analyser_hj3415 3.2.2__py3-none-any.whl → 3.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- analyser_hj3415/analyser/__init__.py +30 -12
- analyser_hj3415/analyser/compile.py +87 -133
- analyser_hj3415/analyser/eval/blue.py +78 -9
- analyser_hj3415/analyser/eval/common.py +72 -110
- analyser_hj3415/analyser/eval/growth.py +77 -6
- analyser_hj3415/analyser/eval/mil.py +119 -18
- analyser_hj3415/analyser/eval/red.py +95 -66
- analyser_hj3415/analyser/tsa/__init__.py +1 -1
- analyser_hj3415/analyser/tsa/common.py +33 -0
- analyser_hj3415/analyser/tsa/lstm.py +108 -133
- analyser_hj3415/analyser/tsa/prophet.py +261 -124
- analyser_hj3415/cli.py +12 -9
- {analyser_hj3415-3.2.2.dist-info → analyser_hj3415-3.3.0.dist-info}/METADATA +1 -1
- analyser_hj3415-3.3.0.dist-info/RECORD +23 -0
- analyser_hj3415-3.2.2.dist-info/RECORD +0 -22
- {analyser_hj3415-3.2.2.dist-info → analyser_hj3415-3.3.0.dist-info}/WHEEL +0 -0
- {analyser_hj3415-3.2.2.dist-info → analyser_hj3415-3.3.0.dist-info}/entry_points.txt +0 -0
@@ -1,12 +1,30 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
|
4
|
-
"
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
1
|
+
from typing import NamedTuple
|
2
|
+
|
3
|
+
class MarketIndices(NamedTuple):
|
4
|
+
"""
|
5
|
+
주요 시장 지수를 나타내는 NamedTuple입니다.
|
6
|
+
|
7
|
+
속성:
|
8
|
+
WTI (str): 서부 텍사스 중질유(WTI) 선물 지수 (심볼: "CL=F").
|
9
|
+
GOLD (str): 금 선물 지수 (심볼: "GC=F").
|
10
|
+
SILVER (str): 은 선물 지수 (심볼: "SI=F").
|
11
|
+
USD_IDX (str): 미국 달러 인덱스 (심볼: "DX-Y.NYB").
|
12
|
+
USD_KRW (str): 달러-원 환율 (심볼: "KRW=X").
|
13
|
+
SP500 (str): S&P 500 주가지수 (심볼: "^GSPC").
|
14
|
+
KOSPI (str): 코스피 지수 (심볼: "^KS11").
|
15
|
+
NIKKEI (str): 닛케이 225 지수 (일본) (심볼: "^N225").
|
16
|
+
CHINA (str): 항셍 지수 (홍콩) (심볼: "^HSI").
|
17
|
+
IRX (str): 미국 단기 국채 금리 지수 (13주 T-빌 금리) (심볼: "^IRX").
|
18
|
+
"""
|
19
|
+
WTI: str = "CL=F"
|
20
|
+
GOLD: str = "GC=F"
|
21
|
+
SILVER: str = "SI=F"
|
22
|
+
USD_IDX: str = "DX-Y.NYB"
|
23
|
+
USD_KRW: str = "KRW=X"
|
24
|
+
SP500: str = "^GSPC"
|
25
|
+
KOSPI: str = "^KS11"
|
26
|
+
NIKKEI: str = "^N225"
|
27
|
+
CHINA: str = "^HSI"
|
28
|
+
IRX: str = "^IRX"
|
29
|
+
|
30
|
+
MIs = MarketIndices()
|
@@ -1,8 +1,9 @@
|
|
1
1
|
import os
|
2
2
|
from collections import OrderedDict
|
3
3
|
from typing import Union
|
4
|
+
from dataclasses import dataclass
|
4
5
|
|
5
|
-
from db_hj3415 import myredis
|
6
|
+
from db_hj3415 import myredis
|
6
7
|
from utils_hj3415 import tools, setup_logger
|
7
8
|
|
8
9
|
from analyser_hj3415.analyser import tsa, eval, MIs
|
@@ -10,12 +11,25 @@ from analyser_hj3415.analyser import tsa, eval, MIs
|
|
10
11
|
mylogger = setup_logger(__name__,'WARNING')
|
11
12
|
expire_time = tools.to_int(os.getenv('DEFAULT_EXPIRE_TIME_H', 48)) * 3600
|
12
13
|
|
14
|
+
|
15
|
+
@dataclass
|
16
|
+
class MICompileData:
|
17
|
+
mi_type: str
|
18
|
+
|
19
|
+
prophet_data: tsa.ProphetData
|
20
|
+
lstm_grade: tsa.LSTMGrade
|
21
|
+
|
22
|
+
is_lstm_up: bool = False
|
23
|
+
is_prophet_up: bool = False
|
24
|
+
|
25
|
+
lstm_html: str = ''
|
26
|
+
prophet_html: str = ''
|
27
|
+
|
28
|
+
|
13
29
|
class MICompile:
|
14
30
|
def __init__(self, mi_type: str):
|
15
|
-
assert mi_type in MIs.
|
31
|
+
assert mi_type in MIs._fields, f"Invalid MI type ({MIs._fields})"
|
16
32
|
self._mi_type = mi_type
|
17
|
-
self.prophet = tsa.MIProphet(mi_type)
|
18
|
-
self.lstm = tsa.MILSTM(mi_type)
|
19
33
|
|
20
34
|
@property
|
21
35
|
def mi_type(self) -> str:
|
@@ -23,88 +37,67 @@ class MICompile:
|
|
23
37
|
|
24
38
|
@mi_type.setter
|
25
39
|
def mi_type(self, mi_type: str):
|
26
|
-
assert mi_type in MIs.
|
40
|
+
assert mi_type in MIs._fields, f"Invalid MI type ({MIs._fields})"
|
27
41
|
self._mi_type = mi_type
|
28
|
-
self.prophet.mi_type = mi_type
|
29
|
-
self.lstm.mi_type = mi_type
|
30
42
|
|
31
|
-
def get(self, refresh=False) ->
|
32
|
-
"""
|
33
|
-
특정 MI(Market Index) 타입 데이터를 컴파일하고 반환합니다.
|
34
|
-
데이터를 Redis 캐시에서 가져오거나, 새로 생성하여 캐시에 저장합니다.
|
35
|
-
|
36
|
-
Args:
|
37
|
-
refresh (bool, optional):
|
38
|
-
- True: 캐시를 무시하고 데이터를 새로 생성하여 저장.
|
39
|
-
- False: 캐시된 데이터를 가져오며, 없을 경우 새로 생성.
|
40
|
-
Defaults to False.
|
41
|
-
|
42
|
-
Returns:
|
43
|
-
dict: MI 데이터를 포함하는 딕셔너리로 반환하며, 다음의 키를 포함합니다:
|
44
|
-
- 'name' (str): MI 타입 이름.
|
45
|
-
- 'trading_action' (str): 예측된 매매 신호 ('buy', 'sell', 'hold').
|
46
|
-
- 'prophet_score' (float): Prophet 모델의 예측 점수.
|
47
|
-
- 'lstm_grade' (float): LSTM 모델의 최종 예측 점수.
|
48
|
-
- 'is_lstm_up' (bool): LSTM 모델이 상승 신호를 나타내는지 여부.
|
49
|
-
- 'prophet_html' (str): prophet_html,
|
50
|
-
- 'lstm_html' (str): lstm_html ,
|
51
|
-
Example:
|
52
|
-
{
|
53
|
-
'name': 'example_mi',
|
54
|
-
'trading_action': 'buy',
|
55
|
-
'prophet_score': 0.88,
|
56
|
-
'lstm_grade': 0.92,
|
57
|
-
'is_lstm_up': True,
|
58
|
-
'prophet_html': prophet_html...,
|
59
|
-
'lstm_html': lstm_html...,
|
60
|
-
}
|
61
|
-
"""
|
43
|
+
def get(self, refresh=False) -> MICompileData:
|
62
44
|
print(f"{self.mi_type}의 compiling을 시작합니다.")
|
63
45
|
redis_name = self.mi_type + '_mi_compile'
|
64
46
|
print(
|
65
47
|
f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time / 3600}h")
|
66
48
|
|
67
|
-
def
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
}
|
85
|
-
|
86
|
-
data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_mi_compile, timer=expire_time)
|
87
|
-
return data_dict
|
49
|
+
def fetch_mi_compile_data() -> MICompileData:
|
50
|
+
prophet = tsa.MIProphet(self.mi_type)
|
51
|
+
lstm = tsa.MILSTM(self.mi_type)
|
52
|
+
|
53
|
+
data = MICompileData(
|
54
|
+
mi_type=self.mi_type,
|
55
|
+
prophet_data=prophet.generate_data(refresh=refresh),
|
56
|
+
lstm_grade=lstm.get_final_predictions(refresh=refresh)[1],
|
57
|
+
)
|
58
|
+
data.is_lstm_up = lstm.is_lstm_up()
|
59
|
+
data.is_prophet_up = prophet.is_prophet_up(refresh=False)
|
60
|
+
data.lstm_html = lstm.export(refresh=False)
|
61
|
+
data.prophet_html = prophet.export()
|
62
|
+
return data
|
63
|
+
|
64
|
+
mi_compile_data = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_mi_compile_data, timer=expire_time)
|
65
|
+
return mi_compile_data
|
88
66
|
|
89
67
|
@staticmethod
|
90
68
|
def analyser_lstm_all_mi(refresh: bool):
|
91
|
-
mi_lstm = tsa.MILSTM('
|
69
|
+
mi_lstm = tsa.MILSTM('WTI')
|
92
70
|
print(f"*** LSTM prediction redis cashing Market Index items ***")
|
93
|
-
for mi_type in MIs.
|
71
|
+
for mi_type in MIs._fields:
|
94
72
|
mi_lstm.mi_type = mi_type
|
95
73
|
print(f"{mi_lstm.mi_type}")
|
96
74
|
mi_lstm.initializing()
|
97
75
|
mi_lstm.get_final_predictions(refresh=refresh, num=5)
|
98
76
|
|
99
77
|
|
78
|
+
@dataclass
|
79
|
+
class CorpCompileData:
|
80
|
+
code: str
|
81
|
+
name: str
|
82
|
+
|
83
|
+
red_data: eval.RedData
|
84
|
+
mil_data: eval.MilData
|
85
|
+
|
86
|
+
prophet_data: tsa.ProphetData
|
87
|
+
lstm_grade: tsa.LSTMGrade
|
88
|
+
|
89
|
+
is_lstm_up: bool = False
|
90
|
+
is_prophet_up: bool = False
|
91
|
+
|
92
|
+
lstm_html: str = ''
|
93
|
+
prophet_html: str = ''
|
94
|
+
|
95
|
+
|
100
96
|
class CorpCompile:
|
101
97
|
def __init__(self, code: str, expect_earn=0.06):
|
102
98
|
assert tools.is_6digit(code), f'Invalid value : {code}'
|
103
99
|
self._code = code
|
104
|
-
self.
|
105
|
-
self.red = eval.Red(code, expect_earn)
|
106
|
-
self.mil = eval.Mil(code)
|
107
|
-
self.prophet = tsa.CorpProphet(code)
|
100
|
+
self.expect_earn = expect_earn
|
108
101
|
|
109
102
|
@property
|
110
103
|
def code(self) -> str:
|
@@ -115,70 +108,34 @@ class CorpCompile:
|
|
115
108
|
assert tools.is_6digit(code), f'Invalid value : {code}'
|
116
109
|
mylogger.info(f'change code : {self.code} -> {code}')
|
117
110
|
self._code = code
|
118
|
-
self.name = mymongo.Corps.get_name(code)
|
119
|
-
self.red.code = code
|
120
|
-
self.mil.code = code
|
121
|
-
self.prophet.code = code
|
122
111
|
|
123
112
|
def get(self, refresh=False) -> dict:
|
124
|
-
""
|
125
|
-
특정 기업 데이터를 컴파일하여 반환합니다.
|
126
|
-
데이터를 Redis 캐시에서 가져오거나, 새로 생성하여 캐시에 저장합니다.
|
127
|
-
|
128
|
-
Args:
|
129
|
-
refresh (bool, optional):
|
130
|
-
- True: 캐시를 무시하고 데이터를 새로 생성하여 저장.
|
131
|
-
- False: 캐시된 데이터를 가져오며, 없을 경우 새로 생성.
|
132
|
-
Defaults to False.
|
133
|
-
|
134
|
-
Returns:
|
135
|
-
dict: 기업 데이터를 포함하는 딕셔너리로 반환되며, 다음의 키를 포함합니다:
|
136
|
-
- 'name' (str): 기업 이름.
|
137
|
-
- 'red_score' (float): 기업의 Red Score (위험 점수).
|
138
|
-
- '이익지표' (float): 기업의 이익 지표.
|
139
|
-
- '주주수익률' (float): 주주 수익률.
|
140
|
-
- 'trading_action' (str): 예측된 매매 신호 ('buy', 'sell', 'hold').
|
141
|
-
- 'prophet_score' (float): Prophet 모델의 예측 점수.
|
142
|
-
- 'prophet_html' (str): prophet_html,
|
143
|
-
|
144
|
-
Example:
|
145
|
-
{
|
146
|
-
'name': 'Samsung Electronics',
|
147
|
-
'red_score': 0.85,
|
148
|
-
'이익지표': 0.75,
|
149
|
-
'주주수익률': 0.10,
|
150
|
-
'trading_action': 'buy',
|
151
|
-
'prophet_score': 0.92,
|
152
|
-
'prophet_html': prophet_html...,
|
153
|
-
}
|
154
|
-
"""
|
155
|
-
print(f"{self.code}/{self.name}의 compiling을 시작합니다.")
|
113
|
+
print(f"{self.code}의 compiling을 시작합니다.")
|
156
114
|
redis_name = self.code + '_corp_compile'
|
157
115
|
print(
|
158
116
|
f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time/3600}h")
|
159
117
|
|
160
|
-
def
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
return data_dict
|
118
|
+
def fetch_corp_compile_data() -> CorpCompileData:
|
119
|
+
prophet = tsa.CorpProphet(self.code)
|
120
|
+
lstm = tsa.CorpLSTM(self.code)
|
121
|
+
|
122
|
+
data = CorpCompileData(
|
123
|
+
code=self.code,
|
124
|
+
name=myredis.Corps(self.code,'c101').get_name(data_from='mongo'),
|
125
|
+
red_data=eval.Red(self.code, self.expect_earn).get(refresh=refresh, verbose=False),
|
126
|
+
mil_data=eval.Mil(self.code).get(refresh=refresh, verbose=False),
|
127
|
+
prophet_data=prophet.generate_data(refresh=refresh),
|
128
|
+
lstm_grade=lstm.get_final_predictions(refresh=refresh)[1],
|
129
|
+
)
|
130
|
+
|
131
|
+
data.is_lstm_up = lstm.is_lstm_up()
|
132
|
+
data.is_prophet_up = prophet.is_prophet_up(refresh=False)
|
133
|
+
data.lstm_html = lstm.export(refresh=False)
|
134
|
+
data.prophet_html = prophet.export()
|
135
|
+
return data
|
136
|
+
|
137
|
+
corp_compile_data = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_corp_compile_data, timer=expire_time)
|
138
|
+
return corp_compile_data
|
182
139
|
|
183
140
|
@staticmethod
|
184
141
|
def red_ranking(expect_earn: float = 0.06, refresh=False) -> OrderedDict:
|
@@ -222,24 +179,24 @@ class CorpCompile:
|
|
222
179
|
print(
|
223
180
|
f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time/3600}h")
|
224
181
|
|
225
|
-
def
|
182
|
+
def fetch_prophet_ranking() -> dict:
|
226
183
|
data = {}
|
227
|
-
c =
|
184
|
+
c = tsa.CorpProphet('005930')
|
228
185
|
for code in myredis.Corps.list_all_codes():
|
229
186
|
try:
|
230
187
|
c.code = code
|
231
188
|
except ValueError:
|
232
189
|
mylogger.error(f'prophet ranking error : {code}')
|
233
190
|
continue
|
234
|
-
|
235
|
-
print(f'{code} compiled : {
|
236
|
-
data[code] =
|
191
|
+
score= c.generate_data(refresh=refresh).score
|
192
|
+
print(f'{code} compiled : {score}')
|
193
|
+
data[code] = score
|
237
194
|
return data
|
238
195
|
|
239
|
-
data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh,
|
196
|
+
data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_prophet_ranking, timer=expire_time)
|
240
197
|
|
241
198
|
# prophet_score를 기준으로 정렬
|
242
|
-
ranking = OrderedDict(sorted(data_dict.items(), key=lambda x: x[1]
|
199
|
+
ranking = OrderedDict(sorted(data_dict.items(), key=lambda x: x[1], reverse=True))
|
243
200
|
|
244
201
|
if top == 'all':
|
245
202
|
return ranking
|
@@ -258,7 +215,4 @@ class CorpCompile:
|
|
258
215
|
for i, (code, _) in enumerate(ranking_topn.items()):
|
259
216
|
corp_lstm.code = code
|
260
217
|
print(f"{i + 1}. {corp_lstm.code}/{corp_lstm.name}")
|
261
|
-
corp_lstm.initializing()
|
262
218
|
corp_lstm.get_final_predictions(refresh=refresh, num=5)
|
263
|
-
|
264
|
-
|
@@ -15,6 +15,28 @@ expire_time = tools.to_int(os.getenv('DEFAULT_EXPIRE_TIME_H', 48)) * 3600
|
|
15
15
|
|
16
16
|
@dataclass()
|
17
17
|
class BlueData:
|
18
|
+
"""
|
19
|
+
기업의 주요 안정성 지표와 관련된 데이터를 저장하는 데이터 클래스.
|
20
|
+
|
21
|
+
이 클래스는 기업의 유동성, 부채 비율, 자산 회전율 등을 포함하며,
|
22
|
+
이를 활용하여 기업의 안정성을 평가할 수 있습니다.
|
23
|
+
|
24
|
+
속성:
|
25
|
+
code (str): 기업의 종목 코드 (6자리 숫자 문자열).
|
26
|
+
name (str): 기업명.
|
27
|
+
유동비율 (float): 유동 자산 대비 유동 부채 비율.
|
28
|
+
이자보상배율_r (float): 최근 이자보상배율 값.
|
29
|
+
이자보상배율_dict (dict): 이자보상배율 데이터.
|
30
|
+
순운전자본회전율_r (float): 최근 순운전자본회전율 값.
|
31
|
+
순운전자본회전율_dict (dict): 순운전자본회전율 데이터.
|
32
|
+
재고자산회전율_r (float): 최근 재고자산회전율 값.
|
33
|
+
재고자산회전율_dict (dict): 재고자산회전율 데이터.
|
34
|
+
재고자산회전율_c106 (dict): C106 기준 재고자산회전율 데이터.
|
35
|
+
순부채비율_r (float): 최근 순부채비율 값.
|
36
|
+
순부채비율_dict (dict): 순부채비율 데이터.
|
37
|
+
score (list): 평가 점수.
|
38
|
+
date (list): 데이터와 관련된 날짜 목록.
|
39
|
+
"""
|
18
40
|
code: str
|
19
41
|
name: str
|
20
42
|
|
@@ -38,6 +60,20 @@ class BlueData:
|
|
38
60
|
|
39
61
|
|
40
62
|
class Blue:
|
63
|
+
"""
|
64
|
+
기업의 안정성 지표를 분석하고 계산하는 클래스.
|
65
|
+
|
66
|
+
이 클래스는 주어진 기업 코드에 대해 주요 안정성 지표(예: 유동비율, 이자보상배율 등)를 수집하고,
|
67
|
+
이를 기반으로 기업의 안정성을 평가합니다. Redis 캐시를 활용하여 계산된 데이터를 저장하고
|
68
|
+
재사용할 수 있습니다.
|
69
|
+
|
70
|
+
속성:
|
71
|
+
c101 (myredis.C101): 기업 정보 및 최근 데이터 접근 객체.
|
72
|
+
c103 (myredis.C103): 재무 상태표 데이터 접근 객체.
|
73
|
+
c104 (myredis.C104): 투자 지표 데이터 접근 객체.
|
74
|
+
name (str): 기업명.
|
75
|
+
_code (str): 기업 종목 코드.
|
76
|
+
"""
|
41
77
|
def __init__(self, code: str):
|
42
78
|
assert tools.is_6digit(code), f'Invalid value : {code}'
|
43
79
|
mylogger.debug(f"Blue : 종목코드 ({code})")
|
@@ -69,10 +105,22 @@ class Blue:
|
|
69
105
|
self._code = code
|
70
106
|
|
71
107
|
def _calc유동비율(self, pop_count: int, refresh: bool) -> Tuple[str, float]:
|
72
|
-
"""
|
108
|
+
"""
|
109
|
+
기업의 유동비율을 계산합니다.
|
110
|
+
|
111
|
+
유동비율 데이터가 유효하지 않거나 100 이하일 경우,
|
112
|
+
유동자산과 유동부채를 기반으로 계산을 수행합니다.
|
113
|
+
|
114
|
+
매개변수:
|
115
|
+
pop_count (int): 데이터 검색 시 사용할 값의 개수.
|
116
|
+
refresh (bool): 데이터를 새로고침할지 여부.
|
117
|
+
|
118
|
+
반환값:
|
119
|
+
Tuple[str, float]: 날짜와 계산된 유동비율.
|
73
120
|
|
74
|
-
|
75
|
-
|
121
|
+
로그:
|
122
|
+
- 유동비율 계산 과정과 결과를 출력합니다.
|
123
|
+
- 계산 중 유효하지 않은 데이터가 있으면 경고를 출력합니다.
|
76
124
|
"""
|
77
125
|
mylogger.info(f'In the calc유동비율... refresh : {refresh}')
|
78
126
|
self.c104.page = 'c104q'
|
@@ -111,6 +159,17 @@ class Blue:
|
|
111
159
|
return [0 ,]
|
112
160
|
|
113
161
|
def _generate_data(self, refresh: bool) -> BlueData:
|
162
|
+
"""
|
163
|
+
BlueData 형식의 데이터를 생성합니다.
|
164
|
+
|
165
|
+
각종 안정성 지표를 계산하고 데이터를 정리하여 BlueData 객체로 반환합니다.
|
166
|
+
|
167
|
+
매개변수:
|
168
|
+
refresh (bool): 데이터를 새로고침할지 여부.
|
169
|
+
|
170
|
+
반환값:
|
171
|
+
BlueData: 계산된 안정성 지표 데이터.
|
172
|
+
"""
|
114
173
|
d1, 유동비율 = self._calc유동비율(pop_count=3, refresh=refresh)
|
115
174
|
mylogger.info(f'유동비율 {유동비율} / [{d1}]')
|
116
175
|
|
@@ -171,9 +230,20 @@ class Blue:
|
|
171
230
|
|
172
231
|
def get(self, refresh = False, verbose = True) -> BlueData:
|
173
232
|
"""
|
174
|
-
BlueData
|
175
|
-
|
176
|
-
|
233
|
+
BlueData 객체를 Redis 캐시에서 가져오거나 새로 생성하여 반환합니다.
|
234
|
+
|
235
|
+
캐시에서 데이터를 검색하고, 없을 경우 `_generate_data`를 호출하여 데이터를 생성합니다.
|
236
|
+
생성된 데이터는 Redis 캐시에 저장되어 재사용됩니다.
|
237
|
+
|
238
|
+
매개변수:
|
239
|
+
refresh (bool): 캐시를 무시하고 새로 데이터를 계산할지 여부. 기본값은 False.
|
240
|
+
verbose (bool): 실행 중 상세 정보를 출력할지 여부. 기본값은 True.
|
241
|
+
|
242
|
+
반환값:
|
243
|
+
BlueData: Redis 캐시에서 가져오거나 새로 생성된 BlueData 객체.
|
244
|
+
|
245
|
+
로그:
|
246
|
+
- 캐시 검색 상태와 새로 생성된 데이터를 출력합니다.
|
177
247
|
"""
|
178
248
|
redis_name = f"{self.code}_blue"
|
179
249
|
mylogger.info(f"{self} BlueData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
|
@@ -181,7 +251,6 @@ class Blue:
|
|
181
251
|
print(f"{self} redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time /3600}h")
|
182
252
|
|
183
253
|
def fetch_generate_data(refresh_in: bool) -> dict:
|
184
|
-
return
|
254
|
+
return self._generate_data(refresh_in) # type: ignore
|
185
255
|
|
186
|
-
return
|
187
|
-
(**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh, timer=expire_time))
|
256
|
+
return myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh, timer=expire_time)
|