analyser_hj3415 3.2.1__py3-none-any.whl → 3.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -6,8 +6,3 @@ env_path = get_env_path()
6
6
  if env_path is None:
7
7
  mylogger.warning(f"환경변수 파일(.env)를 찾을수 없습니다. 기본 설정값으로 프로그램을 실행합니다.")
8
8
  load_dotenv(env_path)
9
-
10
- from analyser_hj3415.analyser import eval
11
- from analyser_hj3415.analyser import compile
12
- from analyser_hj3415.analyser import tsa
13
-
@@ -0,0 +1,30 @@
1
+ from typing import NamedTuple
2
+
3
+ class MarketIndices(NamedTuple):
4
+ """
5
+ 주요 시장 지수를 나타내는 NamedTuple입니다.
6
+
7
+ 속성:
8
+ WTI (str): 서부 텍사스 중질유(WTI) 선물 지수 (심볼: "CL=F").
9
+ GOLD (str): 금 선물 지수 (심볼: "GC=F").
10
+ SILVER (str): 은 선물 지수 (심볼: "SI=F").
11
+ USD_IDX (str): 미국 달러 인덱스 (심볼: "DX-Y.NYB").
12
+ USD_KRW (str): 달러-원 환율 (심볼: "KRW=X").
13
+ SP500 (str): S&P 500 주가지수 (심볼: "^GSPC").
14
+ KOSPI (str): 코스피 지수 (심볼: "^KS11").
15
+ NIKKEI (str): 닛케이 225 지수 (일본) (심볼: "^N225").
16
+ CHINA (str): 항셍 지수 (홍콩) (심볼: "^HSI").
17
+ IRX (str): 미국 단기 국채 금리 지수 (13주 T-빌 금리) (심볼: "^IRX").
18
+ """
19
+ WTI: str = "CL=F"
20
+ GOLD: str = "GC=F"
21
+ SILVER: str = "SI=F"
22
+ USD_IDX: str = "DX-Y.NYB"
23
+ USD_KRW: str = "KRW=X"
24
+ SP500: str = "^GSPC"
25
+ KOSPI: str = "^KS11"
26
+ NIKKEI: str = "^N225"
27
+ CHINA: str = "^HSI"
28
+ IRX: str = "^IRX"
29
+
30
+ MIs = MarketIndices()
@@ -1,22 +1,35 @@
1
1
  import os
2
2
  from collections import OrderedDict
3
3
  from typing import Union
4
+ from dataclasses import dataclass
4
5
 
5
- from db_hj3415 import myredis,mymongo
6
+ from db_hj3415 import myredis
6
7
  from utils_hj3415 import tools, setup_logger
7
8
 
8
- from analyser_hj3415.analyser import tsa
9
- from analyser_hj3415.analyser import eval
9
+ from analyser_hj3415.analyser import tsa, eval, MIs
10
10
 
11
11
  mylogger = setup_logger(__name__,'WARNING')
12
12
  expire_time = tools.to_int(os.getenv('DEFAULT_EXPIRE_TIME_H', 48)) * 3600
13
13
 
14
+
15
+ @dataclass
16
+ class MICompileData:
17
+ mi_type: str
18
+
19
+ prophet_data: tsa.ProphetData
20
+ lstm_grade: tsa.LSTMGrade
21
+
22
+ is_lstm_up: bool = False
23
+ is_prophet_up: bool = False
24
+
25
+ lstm_html: str = ''
26
+ prophet_html: str = ''
27
+
28
+
14
29
  class MICompile:
15
30
  def __init__(self, mi_type: str):
16
- assert mi_type in tsa.MIs.keys(), f"Invalid MI type ({tsa.MIs.keys()})"
31
+ assert mi_type in MIs._fields, f"Invalid MI type ({MIs._fields})"
17
32
  self._mi_type = mi_type
18
- self.prophet = tsa.MIProphet(mi_type)
19
- self.lstm = tsa.MILSTM(mi_type)
20
33
 
21
34
  @property
22
35
  def mi_type(self) -> str:
@@ -24,54 +37,67 @@ class MICompile:
24
37
 
25
38
  @mi_type.setter
26
39
  def mi_type(self, mi_type: str):
27
- assert mi_type in tsa.MIs.keys(), f"Invalid MI type ({tsa.MIs.keys()})"
40
+ assert mi_type in MIs._fields, f"Invalid MI type ({MIs._fields})"
28
41
  self._mi_type = mi_type
29
- self.prophet.mi_type = mi_type
30
- self.lstm.mi_type = mi_type
31
42
 
32
- def get(self, refresh=False) -> dict:
43
+ def get(self, refresh=False) -> MICompileData:
33
44
  print(f"{self.mi_type}의 compiling을 시작합니다.")
34
45
  redis_name = self.mi_type + '_mi_compile'
35
46
  print(
36
47
  f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time / 3600}h")
37
48
 
38
- def fetch_mi_compile() -> dict:
39
- trading_action, prophet_score = self.prophet.scoring()
40
- print(f"{self.mi_type}")
41
- self.lstm.initializing()
42
- _, lstm_grade = self.lstm.get_final_predictions(refresh=refresh, num=5)
43
- is_lstm_up = self.lstm.is_lstm_up()
49
+ def fetch_mi_compile_data() -> MICompileData:
50
+ prophet = tsa.MIProphet(self.mi_type)
51
+ lstm = tsa.MILSTM(self.mi_type)
44
52
 
45
- return {
46
- 'name': self.mi_type,
47
- 'trading_action': trading_action,
48
- 'prophet_score': prophet_score,
49
- 'lstm_grade': lstm_grade,
50
- 'is_lstm_up': is_lstm_up
51
- }
53
+ data = MICompileData(
54
+ mi_type=self.mi_type,
55
+ prophet_data=prophet.generate_data(refresh=refresh),
56
+ lstm_grade=lstm.get_final_predictions(refresh=refresh)[1],
57
+ )
58
+ data.is_lstm_up = lstm.is_lstm_up()
59
+ data.is_prophet_up = prophet.is_prophet_up(refresh=False)
60
+ data.lstm_html = lstm.export(refresh=False)
61
+ data.prophet_html = prophet.export()
62
+ return data
52
63
 
53
- data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_mi_compile, timer=expire_time)
54
- return data_dict
64
+ mi_compile_data = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_mi_compile_data, timer=expire_time)
65
+ return mi_compile_data
55
66
 
56
67
  @staticmethod
57
68
  def analyser_lstm_all_mi(refresh: bool):
58
- mi_lstm = tsa.MILSTM('wti')
69
+ mi_lstm = tsa.MILSTM('WTI')
59
70
  print(f"*** LSTM prediction redis cashing Market Index items ***")
60
- for mi_type in tsa.MIs.keys():
71
+ for mi_type in MIs._fields:
61
72
  mi_lstm.mi_type = mi_type
62
73
  print(f"{mi_lstm.mi_type}")
63
74
  mi_lstm.initializing()
64
75
  mi_lstm.get_final_predictions(refresh=refresh, num=5)
65
76
 
66
77
 
78
+ @dataclass
79
+ class CorpCompileData:
80
+ code: str
81
+ name: str
82
+
83
+ red_data: eval.RedData
84
+ mil_data: eval.MilData
85
+
86
+ prophet_data: tsa.ProphetData
87
+ lstm_grade: tsa.LSTMGrade
88
+
89
+ is_lstm_up: bool = False
90
+ is_prophet_up: bool = False
91
+
92
+ lstm_html: str = ''
93
+ prophet_html: str = ''
94
+
95
+
67
96
  class CorpCompile:
68
97
  def __init__(self, code: str, expect_earn=0.06):
69
98
  assert tools.is_6digit(code), f'Invalid value : {code}'
70
99
  self._code = code
71
- self.name = mymongo.Corps.get_name(code)
72
- self.red = eval.Red(code, expect_earn)
73
- self.mil = eval.Mil(code)
74
- self.prophet = tsa.CorpProphet(code)
100
+ self.expect_earn = expect_earn
75
101
 
76
102
  @property
77
103
  def code(self) -> str:
@@ -82,38 +108,34 @@ class CorpCompile:
82
108
  assert tools.is_6digit(code), f'Invalid value : {code}'
83
109
  mylogger.info(f'change code : {self.code} -> {code}')
84
110
  self._code = code
85
- self.name = mymongo.Corps.get_name(code)
86
- self.red.code = code
87
- self.mil.code = code
88
- self.prophet.code = code
89
111
 
90
112
  def get(self, refresh=False) -> dict:
91
-
92
- print(f"{self.code}/{self.name}의 compiling을 시작합니다.")
113
+ print(f"{self.code}의 compiling을 시작합니다.")
93
114
  redis_name = self.code + '_corp_compile'
94
115
  print(
95
116
  f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time/3600}h")
96
117
 
97
- def fetch_corp_compile() -> dict:
98
- mylogger.info("Red score 계산중..")
99
- red_score = self.red.get(verbose=False).score
100
-
101
- mylogger.info("Mil data 계산중..")
102
- mil_data = self.mil.get(verbose=False)
118
+ def fetch_corp_compile_data() -> CorpCompileData:
119
+ prophet = tsa.CorpProphet(self.code)
120
+ lstm = tsa.CorpLSTM(self.code)
121
+
122
+ data = CorpCompileData(
123
+ code=self.code,
124
+ name=myredis.Corps(self.code,'c101').get_name(data_from='mongo'),
125
+ red_data=eval.Red(self.code, self.expect_earn).get(refresh=refresh, verbose=False),
126
+ mil_data=eval.Mil(self.code).get(refresh=refresh, verbose=False),
127
+ prophet_data=prophet.generate_data(refresh=refresh),
128
+ lstm_grade=lstm.get_final_predictions(refresh=refresh)[1],
129
+ )
103
130
 
104
- mylogger.info("\tProphet 최근 데이터 조회중..")
105
- trading_action, prophet_score = self.prophet.scoring()
131
+ data.is_lstm_up = lstm.is_lstm_up()
132
+ data.is_prophet_up = prophet.is_prophet_up(refresh=False)
133
+ data.lstm_html = lstm.export(refresh=False)
134
+ data.prophet_html = prophet.export()
135
+ return data
106
136
 
107
- return {
108
- 'name': self.name,
109
- 'red_score': red_score,
110
- '이익지표': mil_data.이익지표,
111
- '주주수익률': mil_data.주주수익률,
112
- 'trading_action': trading_action,
113
- 'prophet_score': prophet_score,
114
- }
115
- data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_corp_compile, timer=expire_time)
116
- return data_dict
137
+ corp_compile_data = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_corp_compile_data, timer=expire_time)
138
+ return corp_compile_data
117
139
 
118
140
  @staticmethod
119
141
  def red_ranking(expect_earn: float = 0.06, refresh=False) -> OrderedDict:
@@ -157,24 +179,24 @@ class CorpCompile:
157
179
  print(
158
180
  f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time/3600}h")
159
181
 
160
- def fetch_ranking() -> dict:
182
+ def fetch_prophet_ranking() -> dict:
161
183
  data = {}
162
- c = CorpCompile('005930')
184
+ c = tsa.CorpProphet('005930')
163
185
  for code in myredis.Corps.list_all_codes():
164
186
  try:
165
187
  c.code = code
166
188
  except ValueError:
167
189
  mylogger.error(f'prophet ranking error : {code}')
168
190
  continue
169
- scores= c.get(refresh=refresh)
170
- print(f'{code} compiled : {scores}')
171
- data[code] = scores
191
+ score= c.generate_data(refresh=refresh).score
192
+ print(f'{code} compiled : {score}')
193
+ data[code] = score
172
194
  return data
173
195
 
174
- data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_ranking, timer=expire_time)
196
+ data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_prophet_ranking, timer=expire_time)
175
197
 
176
198
  # prophet_score를 기준으로 정렬
177
- ranking = OrderedDict(sorted(data_dict.items(), key=lambda x: x[1]['prophet_score'], reverse=True))
199
+ ranking = OrderedDict(sorted(data_dict.items(), key=lambda x: x[1], reverse=True))
178
200
 
179
201
  if top == 'all':
180
202
  return ranking
@@ -193,7 +215,4 @@ class CorpCompile:
193
215
  for i, (code, _) in enumerate(ranking_topn.items()):
194
216
  corp_lstm.code = code
195
217
  print(f"{i + 1}. {corp_lstm.code}/{corp_lstm.name}")
196
- corp_lstm.initializing()
197
218
  corp_lstm.get_final_predictions(refresh=refresh, num=5)
198
-
199
-
@@ -15,6 +15,28 @@ expire_time = tools.to_int(os.getenv('DEFAULT_EXPIRE_TIME_H', 48)) * 3600
15
15
 
16
16
  @dataclass()
17
17
  class BlueData:
18
+ """
19
+ 기업의 주요 안정성 지표와 관련된 데이터를 저장하는 데이터 클래스.
20
+
21
+ 이 클래스는 기업의 유동성, 부채 비율, 자산 회전율 등을 포함하며,
22
+ 이를 활용하여 기업의 안정성을 평가할 수 있습니다.
23
+
24
+ 속성:
25
+ code (str): 기업의 종목 코드 (6자리 숫자 문자열).
26
+ name (str): 기업명.
27
+ 유동비율 (float): 유동 자산 대비 유동 부채 비율.
28
+ 이자보상배율_r (float): 최근 이자보상배율 값.
29
+ 이자보상배율_dict (dict): 이자보상배율 데이터.
30
+ 순운전자본회전율_r (float): 최근 순운전자본회전율 값.
31
+ 순운전자본회전율_dict (dict): 순운전자본회전율 데이터.
32
+ 재고자산회전율_r (float): 최근 재고자산회전율 값.
33
+ 재고자산회전율_dict (dict): 재고자산회전율 데이터.
34
+ 재고자산회전율_c106 (dict): C106 기준 재고자산회전율 데이터.
35
+ 순부채비율_r (float): 최근 순부채비율 값.
36
+ 순부채비율_dict (dict): 순부채비율 데이터.
37
+ score (list): 평가 점수.
38
+ date (list): 데이터와 관련된 날짜 목록.
39
+ """
18
40
  code: str
19
41
  name: str
20
42
 
@@ -38,6 +60,20 @@ class BlueData:
38
60
 
39
61
 
40
62
  class Blue:
63
+ """
64
+ 기업의 안정성 지표를 분석하고 계산하는 클래스.
65
+
66
+ 이 클래스는 주어진 기업 코드에 대해 주요 안정성 지표(예: 유동비율, 이자보상배율 등)를 수집하고,
67
+ 이를 기반으로 기업의 안정성을 평가합니다. Redis 캐시를 활용하여 계산된 데이터를 저장하고
68
+ 재사용할 수 있습니다.
69
+
70
+ 속성:
71
+ c101 (myredis.C101): 기업 정보 및 최근 데이터 접근 객체.
72
+ c103 (myredis.C103): 재무 상태표 데이터 접근 객체.
73
+ c104 (myredis.C104): 투자 지표 데이터 접근 객체.
74
+ name (str): 기업명.
75
+ _code (str): 기업 종목 코드.
76
+ """
41
77
  def __init__(self, code: str):
42
78
  assert tools.is_6digit(code), f'Invalid value : {code}'
43
79
  mylogger.debug(f"Blue : 종목코드 ({code})")
@@ -69,10 +105,22 @@ class Blue:
69
105
  self._code = code
70
106
 
71
107
  def _calc유동비율(self, pop_count: int, refresh: bool) -> Tuple[str, float]:
72
- """유동비율계산 - Blue에서 사용
108
+ """
109
+ 기업의 유동비율을 계산합니다.
110
+
111
+ 유동비율 데이터가 유효하지 않거나 100 이하일 경우,
112
+ 유동자산과 유동부채를 기반으로 계산을 수행합니다.
113
+
114
+ 매개변수:
115
+ pop_count (int): 데이터 검색 시 사용할 값의 개수.
116
+ refresh (bool): 데이터를 새로고침할지 여부.
117
+
118
+ 반환값:
119
+ Tuple[str, float]: 날짜와 계산된 유동비율.
73
120
 
74
- c104q에서 최근유동비율 찾아보고 유효하지 않거나 \n
75
- 100이하인 경우에는수동으로 계산해서 다시 한번 평가해 본다.\n
121
+ 로그:
122
+ - 유동비율 계산 과정과 결과를 출력합니다.
123
+ - 계산 중 유효하지 않은 데이터가 있으면 경고를 출력합니다.
76
124
  """
77
125
  mylogger.info(f'In the calc유동비율... refresh : {refresh}')
78
126
  self.c104.page = 'c104q'
@@ -111,6 +159,17 @@ class Blue:
111
159
  return [0 ,]
112
160
 
113
161
  def _generate_data(self, refresh: bool) -> BlueData:
162
+ """
163
+ BlueData 형식의 데이터를 생성합니다.
164
+
165
+ 각종 안정성 지표를 계산하고 데이터를 정리하여 BlueData 객체로 반환합니다.
166
+
167
+ 매개변수:
168
+ refresh (bool): 데이터를 새로고침할지 여부.
169
+
170
+ 반환값:
171
+ BlueData: 계산된 안정성 지표 데이터.
172
+ """
114
173
  d1, 유동비율 = self._calc유동비율(pop_count=3, refresh=refresh)
115
174
  mylogger.info(f'유동비율 {유동비율} / [{d1}]')
116
175
 
@@ -171,9 +230,20 @@ class Blue:
171
230
 
172
231
  def get(self, refresh = False, verbose = True) -> BlueData:
173
232
  """
174
- BlueData 형식의 데이터를 계산하여 리턴하고 레디스 캐시에 저장한다.
175
- :param refresh:
176
- :return:
233
+ BlueData 객체를 Redis 캐시에서 가져오거나 새로 생성하여 반환합니다.
234
+
235
+ 캐시에서 데이터를 검색하고, 없을 경우 `_generate_data`를 호출하여 데이터를 생성합니다.
236
+ 생성된 데이터는 Redis 캐시에 저장되어 재사용됩니다.
237
+
238
+ 매개변수:
239
+ refresh (bool): 캐시를 무시하고 새로 데이터를 계산할지 여부. 기본값은 False.
240
+ verbose (bool): 실행 중 상세 정보를 출력할지 여부. 기본값은 True.
241
+
242
+ 반환값:
243
+ BlueData: Redis 캐시에서 가져오거나 새로 생성된 BlueData 객체.
244
+
245
+ 로그:
246
+ - 캐시 검색 상태와 새로 생성된 데이터를 출력합니다.
177
247
  """
178
248
  redis_name = f"{self.code}_blue"
179
249
  mylogger.info(f"{self} BlueData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
@@ -181,7 +251,6 @@ class Blue:
181
251
  print(f"{self} redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time /3600}h")
182
252
 
183
253
  def fetch_generate_data(refresh_in: bool) -> dict:
184
- return asdict(self._generate_data(refresh_in))
254
+ return self._generate_data(refresh_in) # type: ignore
185
255
 
186
- return BlueData \
187
- (**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh, timer=expire_time))
256
+ return myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh, timer=expire_time)
@@ -9,22 +9,34 @@ mylogger = setup_logger(__name__,'WARNING')
9
9
 
10
10
 
11
11
  class Tools:
12
+ """
13
+ 재무 데이터 분석 및 계산에 필요한 유틸리티 메서드를 제공하는 클래스.
14
+
15
+ 이 클래스는 주어진 재무 데이터를 기반으로 다양한 계산을 수행하며,
16
+ 로그를 통해 계산 과정 및 결과를 디버깅할 수 있도록 지원합니다.
17
+
18
+ 주요 기능:
19
+ - Sigmoid 및 로그 점수 계산.
20
+ - 두 값 간의 괴리율(Deviation) 계산.
21
+ - 유효하지 않은 값(NaN, None 등) 필터링.
22
+ - 당기순이익, 유동자산, 유동부채 계산 등.
23
+ """
12
24
  @staticmethod
13
25
  def sigmoid_score(deviation, a=1.0, b=2.0):
14
- """
15
- Calculates a normalized score using a sigmoid function based on the provided deviation value.
26
+ """"
27
+ 주어진 괴리율(Deviation)에 대해 Sigmoid 함수를 적용하여 점수를 계산합니다.
16
28
 
17
- This method applies the sigmoid function to a logarithmically transformed deviation value
18
- to map it to a range between 0 and 100. The shape of the sigmoid curve can be adjusted
19
- with parameters `a` and `b`.
29
+ 함수는 Sigmoid 함수에 로그 변환된 괴리율을 입력으로 사용하며,
30
+ 결과를 0에서 100 사이의 점수로 변환합니다. `a`와 `b` 매개변수를 사용하여
31
+ Sigmoid 곡선의 기울기와 x-축 오프셋을 조정할 수 있습니다.
20
32
 
21
- Parameters:
22
- deviation (float): The deviation value to be transformed. Must be a non-negative value.
23
- a (float): The steepness of the sigmoid curve. Default is 1.0.
24
- b (float): The x-offset for the sigmoid curve. Default is 2.0.
33
+ 매개변수:
34
+ deviation (float): 계산할 괴리율 (0 이상의 값이어야 함).
35
+ a (float): Sigmoid 곡선의 기울기 조정값. 기본값은 1.0.
36
+ b (float): Sigmoid 곡선의 x-축 오프셋. 기본값은 2.0.
25
37
 
26
- Returns:
27
- float: A score between 0 and 100 derived from the provided deviation value.
38
+ 반환값:
39
+ float: Sigmoid 함수로 변환된 0~100 사이의 점수.
28
40
  """
29
41
  # 예: x = log10(deviation + 1)
30
42
  x = math.log10(deviation + 1)
@@ -34,40 +46,33 @@ class Tools:
34
46
  @staticmethod
35
47
  def log_score(deviation):
36
48
  """
37
- Compute and return the logarithmic score scaled by a constant factor.
49
+ 주어진 괴리율(Deviation)에 대해 로그 점수를 계산합니다.
38
50
 
39
- This method takes a numerical deviation value, adds one to it, computes its
40
- base-10 logarithm, and then multiplies the result by a constant factor of 33
41
- to scale the resulting logarithmic score.
51
+ 괴리율 값에 1을 더한 뒤, 로그 변환(Base-10)을 수행하고
52
+ 결과를 상수(33)로 곱하여 점수를 계산합니다.
42
53
 
43
- Parameters:
44
- deviation (float): The numerical deviation value to calculate the
45
- logarithmic score for. Should be a non-negative number.
54
+ 매개변수:
55
+ deviation (float): 계산할 괴리율 값.
46
56
 
47
- Returns:
48
- float: The scaled logarithmic score computed based on the input deviation.
57
+ 반환값:
58
+ float: 계산된 로그 점수.
49
59
  """
50
60
  return math.log10(deviation + 1) * 33
51
61
 
52
62
  @staticmethod
53
63
  def cal_deviation(v1: float, v2: float) -> float:
54
64
  """
55
- Calculates the percentage deviation between two values.
56
-
57
- This method computes the percentage deviation of the second value
58
- from the first value based on the formula:
59
- deviation = abs((v1 - v2) / v1) * 100. In the event the first value is
60
- zero (division by zero), the function will return NaN to signify
61
- an invalid computation.
62
-
63
- Parameters:
64
- v1 (float): The reference value. It represents the base for the relative
65
- deviation calculation.
66
- v2 (float): The value to compare against the reference.
67
-
68
- Returns:
69
- float: The computed percentage deviation. Returns NaN if the reference
70
- value (v1) is zero.
65
+ 간의 퍼센트 괴리율(Deviation)을 계산합니다.
66
+
67
+ 주어진 간의 상대적 차이를 백분율로 반환합니다.
68
+ 기준값(v1)이 0인 경우, 계산은 NaN을 반환합니다.
69
+
70
+ 매개변수:
71
+ v1 (float): 기준값.
72
+ v2 (float): 비교할 값.
73
+
74
+ 반환값:
75
+ float: 두 값 간의 퍼센트 괴리율. 기준값이 0인 경우 NaN.
71
76
  """
72
77
  try:
73
78
  deviation = abs((v1 - v2) / v1) * 100
@@ -78,50 +83,33 @@ class Tools:
78
83
  @staticmethod
79
84
  def date_set(*args) -> list:
80
85
  """
81
- 인자로 받은 값의 비유효한 내용 제거(None,nan)하고 중복된 항목 제거하고 리스트로 반환한다.
86
+ 주어진 값들에서 유효하지 않은 값을 제거하고 중복 없이 리스트로 반환합니다.
82
87
 
83
- 여기서 set의 의미는 집합을 뜻함
88
+ NaN, None, 문자열 등 유효하지 않은 값을 필터링한 뒤,
89
+ 고유한 값만 포함하는 리스트를 생성합니다.
84
90
 
85
- Filters and returns a list of unique non-null, non-empty values from
86
- the provided arguments.
91
+ 매개변수:
92
+ *args: 필터링할 값들.
87
93
 
88
- This static method processes the input arguments to retain only unique
89
- values that are not empty strings, NaN values, or None. The result is
90
- returned as a list.
91
-
92
- Args:
93
- *args: Arbitrary positional arguments to be filtered.
94
-
95
- Returns:
96
- list: A list of unique values after filtering out invalid entries.
94
+ 반환값:
95
+ list: 유효한 값만 포함하는 고유 리스트.
97
96
  """
98
97
  return [i for i in {*args} if i != "" and i is not math.nan and i is not None]
99
98
 
100
99
  @staticmethod
101
100
  def calc당기순이익(c103: myredis.C103, refresh: bool) -> Tuple[str, float]:
102
101
  """
103
- 지배지분 당기순이익 계산
104
-
105
- 일반적인 경우로는 직전 지배주주지분 당기순이익을 찾아서 반환한다.
106
-
107
- 금융기관의 경우는 지배당기순이익이 없기 때문에 계산을 통해서 간접적으로 구한다.
102
+ 지배주주지분 당기순이익을 계산하여 반환합니다.
108
103
 
109
- Calculates "지배당기순이익" (Controlling Comprehensive Income) based on the given
110
- financial data. The method retrieves or computes the value utilizing methods from
111
- the `myredis.C103` class. It handles missing or 'Not-a-Number' conditions by
112
- manually calculating from quarterly and annual financial figures. Logs the process
113
- at various stages for debugging and auditing.
104
+ 기본적으로 재무 데이터에서 지배주주지분 당기순이익을 검색하며,
105
+ 데이터가 없거나 유효하지 않은 경우 간접적으로 계산합니다.
114
106
 
115
- Args:
116
- c103 (myredis.C103): An instance containing financial data and utilities to
117
- access specific data points for the targeted calculation.
118
- refresh (bool): A flag to determine whether or not to refresh the data
119
- while accessing or computing financial values.
107
+ 매개변수:
108
+ c103 (myredis.C103): 재무 데이터에 접근하기 위한 객체.
109
+ refresh (bool): 데이터를 새로고침할지 여부.
120
110
 
121
- Returns:
122
- Tuple[str, float]: A tuple where the first item is the most relevant date for
123
- the calculated or retrieved value, and the second item is the calculated
124
- or retrieved "지배당기순이익" (Controlling Comprehensive Income).
111
+ 반환값:
112
+ Tuple[str, float]: 날짜와 계산된 지배주주지분 당기순이익.
125
113
  """
126
114
  name = myredis.Corps(c103.code, 'c101').get_name(refresh=refresh)
127
115
 
@@ -156,35 +144,17 @@ class Tools:
156
144
  @staticmethod
157
145
  def calc유동자산(c103: myredis.C103, refresh: bool) -> Tuple[str, float]:
158
146
  """
159
- 유효한 유동자산 계산
147
+ 기업의 유동자산을 계산하여 반환합니다.
160
148
 
161
- 일반적인 경우로 유동자산을 찾아서 반환한다.
149
+ 최근 4분기의 데이터를 기반으로 유동자산을 계산하며,
150
+ 데이터가 없거나 유효하지 않을 경우 간접적으로 계산합니다.
162
151
 
163
- 금융기관의 경우는 간접적으로 계산한다.
152
+ 매개변수:
153
+ c103 (myredis.C103): 재무 데이터에 접근하기 위한 객체.
154
+ refresh (bool): 데이터를 새로고침할지 여부.
164
155
 
165
- Calculates the current assets for a given company code.
166
-
167
- For a specified company, the function calculates the recent 4-quarter
168
- sum of current assets if available. If the data is not available or
169
- contains invalid values, it attempts to calculate the current assets
170
- manually using financial asset data such as cash equivalents, trading
171
- securities, available-for-sale securities, and held-to-maturity securities.
172
-
173
- Logs relevant information and warnings during the calculation process,
174
- including any cases where data is unavailable or a manual calculation
175
- is required.
176
-
177
- Parameters:
178
- c103 (myredis.C103): The instance representing financial data of a
179
- specific company. This includes methods to extract and calculate
180
- various data points.
181
- refresh (bool): Indicator flag to determine whether to refresh the
182
- underlying data before performing calculations.
183
-
184
- Returns:
185
- Tuple[str, float]: A tuple containing the date associated with the
186
- financial data and the calculated or retrieved value of current
187
- assets. If dates are not available, the date field may be empty.
156
+ 반환값:
157
+ Tuple[str, float]: 날짜와 계산된 유동자산.
188
158
  """
189
159
 
190
160
  name = myredis.Corps(c103.code, 'c101').get_name(refresh=refresh)
@@ -220,25 +190,17 @@ class Tools:
220
190
  @staticmethod
221
191
  def calc유동부채(c103: myredis.C103, refresh: bool) -> Tuple[str, float]:
222
192
  """
223
- 유효한 유동부채 계산
224
-
225
- 일반적인 경우로 유동부채를 찾아서 반환한다.
226
-
227
- 금융기관의 경우는 간접적으로 계산한다.
228
-
229
- Calculate '유동부채' (Current Liabilities) based on financial data of a specific entity.
193
+ 기업의 유동부채를 계산하여 반환합니다.
230
194
 
231
- This static method computes the recent '유동부채' value either from the sum of recent four
232
- quarters using predefined keys or calculates manually if no valid data is available.
233
- It includes logging for intermediate steps and supports handling missing values by logging
234
- warnings and attempting a composed manual computation using alternative financial terms.
195
+ 최근 4분기의 데이터를 기반으로 유동부채를 계산하며,
196
+ 데이터가 없거나 유효하지 않을 경우 간접적으로 계산합니다.
235
197
 
236
- Args:
237
- c103 (myredis.C103): The object containing financial data and operations for obtaining the required data.
238
- refresh (bool): A flag to indicate whether to fetch the latest data forcibly.
198
+ 매개변수:
199
+ c103 (myredis.C103): 재무 데이터에 접근하기 위한 객체.
200
+ refresh (bool): 데이터를 새로고침할지 여부.
239
201
 
240
- Returns:
241
- Tuple[str, float]: A tuple containing the `date` of financial data and the computed '유동부채' value.
202
+ 반환값:
203
+ Tuple[str, float]: 날짜와 계산된 유동부채.
242
204
  """
243
205
 
244
206
  name = myredis.Corps(c103.code, 'c101').get_name(refresh=refresh)