analyser_hj3415 2.9.17__py3-none-any.whl → 2.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- analyser_hj3415/tsa.py +31 -15
- {analyser_hj3415-2.9.17.dist-info → analyser_hj3415-2.10.0.dist-info}/METADATA +3 -3
- {analyser_hj3415-2.9.17.dist-info → analyser_hj3415-2.10.0.dist-info}/RECORD +5 -5
- {analyser_hj3415-2.9.17.dist-info → analyser_hj3415-2.10.0.dist-info}/WHEEL +0 -0
- {analyser_hj3415-2.9.17.dist-info → analyser_hj3415-2.10.0.dist-info}/entry_points.txt +0 -0
analyser_hj3415/tsa.py
CHANGED
@@ -290,7 +290,7 @@ class MyLSTM:
|
|
290
290
|
@code.setter
|
291
291
|
def code(self, code: str):
|
292
292
|
assert utils.is_6digit(code), f'Invalid value : {code}'
|
293
|
-
tsa_logger.
|
293
|
+
tsa_logger.debug(f'change code : {self.code} -> {code}')
|
294
294
|
|
295
295
|
self._code = code
|
296
296
|
self.name = myredis.Corps(code, 'c101').get_name()
|
@@ -346,12 +346,28 @@ class MyLSTM:
|
|
346
346
|
y.append(data[i + time_step, 0])
|
347
347
|
return np.array(X), np.array(y)
|
348
348
|
|
349
|
+
|
349
350
|
X_train, y_train_1d = create_dataset(train_data_2d)
|
350
351
|
X_test, y_test_1d = create_dataset(test_data_2d)
|
352
|
+
tsa_logger.debug(X_train.shape)
|
353
|
+
tsa_logger.debug(X_test.shape)
|
351
354
|
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
+
try:
|
356
|
+
# LSTM 모델 입력을 위해 데이터를 3차원으로 변환
|
357
|
+
X_train_3d = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
|
358
|
+
X_test_3d = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
|
359
|
+
except IndexError:
|
360
|
+
return LSTMData(
|
361
|
+
code=self.code,
|
362
|
+
data_2d=np.array([]),
|
363
|
+
train_size=0,
|
364
|
+
train_data_2d=np.array([]),
|
365
|
+
test_data_2d=np.array([]),
|
366
|
+
X_train_3d=np.array([]),
|
367
|
+
X_test_3d=np.array([]),
|
368
|
+
y_train_1d=np.array([]),
|
369
|
+
y_test_1d=np.array([]),
|
370
|
+
)
|
355
371
|
|
356
372
|
tsa_logger.debug(f'n_dim - X_train_3d : {X_train_3d.ndim}, X_test_3d : {X_test_3d.ndim}, y_train : {y_train_1d.ndim}, y_test : {y_test_1d.ndim}')
|
357
373
|
tsa_logger.debug(f'len - X_train_3d : {len(X_train_3d)}, X_test_3d : {len(X_test_3d)}, y_train : {len(y_train_1d)}, y_test : {len(y_test_1d)}')
|
@@ -517,8 +533,11 @@ class MyLSTM:
|
|
517
533
|
:return:
|
518
534
|
"""
|
519
535
|
# 앙상블 테스트와 채점
|
520
|
-
|
536
|
+
try:
|
537
|
+
_, _, ensemble_future_predictions_2d = self.ensemble_training(
|
521
538
|
num=num_in)
|
539
|
+
except IndexError:
|
540
|
+
return [], []
|
522
541
|
|
523
542
|
"""if grading:
|
524
543
|
lstm_grade = self.grading(ensemble_train_predictions_2d, ensemble_test_predictions_2d)
|
@@ -671,17 +690,14 @@ class MyLSTM:
|
|
671
690
|
plt.title('Stock Price Prediction with LSTM Ensemble')
|
672
691
|
plt.show()"""
|
673
692
|
|
674
|
-
def is_up(self)->
|
693
|
+
def is_up(self)-> bool:
|
675
694
|
# 튜플의 [0]은 날짜 [1]은 값 배열
|
676
|
-
|
677
|
-
|
678
|
-
|
679
|
-
|
680
|
-
|
681
|
-
|
682
|
-
return all(flattened_data[i] < flattened_data[i + 1] for i in range(len(flattened_data) - 1))
|
683
|
-
else:
|
684
|
-
return None
|
695
|
+
data = self.get_final_predictions(refresh=False, expire_time_h=24)[1]
|
696
|
+
# 데이터를 1D 배열로 변환
|
697
|
+
flattened_data = data.flatten()
|
698
|
+
tsa_logger.debug(f"flattened_data : {flattened_data}")
|
699
|
+
# 증가 여부 확인
|
700
|
+
return all(flattened_data[i] < flattened_data[i + 1] for i in range(len(flattened_data) - 1))
|
685
701
|
|
686
702
|
@staticmethod
|
687
703
|
def caching_based_on_prophet_ranking(refresh: bool, expire_time_h: int, top=20):
|
@@ -1,11 +1,11 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: analyser_hj3415
|
3
|
-
Version: 2.
|
3
|
+
Version: 2.10.0
|
4
4
|
Summary: Stock analyser and database processing programs
|
5
5
|
Requires-Python: >=3.6
|
6
6
|
Description-Content-Type: text/markdown
|
7
|
-
Requires-Dist: utils-hj3415>=2.9.
|
8
|
-
Requires-Dist: db-hj3415>=4.
|
7
|
+
Requires-Dist: utils-hj3415>=2.9.4
|
8
|
+
Requires-Dist: db-hj3415>=4.2.3
|
9
9
|
Requires-Dist: scikit-learn>=1.5.2
|
10
10
|
Requires-Dist: plotly>=5.24.1
|
11
11
|
Requires-Dist: yfinance>=0.2.44
|
@@ -1,13 +1,13 @@
|
|
1
1
|
analyser_hj3415/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
2
|
analyser_hj3415/cli.py,sha256=a4oUwfPFEdd3r2Fq2EMHBITcp6lbXUjZvVWvCHIvCUQ,12540
|
3
3
|
analyser_hj3415/eval.py,sha256=eNrcbpVyj7SZJevWqatlj_gJ2EQTmLZAz2nPG5qNv6k,38811
|
4
|
-
analyser_hj3415/tsa.py,sha256=
|
4
|
+
analyser_hj3415/tsa.py,sha256=v8Fbw4FaJCQh-_0WmfTIWmXwwjLtlPZYPUuP5pgSb3c,28496
|
5
5
|
analyser_hj3415/workroom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
6
6
|
analyser_hj3415/workroom/mysklearn.py,sha256=wJXKz5MqqTzADdG2mqRMMzc_G9RzwYjj5_j4gyOopxQ,2030
|
7
7
|
analyser_hj3415/workroom/mysklearn2.py,sha256=1lIy6EWEQHkOzDS-av8U0zQH6DuCLKWMI73dnJx5KRs,1495
|
8
8
|
analyser_hj3415/workroom/score.py,sha256=P6nHBJYmyhigGtT4qna4BmNtvt4B93b7SKyzdstJK24,17376
|
9
9
|
analyser_hj3415/workroom/trash.py,sha256=zF-W0piqkGr66UP6-iybo9EXh2gO0RP6R1FnIpsGkl8,12262
|
10
|
-
analyser_hj3415-2.
|
11
|
-
analyser_hj3415-2.
|
12
|
-
analyser_hj3415-2.
|
13
|
-
analyser_hj3415-2.
|
10
|
+
analyser_hj3415-2.10.0.dist-info/entry_points.txt,sha256=ZfjPnJuH8SzvhE9vftIPMBIofsc65IAWYOhqOC_L5ck,65
|
11
|
+
analyser_hj3415-2.10.0.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
|
12
|
+
analyser_hj3415-2.10.0.dist-info/METADATA,sha256=--9EvHsGT9Rhe7DmIKSQwedfdX25sN38PYvtt0_BXWU,6777
|
13
|
+
analyser_hj3415-2.10.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|