analyser_hj3415 3.0.5__py3-none-any.whl → 3.1.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -19,7 +19,7 @@ class Compile:
19
19
  self.name = mymongo.Corps.get_name(code)
20
20
  self.red = eval.Red(code, expect_earn)
21
21
  self.mil = eval.Mil(code)
22
- self.prophet = tsa.MyProphet(code)
22
+ self.prophet = tsa.CorpProphet(code)
23
23
 
24
24
  @property
25
25
  def code(self) -> str:
@@ -102,13 +102,13 @@ class Compile:
102
102
  def analyse_lstm_topn(refresh: bool, top=40):
103
103
  ranking_topn = Compile.prophet_ranking(refresh=False, top=top)
104
104
  mylogger.info(ranking_topn)
105
- mylstm = tsa.MyLSTM('005930')
105
+ corp_lstm = tsa.CorpLSTM('005930')
106
106
  print(f"*** LSTM prediction redis cashing top{top} items ***")
107
107
  for i, (code, _) in enumerate(ranking_topn.items()):
108
- mylstm.code = code
109
- print(f"{i + 1}. {mylstm.code}/{mylstm.name}")
110
- mylstm.initializing()
111
- mylstm.get_final_predictions(refresh=refresh, num=5)
108
+ corp_lstm.code = code
109
+ print(f"{i + 1}. {corp_lstm.code}/{corp_lstm.name}")
110
+ corp_lstm.initializing()
111
+ corp_lstm.get_final_predictions(refresh=refresh, num=5)
112
112
 
113
113
  @staticmethod
114
114
  def red_ranking(expect_earn: float = 0.06, refresh=False) -> OrderedDict:
@@ -1,2 +1,7 @@
1
- from .lstm import *
2
- from .prophet import *
1
+ from analyser_hj3415.analyser.tsa.lstm import *
2
+ from analyser_hj3415.analyser.tsa.prophet import *
3
+
4
+ MIs = {
5
+ "wti": "CL=F",
6
+ "gold": "GC=F",
7
+ }
@@ -21,13 +21,14 @@ from dataclasses import dataclass
21
21
  from utils_hj3415 import tools, setup_logger
22
22
  from db_hj3415 import myredis
23
23
 
24
- mylogger = setup_logger(__name__,'WARNING')
24
+
25
+ mylogger = setup_logger(__name__,'INFO')
25
26
  expire_time = tools.to_int(os.getenv('DEFAULT_EXPIRE_TIME_H', 48)) * 3600
26
27
 
27
28
 
28
29
  @dataclass
29
30
  class LSTMData:
30
- code: str
31
+ ticker: str
31
32
 
32
33
  data_2d: np.ndarray
33
34
  train_size: int
@@ -45,7 +46,7 @@ class LSTMGrade:
45
46
  """
46
47
  딥러닝 모델의 학습 결과를 평가하기 위해 사용하는 데이터 클래스
47
48
  """
48
- code: str
49
+ ticker: str
49
50
  train_mse: float
50
51
  train_mae: float
51
52
  train_r2: float
@@ -55,20 +56,17 @@ class LSTMGrade:
55
56
 
56
57
 
57
58
  class MyLSTM:
58
- """
59
- LSTM(Long Short-Term Memory)
60
- """
61
59
  # 미래 몇일을 예측할 것인가?
62
60
  future_days = 30
63
61
 
64
- def __init__(self, code: str):
65
- assert tools.is_6digit(code), f'Invalid value : {code}'
66
- self._code = code
67
- self.name = myredis.Corps(code, 'c101').get_name()
62
+ def __init__(self, ticker: str):
63
+ mylogger.info(f'set up ticker : {ticker}')
68
64
  self.scaler = MinMaxScaler(feature_range=(0, 1))
65
+ self._ticker = ticker
66
+
69
67
  self.raw_data = pd.DataFrame()
70
68
  self.lstm_data = LSTMData(
71
- code=self.code,
69
+ ticker=self.ticker,
72
70
  data_2d=np.array([]),
73
71
  train_size=0,
74
72
  train_data_2d=np.array([]),
@@ -80,20 +78,18 @@ class MyLSTM:
80
78
  )
81
79
 
82
80
  @property
83
- def code(self) -> str:
84
- return self._code
85
-
86
- @code.setter
87
- def code(self, code: str):
88
- assert tools.is_6digit(code), f'Invalid value : {code}'
89
- mylogger.debug(f'change code : {self.code} -> {code}')
81
+ def ticker(self) -> str:
82
+ return self._ticker
90
83
 
91
- self._code = code
92
- self.name = myredis.Corps(code, 'c101').get_name()
84
+ @ticker.setter
85
+ def ticker(self, ticker: str):
86
+ mylogger.info(f'change ticker : {self.ticker} -> {ticker}')
93
87
  self.scaler = MinMaxScaler(feature_range=(0, 1))
88
+ self._ticker = ticker
89
+
94
90
  self.raw_data = pd.DataFrame()
95
91
  self.lstm_data = LSTMData(
96
- code=self.code,
92
+ ticker=self.ticker,
97
93
  data_2d=np.array([]),
98
94
  train_size=0,
99
95
  train_data_2d=np.array([]),
@@ -127,7 +123,7 @@ class MyLSTM:
127
123
  f"Get raw data from yfinance - start: {four_years_ago.strftime('%Y-%m-%d')}, end: {today.strftime('%Y-%m-%d')}")
128
124
 
129
125
  df = yf.download(
130
- self.code + '.KS',
126
+ tickers=self.ticker,
131
127
  start=four_years_ago.strftime('%Y-%m-%d'),
132
128
  end=today.strftime('%Y-%m-%d')
133
129
  )
@@ -175,7 +171,7 @@ class MyLSTM:
175
171
  X_test_3d = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
176
172
  except IndexError:
177
173
  return LSTMData(
178
- code=self.code,
174
+ ticker=self.ticker,
179
175
  data_2d=np.array([]),
180
176
  train_size=0,
181
177
  train_data_2d=np.array([]),
@@ -192,7 +188,7 @@ class MyLSTM:
192
188
  f'len - X_train_3d : {len(X_train_3d)}, X_test_3d : {len(X_test_3d)}, y_train : {len(y_train_1d)}, y_test : {len(y_test_1d)}')
193
189
 
194
190
  return LSTMData(
195
- code=self.code,
191
+ ticker=self.ticker,
196
192
  data_2d=data_2d,
197
193
  train_size=train_size,
198
194
  train_data_2d=train_data_2d,
@@ -289,7 +285,7 @@ class MyLSTM:
289
285
  if len(train_predictions) == 0 or len(test_predictions) == 0:
290
286
  mylogger.warning("딥러닝 결과가 없어서 LSTMGrade 데이터를 비워서 반환합니다.")
291
287
  return LSTMGrade(
292
- code= self.code,
288
+ ticker=self.ticker,
293
289
  train_mse=float('nan'),
294
290
  train_mae=float('nan'),
295
291
  train_r2=float('nan'),
@@ -324,7 +320,7 @@ class MyLSTM:
324
320
  # 과적합에 대한 평가는 train 과 test를 비교하여 test가 너무 않좋으면 과적합 의심.
325
321
 
326
322
  return LSTMGrade(
327
- code=self.code,
323
+ ticker=self.ticker,
328
324
  train_mse=train_mse,
329
325
  train_mae=train_mae,
330
326
  train_r2=train_r2,
@@ -388,11 +384,6 @@ class MyLSTM:
388
384
  method which averages predictions to forecast future trends. Additionally, the function checks
389
385
  and caches whether the predicted data demonstrates an increasing trend over time.
390
386
 
391
- Attributes:
392
- redis_name (str): f'{self.code}_mylstm_predictions'
393
- future_data (dict): Dictionary containing dates (as keys) and predicted prices (as values).
394
- lstm_grade (LSTMGrade): Performance evaluation grade for the LSTM prediction model.
395
-
396
387
  Args:
397
388
  refresh (bool): If True, forces recalculation and cache refresh of predictions.
398
389
  num (int): Number of times to repeat ensemble training for more consistent predictions.
@@ -407,7 +398,7 @@ class MyLSTM:
407
398
  not match during the data preparation.
408
399
  """
409
400
  print("**** Start get_final_predictions... ****")
410
- redis_name = f'{self.code}_mylstm_predictions'
401
+ redis_name = f'{self.ticker}_mylstm_predictions'
411
402
 
412
403
  print(
413
404
  f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time/3600}h")
@@ -422,7 +413,7 @@ class MyLSTM:
422
413
  """
423
414
 
424
415
  print("**** Caching is_lstm_up ... ****")
425
- redis_name = f'{self.code}_is_lstm_up'
416
+ redis_name = f'{self.ticker}_is_lstm_up'
426
417
  print(f"redisname: '{redis_name}' / expire_time : {expire_time / 3600}h")
427
418
 
428
419
 
@@ -614,11 +605,11 @@ class MyLSTM:
614
605
  return graph_html
615
606
  elif to == 'png':
616
607
  # 그래프를 PNG 파일로 저장
617
- fig.write_image(f"myLSTM_{self.code}.png")
608
+ fig.write_image(f"myLSTM_{self.ticker}.png")
618
609
  return None
619
610
  elif to == 'htmlfile':
620
611
  # 그래프를 HTML로 저장
621
- plot(fig, filename=f'myLSTM_{self.code}.html', auto_open=False)
612
+ plot(fig, filename=f'myLSTM_{self.ticker}.html', auto_open=False)
622
613
  return None
623
614
  else:
624
615
  Exception("to 인자가 맞지 않습니다.")
@@ -664,7 +655,7 @@ class MyLSTM:
664
655
  plt.xlabel('Date')
665
656
  plt.ylabel('Stock Price')
666
657
  plt.legend()
667
- plt.title(f'{self.name} Stock Price Prediction with LSTM')
658
+ plt.title(f'{self.ticker} Stock Price Prediction with LSTM')
668
659
  plt.show()
669
660
 
670
661
  """# 시각화2
@@ -687,8 +678,43 @@ class MyLSTM:
687
678
  Returns:
688
679
  bool: True if the LSTM model is active (up), False otherwise.
689
680
  """
690
- return myredis.Base.get_value(f'{self.code}_is_lstm_up')
681
+ return myredis.Base.get_value(f'{self.ticker}_is_lstm_up')
691
682
 
692
683
 
684
+ class CorpLSTM(MyLSTM):
685
+ def __init__(self, code: str):
686
+ assert tools.is_6digit(code), f'Invalid value : {code}'
687
+ self._code = code
688
+ self.name = myredis.Corps(code, 'c101').get_name()
689
+ super().__init__(ticker=self.code + '.KS')
693
690
 
691
+ @property
692
+ def code(self) -> str:
693
+ return self._code
694
+
695
+ @code.setter
696
+ def code(self, code: str):
697
+ assert tools.is_6digit(code), f'Invalid value : {code}'
698
+ self._code = code
699
+ self.name = myredis.Corps(code, 'c101').get_name()
700
+ self.ticker = self.code + '.KS'
701
+
702
+
703
+ class MILSTM(MyLSTM):
704
+ def __init__(self, mi_type: str):
705
+ from analyser_hj3415.analyser.tsa import MIs
706
+ assert mi_type in MIs.keys(), f"Invalid MI type ({MIs.keys()})"
707
+ self._mi_type = mi_type
708
+ super().__init__(ticker=MIs[mi_type])
709
+
710
+ @property
711
+ def mi_type(self) -> str:
712
+ return self._mi_type
713
+
714
+ @mi_type.setter
715
+ def mi_type(self, mi_type: str):
716
+ from analyser_hj3415.analyser.tsa import MIs
717
+ assert mi_type in MIs.keys(), f"Invalid MI type ({MIs.keys()})"
718
+ self._mi_type = mi_type
719
+ self.ticker = MIs[mi_type]
694
720
 
@@ -17,28 +17,27 @@ mylogger = setup_logger(__name__,'WARNING')
17
17
 
18
18
 
19
19
  class MyProphet:
20
- def __init__(self, code: str):
21
- assert tools.is_6digit(code), f'Invalid value : {code}'
20
+ def __init__(self, ticker: str):
21
+ mylogger.info(f'set up ticker : {ticker}')
22
22
  self.scaler = StandardScaler()
23
-
24
23
  self.model = Prophet()
25
- self._code = code
26
- self.name = myredis.Corps(code, 'c101').get_name()
24
+ self._ticker = ticker
25
+
27
26
  self.raw_data = self._get_raw_data()
28
27
  self.df_real = self._preprocessing_for_prophet()
29
28
  self.df_forecast = self._make_forecast()
30
29
 
31
30
  @property
32
- def code(self) -> str:
33
- return self._code
31
+ def ticker(self) -> str:
32
+ return self._ticker
34
33
 
35
- @code.setter
36
- def code(self, code: str):
37
- assert tools.is_6digit(code), f'Invalid value : {code}'
38
- mylogger.info(f'change code : {self.code} -> {code}')
34
+ @ticker.setter
35
+ def ticker(self, ticker: str):
36
+ mylogger.info(f'change ticker : {self.ticker} -> {ticker}')
37
+ self.scaler = StandardScaler()
39
38
  self.model = Prophet()
40
- self._code = code
41
- self.name = myredis.Corps(code, 'c101').get_name()
39
+ self._ticker = ticker
40
+
42
41
  self.raw_data = self._get_raw_data()
43
42
  self.df_real = self._preprocessing_for_prophet()
44
43
  self.df_forecast = self._make_forecast()
@@ -65,7 +64,7 @@ class MyProphet:
65
64
  four_years_ago = today - timedelta(days=365 * 4)
66
65
 
67
66
  return yf.download(
68
- self.code + '.KS',
67
+ tickers=self.ticker,
69
68
  start=four_years_ago.strftime('%Y-%m-%d'),
70
69
  end=today.strftime('%Y-%m-%d')
71
70
  )
@@ -168,11 +167,11 @@ class MyProphet:
168
167
  return graph_html
169
168
  elif to == 'png':
170
169
  # 그래프를 PNG 파일로 저장
171
- fig.write_image(f"myprophet_{self.code}.png")
170
+ fig.write_image(f"myprophet_{self.ticker}.png")
172
171
  return None
173
172
  elif to == 'htmlfile':
174
173
  # 그래프를 HTML로 저장
175
- plot(fig, filename=f'myprophet_{self.code}.html', auto_open=False)
174
+ plot(fig, filename=f'myprophet_{self.ticker}.html', auto_open=False)
176
175
  return None
177
176
  else:
178
177
  Exception("to 인자가 맞지 않습니다.")
@@ -220,7 +219,7 @@ class MyProphet:
220
219
  if recent_price <= yhat_upper:
221
220
  selling_score = -selling_score
222
221
 
223
- mylogger.info(f"{self.code}/{self.name} date: {recent_date} 가격: {recent_price}"
222
+ mylogger.info(f"{self.ticker} date: {recent_date} 가격: {recent_price}"
224
223
  f" yhat_lower:{yhat_lower} yhat_upper:{yhat_upper}"
225
224
  f" buying_score:{buying_score} selling_score:{selling_score}")
226
225
 
@@ -232,3 +231,39 @@ class MyProphet:
232
231
  return 'hold', 0
233
232
 
234
233
 
234
+ class CorpProphet(MyProphet):
235
+ def __init__(self, code: str):
236
+ assert tools.is_6digit(code), f'Invalid value : {code}'
237
+ self._code = code
238
+ self.name = myredis.Corps(code, 'c101').get_name()
239
+ super().__init__(ticker=self.code + '.KS')
240
+
241
+ @property
242
+ def code(self) -> str:
243
+ return self._code
244
+
245
+ @code.setter
246
+ def code(self, code: str):
247
+ assert tools.is_6digit(code), f'Invalid value : {code}'
248
+ self._code = code
249
+ self.name = myredis.Corps(code, 'c101').get_name()
250
+ self.ticker = self.code + '.KS'
251
+
252
+
253
+ class MIProphet(MyProphet):
254
+ def __init__(self, mi_type: str):
255
+ from analyser_hj3415.analyser.tsa import MIs
256
+ assert mi_type in MIs.keys(), f"Invalid MI type ({MIs.keys()})"
257
+ self._mi_type = mi_type
258
+ super().__init__(ticker=MIs[mi_type])
259
+
260
+ @property
261
+ def mi_type(self) -> str:
262
+ return self._mi_type
263
+
264
+ @mi_type.setter
265
+ def mi_type(self, mi_type: str):
266
+ from analyser_hj3415.analyser.tsa import MIs
267
+ assert mi_type in MIs.keys(), f"Invalid MI type ({MIs.keys()})"
268
+ self._mi_type = mi_type
269
+ self.ticker = MIs[mi_type]
analyser_hj3415/cli.py CHANGED
@@ -7,26 +7,32 @@ from db_hj3415 import myredis, mymongo
7
7
 
8
8
 
9
9
  def analyser_manager():
10
+ from analyser_hj3415.analyser.tsa import MIs
10
11
  parser = argparse.ArgumentParser(description="Analyser Commands")
11
12
  type_subparsers = parser.add_subparsers(dest='type', help='분석 타입')
12
13
 
13
14
  # prophet 명령어 서브파서
14
15
  prophet_parser = type_subparsers.add_parser('prophet', help='MyProphet 타입')
15
16
  prophet_subparser = prophet_parser.add_subparsers(dest='command', help='prophet 관련된 명령')
16
- # ranking 파서
17
+ # prophet - ranking 파서
17
18
  ranking_parser = prophet_subparser.add_parser('ranking', help='prophet 랭킹 책정 및 레디스 저장')
18
19
  ranking_parser.add_argument('-r', '--refresh', action='store_true', help='래디스 캐시를 사용하지 않고 강제로 재계산 할지')
20
+ # prophet - score 파서
21
+ prophet_get_parser = prophet_subparser.add_parser('score', help='prophet score 계산')
22
+ prophet_get_parser.add_argument('target', type=str, help=f'종목코드 or {list(MIs.keys())}')
23
+ prophet_get_parser.add_argument('-r', '--refresh', action='store_true', help='래디스 캐시를 사용하지 않고 강제로 재계산 할지')
19
24
 
20
25
  # lstm 명령어 서브파서
21
26
  lstm_parser = type_subparsers.add_parser('lstm', help='MyLSTM 타입')
22
27
  lstm_subparser = lstm_parser.add_subparsers(dest='command', help='lstm 관련된 명령')
23
- # caching 파서
28
+ # lstm - caching 파서
24
29
  caching_parser = lstm_subparser.add_parser('caching', help='lstm 랭킹 책정 및 레디스 저장')
25
30
  caching_parser.add_argument('-r', '--refresh', action='store_true', help='래디스 캐시를 사용하지 않고 강제로 재계산 할지')
26
31
  caching_parser.add_argument('-t', '--top', type=int, help='prophet ranking 몇위까지 작업을 할지')
27
- # red - get 파서
28
- lstm_get_parser = lstm_subparser.add_parser('get', help='lstm get 책정 레디스 저장')
29
- lstm_get_parser.add_argument('code', type=str, help='종목코드')
32
+ # lstm - predict 파서
33
+ lstm_get_parser = lstm_subparser.add_parser('predict', help='lstm get final prediction 시행')
34
+ lstm_get_parser.add_argument('target', type=str, help=f'종목코드 or {list(MIs.keys())}')
35
+ lstm_get_parser.add_argument('-n', '--num', type=int, default=5, help='ensemble training 횟수 설정')
30
36
  lstm_get_parser.add_argument('-r', '--refresh', action='store_true', help='래디스 캐시를 사용하지 않고 강제로 재계산 할지')
31
37
 
32
38
  # red 명령어 서브파서
@@ -150,6 +156,15 @@ def analyser_manager():
150
156
  result = compile.Compile.prophet_ranking(refresh=args.refresh)
151
157
  print(result)
152
158
  mymongo.Logs.save('cli','INFO', 'run >> analyser prophet ranking')
159
+ elif args.command == 'score':
160
+ if args.target in MIs.keys():
161
+ myprophet = tsa.MIProphet(args.target)
162
+ elif tools.is_6digit(args.target):
163
+ myprophet = tsa.CorpProphet(args.target)
164
+ else:
165
+ raise Exception("Invalid target")
166
+ print(myprophet.scoring())
167
+ # mymongo.Logs.save('cli','INFO', f'run >> analyser prophet get {args.target}')
153
168
 
154
169
  elif args.type == 'lstm':
155
170
  if args.command == 'caching':
@@ -158,11 +173,17 @@ def analyser_manager():
158
173
  else:
159
174
  compile.Compile.analyse_lstm_topn(refresh=args.refresh)
160
175
  mymongo.Logs.save('cli','INFO', f'run >> analyser lstm caching / top={args.top if args.top else 20}')
161
- elif args.command == 'get':
162
- assert tools.is_6digit(args.code), "code 인자는 6자리 숫자이어야 합니다."
163
- mylstm = tsa.MyLSTM(args.code)
176
+ elif args.command == 'predict':
177
+ if args.target in MIs.keys():
178
+ mylstm = tsa.MILSTM(args.target)
179
+ elif tools.is_6digit(args.target):
180
+ mylstm = tsa.CorpLSTM(args.target)
181
+ else:
182
+ raise Exception("Invalid target")
164
183
  mylstm.initializing()
165
- mylstm.get_final_predictions(refresh=args.refresh, num=5)
166
- mymongo.Logs.save('cli','INFO', f'run >> analyser lstm get {args.code}')
184
+ future_data, grade = mylstm.get_final_predictions(refresh=args.refresh, num=args.num)
185
+ print(future_data)
186
+ print(grade)
187
+ # mymongo.Logs.save('cli','INFO', f'run >> analyser lstm get {args.target}')
167
188
  else:
168
189
  parser.print_help()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: analyser_hj3415
3
- Version: 3.0.5
3
+ Version: 3.1.0
4
4
  Summary: Stock analyser and database processing programs
5
5
  Requires-Python: >=3.6
6
6
  Description-Content-Type: text/markdown
@@ -1,22 +1,22 @@
1
1
  analyser_hj3415/__init__.py,sha256=f2E9Neh7Nzkhvdj7HWWlgxZK2sB95rBtaIgWEHzxK9E,450
2
- analyser_hj3415/cli.py,sha256=s3dsT4T3xqIP4D7FYMPCVhRP20WxZzAb0znR2P6UyYA,9264
2
+ analyser_hj3415/cli.py,sha256=2lwbI8GD-AEXO89Ma2khWOOJWeL4HLxnDyW5fVZZvmM,10486
3
3
  analyser_hj3415/analyser/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- analyser_hj3415/analyser/compile.py,sha256=JNDJNDV1MbHEqx2TzmBY7skJ_AFqOE6xIqx_yx-M-H8,5741
4
+ analyser_hj3415/analyser/compile.py,sha256=e3ziVf8SX0K6rk9XFPAhi7cpxTaFlKYCQ2dHACzLlPo,5763
5
5
  analyser_hj3415/analyser/eval/__init__.py,sha256=IP1d0Q3nOCAD3zK1qxrC685MkJQfUh-qaXc7xptTxk8,80
6
6
  analyser_hj3415/analyser/eval/blue.py,sha256=fq_eln7-EdwICNQ2sMXAfZKXGhQ29EaJwsGvn7xA29U,7632
7
7
  analyser_hj3415/analyser/eval/common.py,sha256=wcWJg_jNgr02i1U62oZGgLt2iscdle9X-u4aMnZl89Q,14127
8
8
  analyser_hj3415/analyser/eval/growth.py,sha256=OXuBuPzVw3q6kpelNigiX7xvJNUP1gv26DNetc4aews,3315
9
9
  analyser_hj3415/analyser/eval/mil.py,sha256=wN1jPu5zLJjoDk3kL7piL-4jWhpsAMeQpsTZll0a2dw,10568
10
10
  analyser_hj3415/analyser/eval/red.py,sha256=rJbidKlo2s2EJHBGn4HDbfCDcEGP5Rst8iQeJ6jlzNA,10988
11
- analyser_hj3415/analyser/tsa/__init__.py,sha256=rPnn4b8aEym2O9l_sAaIRUpOeXJw6sDj2XfUzy-mpvg,42
12
- analyser_hj3415/analyser/tsa/lstm.py,sha256=nyjWP763-DahraD_fT3Spb-B9HQbCHy-b8Pnhkb3kz0,29283
13
- analyser_hj3415/analyser/tsa/prophet.py,sha256=bWyogx3CiJ-rmghQejI8njZZ7yNT0JsHkXdXuI7jH2U,9121
11
+ analyser_hj3415/analyser/tsa/__init__.py,sha256=ZmhZmdhxKv3zfh4byDROZOIWl8jBmfJQMo8phJTXkSg,160
12
+ analyser_hj3415/analyser/tsa/lstm.py,sha256=6T_JzlcDV8l-8-delE9zlbl-JeWF6zO0gg-RRNV5noE,29972
13
+ analyser_hj3415/analyser/tsa/prophet.py,sha256=Xeb1GxvQQAacFtTFYN0fmzk6iYQkFSex2HDaY2Ek7OY,10154
14
14
  analyser_hj3415/workroom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  analyser_hj3415/workroom/mysklearn.py,sha256=wJXKz5MqqTzADdG2mqRMMzc_G9RzwYjj5_j4gyOopxQ,2030
16
16
  analyser_hj3415/workroom/mysklearn2.py,sha256=1lIy6EWEQHkOzDS-av8U0zQH6DuCLKWMI73dnJx5KRs,1495
17
17
  analyser_hj3415/workroom/score.py,sha256=P6nHBJYmyhigGtT4qna4BmNtvt4B93b7SKyzdstJK24,17376
18
18
  analyser_hj3415/workroom/trash.py,sha256=zF-W0piqkGr66UP6-iybo9EXh2gO0RP6R1FnIpsGkl8,12262
19
- analyser_hj3415-3.0.5.dist-info/entry_points.txt,sha256=ZfjPnJuH8SzvhE9vftIPMBIofsc65IAWYOhqOC_L5ck,65
20
- analyser_hj3415-3.0.5.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
21
- analyser_hj3415-3.0.5.dist-info/METADATA,sha256=HiSGPw-FrG2eKOIpKcEUJ71Ao_hL3LivsoAABdTe4Zw,6777
22
- analyser_hj3415-3.0.5.dist-info/RECORD,,
19
+ analyser_hj3415-3.1.0.dist-info/entry_points.txt,sha256=ZfjPnJuH8SzvhE9vftIPMBIofsc65IAWYOhqOC_L5ck,65
20
+ analyser_hj3415-3.1.0.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
21
+ analyser_hj3415-3.1.0.dist-info/METADATA,sha256=wSqUbHt-HM5qoipE-zictBm6Z2g3hfqugpEsLc-GzMw,6777
22
+ analyser_hj3415-3.1.0.dist-info/RECORD,,