analyser_hj3415 2.7.7__py2.py3-none-any.whl → 2.7.8__py2.py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- analyser_hj3415/myprophet.py +144 -0
- analyser_hj3415/workroom/lstm.py +3 -3
- {analyser_hj3415-2.7.7.dist-info → analyser_hj3415-2.7.8.dist-info}/METADATA +7 -1
- {analyser_hj3415-2.7.7.dist-info → analyser_hj3415-2.7.8.dist-info}/RECORD +7 -7
- analyser_hj3415/workroom/myprophet.py +0 -58
- {analyser_hj3415-2.7.7.dist-info → analyser_hj3415-2.7.8.dist-info}/LICENSE +0 -0
- {analyser_hj3415-2.7.7.dist-info → analyser_hj3415-2.7.8.dist-info}/WHEEL +0 -0
- {analyser_hj3415-2.7.7.dist-info → analyser_hj3415-2.7.8.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,144 @@
|
|
1
|
+
import yfinance as yf
|
2
|
+
from datetime import datetime, timedelta
|
3
|
+
import pandas as pd
|
4
|
+
from prophet import Prophet
|
5
|
+
from sklearn.preprocessing import StandardScaler
|
6
|
+
from utils_hj3415 import utils
|
7
|
+
from typing import Optional
|
8
|
+
import plotly.graph_objs as go
|
9
|
+
from plotly.offline import plot
|
10
|
+
import matplotlib.pyplot as plt # Matplotlib 수동 임포트
|
11
|
+
from db_hj3415 import myredis
|
12
|
+
|
13
|
+
class MyProphet:
|
14
|
+
def __init__(self, code: str):
|
15
|
+
assert utils.is_6digit(code), f'Invalid value : {code}'
|
16
|
+
self._code = code
|
17
|
+
self.name = myredis.Corps(code, 'c101').get_name()
|
18
|
+
self.raw_data = self.get_raw_data()
|
19
|
+
|
20
|
+
self.scaler = StandardScaler()
|
21
|
+
self.model = Prophet()
|
22
|
+
|
23
|
+
@property
|
24
|
+
def code(self) -> str:
|
25
|
+
return self._code
|
26
|
+
|
27
|
+
@code.setter
|
28
|
+
def code(self, code: str):
|
29
|
+
assert utils.is_6digit(code), f'Invalid value : {code}'
|
30
|
+
self._code = code
|
31
|
+
self.name = myredis.Corps(code, 'c101').get_name()
|
32
|
+
self.raw_data = self.get_raw_data()
|
33
|
+
|
34
|
+
def get_raw_data(self) -> pd.DataFrame:
|
35
|
+
"""
|
36
|
+
야후에서 해당 종목의 4년간 주가 raw data를 받아온다.
|
37
|
+
:return:
|
38
|
+
"""
|
39
|
+
# 오늘 날짜 가져오기
|
40
|
+
today = datetime.today()
|
41
|
+
|
42
|
+
# 4년 전 날짜 계산 (4년 = 365일 * 4)
|
43
|
+
four_years_ago = today - timedelta(days=365 * 4)
|
44
|
+
|
45
|
+
return yf.download(
|
46
|
+
self.code + '.KS',
|
47
|
+
start=four_years_ago.strftime('%Y-%m-%d'),
|
48
|
+
end=today.strftime('%Y-%m-%d')
|
49
|
+
)
|
50
|
+
|
51
|
+
def preprocessing_for_prophet(self) -> pd.DataFrame:
|
52
|
+
"""
|
53
|
+
Prophet이 사용할 수 있도록 데이터 준비
|
54
|
+
ds는 날짜, y는 주가
|
55
|
+
:return:
|
56
|
+
"""
|
57
|
+
df = self.raw_data[['Close', 'Volume']].reset_index()
|
58
|
+
df.columns = ['ds', 'y', 'volume'] # Prophet의 형식에 맞게 열 이름 변경
|
59
|
+
|
60
|
+
# 추가 변수를 정규화
|
61
|
+
df['volume_scaled'] = self.scaler.fit_transform(df[['volume']])
|
62
|
+
return df
|
63
|
+
|
64
|
+
def make_forecast(self) -> pd.DataFrame:
|
65
|
+
# Prophet을 위한 dataframe 만들기
|
66
|
+
df_for_prophet = self.preprocessing_for_prophet()
|
67
|
+
|
68
|
+
# 정규화된 'volume_scaled' 변수를 외부 변수로 추가
|
69
|
+
self.model.add_regressor('volume_scaled')
|
70
|
+
|
71
|
+
self.model.fit(df_for_prophet)
|
72
|
+
|
73
|
+
# 향후 180일 동안의 주가 예측
|
74
|
+
future = self.model.make_future_dataframe(periods=180)
|
75
|
+
|
76
|
+
# 미래 데이터에 거래량 추가 (평균 거래량을 사용해 정규화)
|
77
|
+
future_volume = pd.DataFrame({'volume': [self.raw_data['Volume'].mean()] * len(future)})
|
78
|
+
future['volume_scaled'] = self.scaler.transform(future_volume[['volume']])
|
79
|
+
|
80
|
+
forecast = self.model.predict(future)
|
81
|
+
return forecast
|
82
|
+
|
83
|
+
def export_to(self, to="str") -> Optional[str]:
|
84
|
+
"""
|
85
|
+
prophet과 plotly로 그래프를 그려서 html을 문자열로 반환
|
86
|
+
:param to: str, png, htmlfile, show
|
87
|
+
:return:
|
88
|
+
"""
|
89
|
+
# 실제 데이터
|
90
|
+
df = self.preprocessing_for_prophet()
|
91
|
+
# 예측 데이터
|
92
|
+
forecast = self.make_forecast()
|
93
|
+
|
94
|
+
# Plotly를 사용한 시각화
|
95
|
+
fig = go.Figure()
|
96
|
+
|
97
|
+
# 실제 데이터
|
98
|
+
fig.add_trace(go.Scatter(x=df['ds'], y=df['y'], mode='markers', name='실제주가'))
|
99
|
+
# 예측 데이터
|
100
|
+
fig.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat'], mode='lines', name='예측치'))
|
101
|
+
|
102
|
+
# 상한/하한 구간
|
103
|
+
fig.add_trace(
|
104
|
+
go.Scatter(x=forecast['ds'], y=forecast['yhat_upper'], fill=None, mode='lines', name='상한'))
|
105
|
+
fig.add_trace(
|
106
|
+
go.Scatter(x=forecast['ds'], y=forecast['yhat_lower'], fill='tonexty', mode='lines', name='하한'))
|
107
|
+
|
108
|
+
fig.update_layout(
|
109
|
+
title=f'{self.code} {self.name} 주가 예측 그래프(prophet)',
|
110
|
+
xaxis_title='일자',
|
111
|
+
yaxis_title='주가(원)',
|
112
|
+
xaxis = dict(
|
113
|
+
tickformat='%Y/%m', # X축을 '연/월' 형식으로 표시
|
114
|
+
),
|
115
|
+
yaxis = dict(
|
116
|
+
tickformat=".0f", # 소수점 없이 원래 숫자 표시
|
117
|
+
)
|
118
|
+
)
|
119
|
+
|
120
|
+
if to == 'str':
|
121
|
+
# 그래프 HTML로 변환 (string 형식으로 저장)
|
122
|
+
graph_html = plot(fig, output_type='div')
|
123
|
+
return graph_html
|
124
|
+
elif to == 'png':
|
125
|
+
# 그래프를 PNG 파일로 저장
|
126
|
+
fig.write_image("plotly_graph.png")
|
127
|
+
elif to == 'htmlfile':
|
128
|
+
# 그래프를 HTML로 저장
|
129
|
+
plot(fig, filename='graph_plotly.html', auto_open=False)
|
130
|
+
return None
|
131
|
+
elif to == 'show':
|
132
|
+
# 예측 결과 출력
|
133
|
+
print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail())
|
134
|
+
# 예측 결과 시각화 (Matplotlib 사용)
|
135
|
+
fig = self.model.plot(forecast)
|
136
|
+
# 추세 및 계절성 시각화
|
137
|
+
fig2 = self.model.plot_components(forecast)
|
138
|
+
plt.show() # 시각화 창 띄우기
|
139
|
+
else:
|
140
|
+
Exception("to 인자가 맞지 않습니다.")
|
141
|
+
|
142
|
+
|
143
|
+
|
144
|
+
|
analyser_hj3415/workroom/lstm.py
CHANGED
@@ -9,11 +9,11 @@ import matplotlib.pyplot as plt
|
|
9
9
|
# 1. 데이터 다운로드 (애플 주식 데이터를 사용)
|
10
10
|
#stock_data = yf.download('AAPL', start='2020-01-01', end='2023-01-01')
|
11
11
|
# 삼성전자 주식 데이터 가져오기 (KOSPI 상장)
|
12
|
-
#stock_data = yf.download('005930.KS', start='2019-01-01', end='2024-10-
|
12
|
+
#stock_data = yf.download('005930.KS', start='2019-01-01', end='2024-10-11')
|
13
13
|
# 크래프톤 주식 데이터 가져오기 (KOSPI 상장)
|
14
|
-
|
14
|
+
stock_data = yf.download('259960.KS', start='2020-01-01', end='2024-10-11')
|
15
15
|
# 하이닉스 주식 데이터 가져오기 (KOSPI 상장)
|
16
|
-
stock_data = yf.download('000660.KS', start='2019-01-01', end='2024-10-
|
16
|
+
#stock_data = yf.download('000660.KS', start='2019-01-01', end='2024-10-11')
|
17
17
|
|
18
18
|
|
19
19
|
# 2. 필요한 열만 선택 (종가만 사용)
|
@@ -1,12 +1,18 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: analyser_hj3415
|
3
|
-
Version: 2.7.
|
3
|
+
Version: 2.7.8
|
4
4
|
Summary: Stock analyser and database processing programs
|
5
5
|
Author-email: Hyungjin Kim <hj3415@gmail.com>
|
6
6
|
Description-Content-Type: text/markdown
|
7
7
|
Classifier: License :: OSI Approved :: MIT License
|
8
8
|
Requires-Dist: utils-hj3415>=2.9.2
|
9
9
|
Requires-Dist: db-hj3415>=4.0.3
|
10
|
+
Requires-Dist: scikit-learn>=1.5.2
|
11
|
+
Requires-Dist: plotly>=5.24.1
|
12
|
+
Requires-Dist: yfinance>=0.2.44
|
13
|
+
Requires-Dist: prophet>=1.1.6
|
14
|
+
Requires-Dist: kaleido>=0.2.1
|
15
|
+
Requires-Dist: matplotlib>=3.9.2
|
10
16
|
Project-URL: Home, https://www.hyungjin.kr
|
11
17
|
|
12
18
|
### analyser-hj3415
|
@@ -2,15 +2,15 @@ analyser_hj3415/.DS_Store,sha256=qr9-0FPn5CFKe6kEu8_dWCNhzQ0sN7bwQgffKsaJEEo,614
|
|
2
2
|
analyser_hj3415/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
3
|
analyser_hj3415/cli.py,sha256=7ys-b9H_tJAbLLi_XpjmEvDiyNHddpg9F1FNAACfWnE,11005
|
4
4
|
analyser_hj3415/eval.py,sha256=4F0GIknCogAhv_iTq8auLrmwW20u8kH0HY0fP4SaVa4,39099
|
5
|
+
analyser_hj3415/myprophet.py,sha256=N_eUzAmrbEuqJBJ9OqbnMrHC3_kc3JXGq6pND5o4yuE,5096
|
5
6
|
analyser_hj3415/workroom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
6
|
-
analyser_hj3415/workroom/lstm.py,sha256=
|
7
|
-
analyser_hj3415/workroom/myprophet.py,sha256=xGbs4_cCeSNAX62H6rG-bUz6_rUOyO6787WAjLexMkw,1855
|
7
|
+
analyser_hj3415/workroom/lstm.py,sha256=gF7i1NqPOhNysvkSQcC_mkOmvLk96jPxoqajZ-FFD8I,4078
|
8
8
|
analyser_hj3415/workroom/mysklearn.py,sha256=wJXKz5MqqTzADdG2mqRMMzc_G9RzwYjj5_j4gyOopxQ,2030
|
9
9
|
analyser_hj3415/workroom/mysklearn2.py,sha256=1lIy6EWEQHkOzDS-av8U0zQH6DuCLKWMI73dnJx5KRs,1495
|
10
10
|
analyser_hj3415/workroom/score.py,sha256=P6nHBJYmyhigGtT4qna4BmNtvt4B93b7SKyzdstJK24,17376
|
11
11
|
analyser_hj3415/workroom/trash.py,sha256=zF-W0piqkGr66UP6-iybo9EXh2gO0RP6R1FnIpsGkl8,12262
|
12
|
-
analyser_hj3415-2.7.
|
13
|
-
analyser_hj3415-2.7.
|
14
|
-
analyser_hj3415-2.7.
|
15
|
-
analyser_hj3415-2.7.
|
16
|
-
analyser_hj3415-2.7.
|
12
|
+
analyser_hj3415-2.7.8.dist-info/entry_points.txt,sha256=ZfjPnJuH8SzvhE9vftIPMBIofsc65IAWYOhqOC_L5ck,65
|
13
|
+
analyser_hj3415-2.7.8.dist-info/LICENSE,sha256=QVKTp0dTnB5xG8RLgG17LwSWCKNEzYoVVM6KjoCPKc0,1079
|
14
|
+
analyser_hj3415-2.7.8.dist-info/WHEEL,sha256=Sgu64hAMa6g5FdzHxXv9Xdse9yxpGGMeagVtPMWpJQY,99
|
15
|
+
analyser_hj3415-2.7.8.dist-info/METADATA,sha256=Ru0TFe19ItTPkffO_39zz7vuX0b78V7EZoiO4f1wCEM,6607
|
16
|
+
analyser_hj3415-2.7.8.dist-info/RECORD,,
|
@@ -1,58 +0,0 @@
|
|
1
|
-
# prophet 사용 공부
|
2
|
-
|
3
|
-
import yfinance as yf
|
4
|
-
import pandas as pd
|
5
|
-
from prophet import Prophet
|
6
|
-
import matplotlib.pyplot as plt # Matplotlib 수동 임포트
|
7
|
-
|
8
|
-
|
9
|
-
# 애플 주식 데이터를 다운로드
|
10
|
-
#stock_data = yf.download('AAPL', start='2020-01-01', end='2024-10-09')
|
11
|
-
# 삼성전자 주식 데이터 가져오기 (KOSPI 상장)
|
12
|
-
#stock_data = yf.download('005930.KS', start='2020-01-01', end='2024-08-01')
|
13
|
-
# 크래프톤 주식 데이터 가져오기 (KOSPI 상장)
|
14
|
-
#stock_data = yf.download('259960.KS', start='2020-01-01', end='2024-10-08')
|
15
|
-
# 하이닉스 주식 데이터 가져오기 (KOSPI 상장)
|
16
|
-
stock_data = yf.download('000660.KS', start='2020-01-01', end='2024-10-08')
|
17
|
-
|
18
|
-
|
19
|
-
# Prophet이 사용할 수 있도록 데이터 준비
|
20
|
-
df = stock_data[['Close', 'Volume']].reset_index()
|
21
|
-
df.columns = ['ds', 'y', 'volume'] # Prophet의 형식에 맞게 열 이름 변경
|
22
|
-
|
23
|
-
from sklearn.preprocessing import StandardScaler
|
24
|
-
|
25
|
-
# 추가 변수를 정규화
|
26
|
-
scaler = StandardScaler()
|
27
|
-
df['volume_scaled'] = scaler.fit_transform(df[['volume']])
|
28
|
-
|
29
|
-
# Prophet 모델 생성 및 학습
|
30
|
-
model = Prophet()
|
31
|
-
|
32
|
-
# 정규화된 'volume_scaled' 변수를 외부 변수로 추가
|
33
|
-
model.add_regressor('volume_scaled')
|
34
|
-
|
35
|
-
model.fit(df)
|
36
|
-
|
37
|
-
# 향후 180일 동안의 주가 예측
|
38
|
-
future = model.make_future_dataframe(periods=180)
|
39
|
-
|
40
|
-
# 미래 데이터에 거래량 추가 (평균 거래량을 사용해 정규화)
|
41
|
-
future_volume = pd.DataFrame({'volume': [stock_data['Volume'].mean()] * len(future)})
|
42
|
-
future['volume_scaled'] = scaler.transform(future_volume[['volume']])
|
43
|
-
|
44
|
-
|
45
|
-
forecast = model.predict(future)
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
# 예측 결과 출력
|
50
|
-
print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail())
|
51
|
-
|
52
|
-
# 예측 결과 시각화 (Matplotlib 사용)
|
53
|
-
fig = model.plot(forecast)
|
54
|
-
|
55
|
-
# 추세 및 계절성 시각화
|
56
|
-
fig2 = model.plot_components(forecast)
|
57
|
-
|
58
|
-
plt.show() # 시각화 창 띄우기
|
File without changes
|
File without changes
|
File without changes
|