_up (bool): LSTM 상승 여부.
24
+ is_prophet_up (bool): Prophet 상승 여부.
25
+ lstm_html (str): LSTM 시각화 HTML.
26
+ prophet_html (str): Prophet 시각화 HTML.
27
+ """
28
+ mi_type: str
29
+
30
+ prophet_data: tsa.ProphetData
31
+ lstm_grade: tsa.LSTMGrade
32
+
33
+ is_lstm_up: bool = False
34
+ is_prophet_up: bool = False
35
+
36
+ lstm_html: str = ''
37
+ prophet_html: str = ''
38
+
39
+
13
40
  class MICompile:
41
+ """
42
+ MI(Market Index) 데이터를 컴파일하는 클래스.
43
+
44
+ 메서드:
45
+ get(refresh=False) -> MICompileData:
46
+ MI 데이터를 컴파일하거나 캐시에서 가져옵니다.
47
+
48
+ analyser_lstm_all_mi(refresh: bool):
49
+ 모든 MI에 대해 LSTM 예측 및 초기화 수행.
50
+ """
14
51
  def __init__(self, mi_type: str):
15
- assert mi_type in MIs.keys(), f"Invalid MI type ({MIs.keys()})"
52
+ """
53
+ MICompile 객체를 초기화합니다.
54
+
55
+ 매개변수:
56
+ mi_type (str): 시장 지수 유형.
57
+ """
58
+ assert mi_type in MIs._fields, f"Invalid MI type ({MIs._fields})"
16
59
  self._mi_type = mi_type
17
- self.prophet = tsa.MIProphet(mi_type)
18
- self.lstm = tsa.MILSTM(mi_type)
19
60
 
20
61
  @property
21
62
  def mi_type(self) -> str:
63
+ """
64
+ MI 유형을 반환합니다.
65
+
66
+ 반환값:
67
+ str: MI 유형.
68
+ """
22
69
  return self._mi_type
23
70
 
24
71
  @mi_type.setter
25
72
  def mi_type(self, mi_type: str):
26
- assert mi_type in MIs.keys(), f"Invalid MI type ({MIs.keys()})"
73
+ """
74
+ MI 유형을 변경합니다.
75
+
76
+ 매개변수:
77
+ mi_type (str): 새로 설정할 MI 유형.
78
+ """
79
+ assert mi_type in MIs._fields, f"Invalid MI type ({MIs._fields})"
27
80
  self._mi_type = mi_type
28
- self.prophet.mi_type = mi_type
29
- self.lstm.mi_type = mi_type
30
81
 
31
- def get(self, refresh=False) -> dict:
82
+ def get(self, refresh=False) -> MICompileData:
32
83
  """
33
- 특정 MI(Market Index) 타입 데이터를 컴파일하고 반환합니다.
34
- 데이터를 Redis 캐시에서 가져오거나, 새로 생성하여 캐시에 저장합니다.
35
-
36
- Args:
37
- refresh (bool, optional):
38
- - True: 캐시를 무시하고 데이터를 새로 생성하여 저장.
39
- - False: 캐시된 데이터를 가져오며, 없을 경우 새로 생성.
40
- Defaults to False.
41
-
42
- Returns:
43
- dict: MI 데이터를 포함하는 딕셔너리로 반환하며, 다음의 키를 포함합니다:
44
- - 'name' (str): MI 타입 이름.
45
- - 'trading_action' (str): 예측된 매매 신호 ('buy', 'sell', 'hold').
46
- - 'prophet_score' (float): Prophet 모델의 예측 점수.
47
- - 'lstm_grade' (float): LSTM 모델의 최종 예측 점수.
48
- - 'is_lstm_up' (bool): LSTM 모델이 상승 신호를 나타내는지 여부.
49
- - 'prophet_html' (str): prophet_html,
50
- - 'lstm_html' (str): lstm_html ,
51
- Example:
52
- {
53
- 'name': 'example_mi',
54
- 'trading_action': 'buy',
55
- 'prophet_score': 0.88,
56
- 'lstm_grade': 0.92,
57
- 'is_lstm_up': True,
58
- 'prophet_html': prophet_html...,
59
- 'lstm_html': lstm_html...,
60
- }
84
+ MI 데이터를 컴파일하거나 캐시에서 가져옵니다.
85
+
86
+ 매개변수:
87
+ refresh (bool): 데이터를 새로 가져올지 여부.
88
+
89
+ 반환값:
90
+ MICompileData: 컴파일된 MI 데이터.
61
91
  """
62
92
  print(f"{self.mi_type}의 compiling을 시작합니다.")
63
93
  redis_name = self.mi_type + '_mi_compile'
64
94
  print(
65
95
  f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time / 3600}h")
66
96
 
67
- def fetch_mi_compile() -> dict:
68
- print(f"{self.mi_type}")
69
- trading_action, prophet_score = self.prophet.scoring()
70
- prophet_html = self.prophet.export()
71
- self.lstm.initializing()
72
- _, lstm_grade = self.lstm.get_final_predictions(refresh=refresh, num=5)
73
- is_lstm_up = self.lstm.is_lstm_up()
74
- lstm_html= self.lstm.export()
75
-
76
- return {
77
- 'name': self.mi_type,
78
- 'trading_action': trading_action,
79
- 'prophet_score': prophet_score,
80
- 'lstm_grade': lstm_grade,
81
- 'is_lstm_up': is_lstm_up,
82
- 'prophet_html': prophet_html,
83
- 'lstm_html': lstm_html,
84
- }
85
-
86
- data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_mi_compile, timer=expire_time)
87
- return data_dict
97
+ def fetch_mi_compile_data() -> MICompileData:
98
+ prophet = tsa.MIProphet(self.mi_type)
99
+ lstm = tsa.MILSTM(self.mi_type)
100
+
101
+ data = MICompileData(
102
+ mi_type=self.mi_type,
103
+ prophet_data=prophet.generate_data(refresh=refresh),
104
+ lstm_grade=lstm.get_final_predictions(refresh=refresh)[1],
105
+ )
106
+ data.is_lstm_up = lstm.is_lstm_up()
107
+ data.is_prophet_up = prophet.is_prophet_up(refresh=False)
108
+ data.lstm_html = lstm.export(refresh=False)
109
+ data.prophet_html = prophet.export()
110
+ return data
111
+
112
+ mi_compile_data = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_mi_compile_data, timer=expire_time)
113
+ return mi_compile_data
88
114
 
89
115
  @staticmethod
90
116
  def analyser_lstm_all_mi(refresh: bool):
91
- mi_lstm = tsa.MILSTM('wti')
117
+ """
118
+ 모든 MI(Market Index)에 대해 LSTM 예측과 초기화를 수행합니다.
119
+
120
+ 매개변수:
121
+ refresh (bool): 데이터를 새로 가져올지 여부.
122
+ """
123
+ mi_lstm = tsa.MILSTM('WTI')
92
124
  print(f"*** LSTM prediction redis cashing Market Index items ***")
93
- for mi_type in MIs.keys():
125
+ for mi_type in MIs._fields:
94
126
  mi_lstm.mi_type = mi_type
95
127
  print(f"{mi_lstm.mi_type}")
96
128
  mi_lstm.initializing()
97
129
  mi_lstm.get_final_predictions(refresh=refresh, num=5)
98
130
 
131
+ @dataclass
132
+ class CorpCompileData:
133
+ """
134
+ 기업 데이터를 컴파일하여 저장하는 데이터 클래스.
135
+
136
+ 속성:
137
+ code (str): 기업 코드.
138
+ name (str): 기업 이름.
139
+ red_data (eval.RedData): RED 분석 데이터.
140
+ mil_data (eval.MilData): MIL 분석 데이터.
141
+ prophet_data (tsa.ProphetData): Prophet 예측 데이터.
142
+ lstm_grade (tsa.LSTMGrade): LSTM 등급 데이터.
143
+ is_lstm_up (bool): LSTM 상승 여부.
144
+ is_prophet_up (bool): Prophet 상승 여부.
145
+ lstm_html (str): LSTM 시각화 HTML.
146
+ prophet_html (str): Prophet 시각화 HTML.
147
+ """
148
+ code: str
149
+ name: str
150
+
151
+ red_data: eval.RedData
152
+ mil_data: eval.MilData
153
+
154
+ prophet_data: tsa.ProphetData
155
+ lstm_grade: tsa.LSTMGrade
156
+
157
+ is_lstm_up: bool = False
158
+ is_prophet_up: bool = False
159
+
160
+ lstm_html: str = ''
161
+ prophet_html: str = ''
162
+
99
163
 
100
164
  class CorpCompile:
165
+ """
166
+ 기업 데이터를 컴파일하는 클래스.
167
+
168
+ 메서드:
169
+ get(refresh=False) -> CorpCompileData:
170
+ 기업 데이터를 컴파일하거나 캐시에서 가져옵니다.
171
+
172
+ red_ranking(expect_earn: float = 0.06, refresh=False) -> OrderedDict:
173
+ RED 데이터를 기반으로 기업 순위를 계산합니다.
174
+
175
+ prophet_ranking(refresh=False, top: Union[int, str]='all') -> OrderedDict:
176
+ Prophet 데이터를 기반으로 기업 순위를 계산합니다.
177
+
178
+ analyse_lstm_topn(refresh: bool, top=40):
179
+ 상위 N개의 기업에 대해 LSTM 예측 수행.
180
+ """
101
181
  def __init__(self, code: str, expect_earn=0.06):
182
+ """
183
+ CorpCompile 객체를 초기화합니다.
184
+
185
+ 매개변수:
186
+ code (str): 기업 코드.
187
+ expect_earn (float, optional): 예상 수익률. 기본값은 0.06.
188
+ """
102
189
  assert tools.is_6digit(code), f'Invalid value : {code}'
103
190
  self._code = code
104
- self.name = mymongo.Corps.get_name(code)
105
- self.red = eval.Red(code, expect_earn)
106
- self.mil = eval.Mil(code)
107
- self.prophet = tsa.CorpProphet(code)
191
+ self.expect_earn = expect_earn
108
192
 
109
193
  @property
110
194
  def code(self) -> str:
195
+ """
196
+ 기업 코드를 반환합니다.
197
+
198
+ 반환값:
199
+ str: 기업 코드.
200
+ """
111
201
  return self._code
112
202
 
113
203
  @code.setter
114
204
  def code(self, code: str):
205
+ """
206
+ 기업 코드를 변경합니다.
207
+
208
+ 매개변수:
209
+ code (str): 새로 설정할 기업 코드.
210
+ """
115
211
  assert tools.is_6digit(code), f'Invalid value : {code}'
116
212
  mylogger.info(f'change code : {self.code} -> {code}')
117
213
  self._code = code
118
- self.name = mymongo.Corps.get_name(code)
119
- self.red.code = code
120
- self.mil.code = code
121
- self.prophet.code = code
122
214
 
123
- def get(self, refresh=False) -> dict:
215
+ def get(self, refresh=False) -> CorpCompileData:
124
216
  """
125
- 특정 기업 데이터를 컴파일하여 반환합니다.
126
- 데이터를 Redis 캐시에서 가져오거나, 새로 생성하여 캐시에 저장합니다.
127
-
128
- Args:
129
- refresh (bool, optional):
130
- - True: 캐시를 무시하고 데이터를 새로 생성하여 저장.
131
- - False: 캐시된 데이터를 가져오며, 없을 경우 새로 생성.
132
- Defaults to False.
133
-
134
- Returns:
135
- dict: 기업 데이터를 포함하는 딕셔너리로 반환되며, 다음의 키를 포함합니다:
136
- - 'name' (str): 기업 이름.
137
- - 'red_score' (float): 기업의 Red Score (위험 점수).
138
- - '이익지표' (float): 기업의 이익 지표.
139
- - '주주수익률' (float): 주주 수익률.
140
- - 'trading_action' (str): 예측된 매매 신호 ('buy', 'sell', 'hold').
141
- - 'prophet_score' (float): Prophet 모델의 예측 점수.
142
- - 'prophet_html' (str): prophet_html,
143
-
144
- Example:
145
- {
146
- 'name': 'Samsung Electronics',
147
- 'red_score': 0.85,
148
- '이익지표': 0.75,
149
- '주주수익률': 0.10,
150
- 'trading_action': 'buy',
151
- 'prophet_score': 0.92,
152
- 'prophet_html': prophet_html...,
153
- }
217
+ 기업 데이터를 컴파일하거나 캐시에서 가져옵니다.
218
+
219
+ 매개변수:
220
+ refresh (bool): 데이터를 새로 가져올지 여부.
221
+
222
+ 반환값:
223
+ CorpCompileData: 컴파일된 기업 데이터.
154
224
  """
155
- print(f"{self.code}/{self.name}의 compiling을 시작합니다.")
225
+ print(f"{self.code}의 compiling을 시작합니다.")
156
226
  redis_name = self.code + '_corp_compile'
157
227
  print(
158
228
  f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time/3600}h")
159
229
 
160
- def fetch_corp_compile() -> dict:
161
- mylogger.info("Red score 계산중..")
162
- red_score = self.red.get(verbose=False).score
163
-
164
- mylogger.info("Mil data 계산중..")
165
- mil_data = self.mil.get(verbose=False)
166
-
167
- mylogger.info("\tProphet 최근 데이터 조회중..")
168
- trading_action, prophet_score = self.prophet.scoring()
169
- prophet_html = self.prophet.export()
170
-
171
- return {
172
- 'name': self.name,
173
- 'red_score': red_score,
174
- '이익지표': mil_data.이익지표,
175
- '주주수익률': mil_data.주주수익률,
176
- 'trading_action': trading_action,
177
- 'prophet_score': prophet_score,
178
- 'prophet_html': prophet_html,
179
- }
180
- data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_corp_compile, timer=expire_time)
181
- return data_dict
230
+ def fetch_corp_compile_data() -> CorpCompileData:
231
+ prophet = tsa.CorpProphet(self.code)
232
+ lstm = tsa.CorpLSTM(self.code)
233
+
234
+ data = CorpCompileData(
235
+ code=self.code,
236
+ name=myredis.Corps(self.code,'c101').get_name(data_from='mongo'),
237
+ red_data=eval.Red(self.code, self.expect_earn).get(refresh=refresh, verbose=False),
238
+ mil_data=eval.Mil(self.code).get(refresh=refresh, verbose=False),
239
+ prophet_data=prophet.generate_data(refresh=refresh),
240
+ lstm_grade=lstm.get_final_predictions(refresh=refresh)[1],
241
+ )
242
+
243
+ data.is_lstm_up = lstm.is_lstm_up()
244
+ data.is_prophet_up = prophet.is_prophet_up(refresh=False)
245
+ data.lstm_html = lstm.export(refresh=False)
246
+ data.prophet_html = prophet.export()
247
+ return data
248
+
249
+ corp_compile_data = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_corp_compile_data, timer=expire_time)
250
+ return corp_compile_data
182
251
 
183
252
  @staticmethod
184
253
  def red_ranking(expect_earn: float = 0.06, refresh=False) -> OrderedDict:
185
- # 이전 expect earn 과 비교하여 다르거나 없으면 강제 refresh 설정
254
+ """
255
+ RED 데이터를 기반으로 기업 순위를 계산합니다.
256
+
257
+ 매개변수:
258
+ expect_earn (float, optional): 예상 수익률. 기본값은 0.06.
259
+ refresh (bool): 데이터를 새로 가져올지 여부.
260
+
261
+ 반환값:
262
+ OrderedDict: RED 점수를 기준으로 정렬된 기업 순위.
263
+ """
186
264
  redis_name = 'red_ranking_prev_expect_earn'
187
265
  pee = tools.to_float(myredis.Base.get_value(redis_name))
188
266
  if pee != expect_earn:
189
- # expect earn의 이전 계산값이 없거나 이전 값과 다르면 새로 계산
190
267
  mylogger.warning(
191
268
  f"expect earn : {expect_earn} / prev expect earn : {pee} 두 값이 달라 refresh = True"
192
269
  )
@@ -215,31 +292,39 @@ class CorpCompile:
215
292
 
216
293
  @staticmethod
217
294
  def prophet_ranking(refresh=False, top: Union[int, str]='all') -> OrderedDict:
295
+ """
296
+ Prophet 데이터를 기반으로 기업 순위를 계산합니다.
218
297
 
298
+ 매개변수:
299
+ refresh (bool): 데이터를 새로 가져올지 여부.
300
+ top (Union[int, str], optional): 상위 기업 개수. 'all'이면 전체 반환. 기본값은 'all'.
301
+
302
+ 반환값:
303
+ OrderedDict: Prophet 점수를 기준으로 정렬된 기업 순위.
304
+ """
219
305
  print("**** Start Compiling scores and sorting... ****")
220
306
  redis_name = 'prophet_ranking'
221
307
 
222
308
  print(
223
309
  f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time/3600}h")
224
310
 
225
- def fetch_ranking() -> dict:
311
+ def fetch_prophet_ranking() -> dict:
226
312
  data = {}
227
- c = CorpCompile('005930')
313
+ c = tsa.CorpProphet('005930')
228
314
  for code in myredis.Corps.list_all_codes():
229
315
  try:
230
316
  c.code = code
231
317
  except ValueError:
232
318
  mylogger.error(f'prophet ranking error : {code}')
233
319
  continue
234
- scores= c.get(refresh=refresh)
235
- print(f'{code} compiled : {scores}')
236
- data[code] = scores
320
+ score= c.generate_data(refresh=refresh).score
321
+ print(f'{code} compiled : {score}')
322
+ data[code] = score
237
323
  return data
238
324
 
239
- data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_ranking, timer=expire_time)
325
+ data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_prophet_ranking, timer=expire_time)
240
326
 
241
- # prophet_score를 기준으로 정렬
242
- ranking = OrderedDict(sorted(data_dict.items(), key=lambda x: x[1]['prophet_score'], reverse=True))
327
+ ranking = OrderedDict(sorted(data_dict.items(), key=lambda x: x[1], reverse=True))
243
328
 
244
329
  if top == 'all':
245
330
  return ranking
@@ -251,6 +336,13 @@ class CorpCompile:
251
336
 
252
337
  @staticmethod
253
338
  def analyse_lstm_topn(refresh: bool, top=40):
339
+ """
340
+ 상위 N개의 기업에 대해 LSTM 예측을 수행합니다.
341
+
342
+ 매개변수:
343
+ refresh (bool): 데이터를 새로 가져올지 여부.
344
+ top (int, optional): 상위 기업 개수. 기본값은 40.
345
+ """
254
346
  ranking_topn = CorpCompile.prophet_ranking(refresh=False, top=top)
255
347
  mylogger.info(ranking_topn)
256
348
  corp_lstm = tsa.CorpLSTM('005930')
@@ -258,7 +350,4 @@ class CorpCompile:
258
350
  for i, (code, _) in enumerate(ranking_topn.items()):
259
351
  corp_lstm.code = code
260
352
  print(f"{i + 1}. {corp_lstm.code}/{corp_lstm.name}")
261
- corp_lstm.initializing()
262
353
  corp_lstm.get_final_predictions(refresh=refresh, num=5)
263
-
264
-
@@ -15,6 +15,28 @@ expire_time = tools.to_int(os.getenv('DEFAULT_EXPIRE_TIME_H', 48)) * 3600
15
15
 
16
16
  @dataclass()
17
17
  class BlueData:
18
+ """
19
+ 기업의 주요 안정성 지표와 관련된 데이터를 저장하는 데이터 클래스.
20
+
21
+ 이 클래스는 기업의 유동성, 부채 비율, 자산 회전율 등을 포함하며,
22
+ 이를 활용하여 기업의 안정성을 평가할 수 있습니다.
23
+
24
+ 속성:
25
+ code (str): 기업의 종목 코드 (6자리 숫자 문자열).
26
+ name (str): 기업명.
27
+ 유동비율 (float): 유동 자산 대비 유동 부채 비율.
28
+ 이자보상배율_r (float): 최근 이자보상배율 값.
29
+ 이자보상배율_dict (dict): 이자보상배율 데이터.
30
+ 순운전자본회전율_r (float): 최근 순운전자본회전율 값.
31
+ 순운전자본회전율_dict (dict): 순운전자본회전율 데이터.
32
+ 재고자산회전율_r (float): 최근 재고자산회전율 값.
33
+ 재고자산회전율_dict (dict): 재고자산회전율 데이터.
34
+ 재고자산회전율_c106 (dict): C106 기준 재고자산회전율 데이터.
35
+ 순부채비율_r (float): 최근 순부채비율 값.
36
+ 순부채비율_dict (dict): 순부채비율 데이터.
37
+ score (list): 평가 점수.
38
+ date (list): 데이터와 관련된 날짜 목록.
39
+ """
18
40
  code: str
19
41
  name: str
20
42
 
@@ -38,6 +60,20 @@ class BlueData:
38
60
 
39
61
 
40
62
  class Blue:
63
+ """
64
+ 기업의 안정성 지표를 분석하고 계산하는 클래스.
65
+
66
+ 이 클래스는 주어진 기업 코드에 대해 주요 안정성 지표(예: 유동비율, 이자보상배율 등)를 수집하고,
67
+ 이를 기반으로 기업의 안정성을 평가합니다. Redis 캐시를 활용하여 계산된 데이터를 저장하고
68
+ 재사용할 수 있습니다.
69
+
70
+ 속성:
71
+ c101 (myredis.C101): 기업 정보 및 최근 데이터 접근 객체.
72
+ c103 (myredis.C103): 재무 상태표 데이터 접근 객체.
73
+ c104 (myredis.C104): 투자 지표 데이터 접근 객체.
74
+ name (str): 기업명.
75
+ _code (str): 기업 종목 코드.
76
+ """
41
77
  def __init__(self, code: str):
42
78
  assert tools.is_6digit(code), f'Invalid value : {code}'
43
79
  mylogger.debug(f"Blue : 종목코드 ({code})")
@@ -69,10 +105,22 @@ class Blue:
69
105
  self._code = code
70
106
 
71
107
  def _calc유동비율(self, pop_count: int, refresh: bool) -> Tuple[str, float]:
72
- """유동비율계산 - Blue에서 사용
108
+ """
109
+ 기업의 유동비율을 계산합니다.
110
+
111
+ 유동비율 데이터가 유효하지 않거나 100 이하일 경우,
112
+ 유동자산과 유동부채를 기반으로 계산을 수행합니다.
113
+
114
+ 매개변수:
115
+ pop_count (int): 데이터 검색 시 사용할 값의 개수.
116
+ refresh (bool): 데이터를 새로고침할지 여부.
117
+
118
+ 반환값:
119
+ Tuple[str, float]: 날짜와 계산된 유동비율.
73
120
 
74
- c104q에서 최근유동비율 찾아보고 유효하지 않거나 \n
75
- 100이하인 경우에는수동으로 계산해서 다시 한번 평가해 본다.\n
121
+ 로그:
122
+ - 유동비율 계산 과정과 결과를 출력합니다.
123
+ - 계산 중 유효하지 않은 데이터가 있으면 경고를 출력합니다.
76
124
  """
77
125
  mylogger.info(f'In the calc유동비율... refresh : {refresh}')
78
126
  self.c104.page = 'c104q'
@@ -111,6 +159,17 @@ class Blue:
111
159
  return [0 ,]
112
160
 
113
161
  def _generate_data(self, refresh: bool) -> BlueData:
162
+ """
163
+ BlueData 형식의 데이터를 생성합니다.
164
+
165
+ 각종 안정성 지표를 계산하고 데이터를 정리하여 BlueData 객체로 반환합니다.
166
+
167
+ 매개변수:
168
+ refresh (bool): 데이터를 새로고침할지 여부.
169
+
170
+ 반환값:
171
+ BlueData: 계산된 안정성 지표 데이터.
172
+ """
114
173
  d1, 유동비율 = self._calc유동비율(pop_count=3, refresh=refresh)
115
174
  mylogger.info(f'유동비율 {유동비율} / [{d1}]')
116
175
 
@@ -171,9 +230,20 @@ class Blue:
171
230
 
172
231
  def get(self, refresh = False, verbose = True) -> BlueData:
173
232
  """
174
- BlueData 형식의 데이터를 계산하여 리턴하고 레디스 캐시에 저장한다.
175
- :param refresh:
176
- :return:
233
+ BlueData 객체를 Redis 캐시에서 가져오거나 새로 생성하여 반환합니다.
234
+
235
+ 캐시에서 데이터를 검색하고, 없을 경우 `_generate_data`를 호출하여 데이터를 생성합니다.
236
+ 생성된 데이터는 Redis 캐시에 저장되어 재사용됩니다.
237
+
238
+ 매개변수:
239
+ refresh (bool): 캐시를 무시하고 새로 데이터를 계산할지 여부. 기본값은 False.
240
+ verbose (bool): 실행 중 상세 정보를 출력할지 여부. 기본값은 True.
241
+
242
+ 반환값:
243
+ BlueData: Redis 캐시에서 가져오거나 새로 생성된 BlueData 객체.
244
+
245
+ 로그:
246
+ - 캐시 검색 상태와 새로 생성된 데이터를 출력합니다.
177
247
  """
178
248
  redis_name = f"{self.code}_blue"
179
249
  mylogger.info(f"{self} BlueData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
@@ -181,7 +251,6 @@ class Blue:
181
251
  print(f"{self} redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time /3600}h")
182
252
 
183
253
  def fetch_generate_data(refresh_in: bool) -> dict:
184
- return asdict(self._generate_data(refresh_in))
254
+ return self._generate_data(refresh_in) # type: ignore
185
255
 
186
- return BlueData \
187
- (**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh, timer=expire_time))
256
+ return myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh, timer=expire_time)