analyser_hj3415 2.6.8__py2.py3-none-any.whl → 2.7.1__py2.py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,948 @@
1
+ from dataclasses import dataclass, asdict
2
+
3
+ from utils_hj3415 import utils, helpers
4
+ from typing import Tuple
5
+ from db_hj3415 import myredis, mymongo
6
+ import math
7
+ from analyser_hj3415.cli import AnalyserSettingsManager
8
+ from collections import OrderedDict
9
+ import logging
10
+
11
+ analyser_logger = helpers.setup_logger('analyser_logger', logging.INFO)
12
+
13
+
14
+ class Tools:
15
+ @staticmethod
16
+ def cal_deviation(v1: float, v2: float) -> float:
17
+ """
18
+ 괴리율 구하는 공식
19
+ :param v1:
20
+ :param v2:
21
+ :return:
22
+ """
23
+ try:
24
+ deviation = abs((v1 - v2) / v1) * 100
25
+ except ZeroDivisionError:
26
+ deviation = math.nan
27
+ return deviation
28
+
29
+ @staticmethod
30
+ def date_set(*args) -> list:
31
+ """
32
+ 비유효한 내용 제거(None,nan)하고 중복된 항목 제거하고 리스트로 반환한다.
33
+ 여기서 set의 의미는 집합을 뜻함
34
+ :param args:
35
+ :return:
36
+ """
37
+ return [i for i in {*args} if i != "" and i is not math.nan and i is not None]
38
+
39
+ @staticmethod
40
+ def calc당기순이익(c103: myredis.C103, refresh: bool) -> Tuple[str, float]:
41
+ """
42
+ 지배지분 당기순이익 계산
43
+
44
+ 일반적인 경우로는 직전 지배주주지분 당기순이익을 찾아서 반환한다.\n
45
+ 금융기관의 경우는 지배당기순이익이 없기 때문에\n
46
+ 계산을 통해서 간접적으로 구한다.\n
47
+ """
48
+ name = myredis.Corps(c103.code, 'c101').get_name(refresh=refresh)
49
+
50
+ analyser_logger.info(f'{c103.code} / {name} Tools : 당기순이익 계산.. refresh : {refresh}')
51
+ c103.page = 'c103재무상태표q'
52
+
53
+ d1, 지배당기순이익 = c103.latest_value_pop2('*(지배)당기순이익', refresh)
54
+ analyser_logger.debug(f"*(지배)당기순이익: {지배당기순이익}")
55
+
56
+ if math.isnan(지배당기순이익):
57
+ analyser_logger.warning(f"{c103.code} / {name} - (지배)당기순이익이 없는 종목. 수동으로 계산합니다.")
58
+ c103.page = 'c103손익계산서q'
59
+ d2, 최근4분기당기순이익 = c103.sum_recent_4q('당기순이익', refresh)
60
+ analyser_logger.debug(f"{c103.code} / {name} - 최근4분기당기순이익 : {최근4분기당기순이익}")
61
+ c103.page = 'c103재무상태표y'
62
+ d3, 비지배당기순이익 = c103.latest_value_pop2('*(비지배)당기순이익', refresh)
63
+ analyser_logger.debug(f"{c103.code} / {name} - 비지배당기순이익y : {비지배당기순이익}")
64
+ # 가변리스트 언패킹으로 하나의 날짜만 사용하고 나머지는 버린다.
65
+ # 여기서 *_는 “나머지 값을 다 무시하겠다”는 의미
66
+ analyser_logger.debug(f"d2:{d2}, d3: {d3}")
67
+ try:
68
+ date, *_ = Tools.date_set(d2, d3)
69
+ except ValueError:
70
+ # 날짜 데이터가 없는경우
71
+ date = ''
72
+ 계산된지배당기순이익= round(최근4분기당기순이익 - utils.nan_to_zero(비지배당기순이익), 1)
73
+ analyser_logger.debug(f"{c103.code} / {name} - 계산된 지배당기순이익 : {계산된지배당기순이익}")
74
+ return date, 계산된지배당기순이익
75
+ else:
76
+ return d1, 지배당기순이익
77
+
78
+ @staticmethod
79
+ def calc유동자산(c103: myredis.C103, refresh: bool) -> Tuple[str, float]:
80
+ """유효한 유동자산 계산
81
+
82
+ 일반적인 경우로 유동자산을 찾아서 반환한다.\n
83
+ 금융기관의 경우는 간접적으로 계산한다.\n
84
+ """
85
+ name = myredis.Corps(c103.code, 'c101').get_name(refresh=refresh)
86
+
87
+ analyser_logger.info(f'{c103.code} / {name} Tools : 유동자산계산... refresh : {refresh}')
88
+ c103.page = 'c103재무상태표q'
89
+
90
+ d, 유동자산 = c103.sum_recent_4q('유동자산', refresh)
91
+ if math.isnan(유동자산):
92
+ analyser_logger.warning(f"{c103.code} / {name} - 유동자산이 없는 종목. 수동으로 계산합니다(금융관련업종일 가능성있음).")
93
+ d1, v1 = c103.latest_value_pop2('현금및예치금', refresh)
94
+ d2, v2 = c103.latest_value_pop2('단기매매금융자산', refresh)
95
+ d3, v3 = c103.latest_value_pop2('매도가능금융자산', refresh)
96
+ d4, v4 = c103.latest_value_pop2('만기보유금융자산', refresh)
97
+ analyser_logger.debug(f'{c103.code} / {name} 현금및예치금 : {d1}, {v1}')
98
+ analyser_logger.debug(f'{c103.code} / {name} 단기매매금융자산 : {d2}, {v2}')
99
+ analyser_logger.debug(f'{c103.code} / {name} 매도가능금융자산 : {d3}, {v3}')
100
+ analyser_logger.debug(f'{c103.code} / {name} 만기보유금융자산 : {d4}, {v4}')
101
+
102
+ try:
103
+ date, *_ = Tools.date_set(d1, d2, d3, d4)
104
+ except ValueError:
105
+ # 날짜 데이터가 없는경우
106
+ date = ''
107
+ 계산된유동자산value = round(utils.nan_to_zero(v1) + utils.nan_to_zero(v2) + utils.nan_to_zero(v3) + utils.nan_to_zero(v4),1)
108
+
109
+ analyser_logger.info(f"{c103.code} / {name} - 계산된 유동자산 : {계산된유동자산value}")
110
+ return date, 계산된유동자산value
111
+ else:
112
+ return d, 유동자산
113
+
114
+ @staticmethod
115
+ def calc유동부채(c103: myredis.C103, refresh: bool) -> Tuple[str, float]:
116
+ """유효한 유동부채 계산
117
+
118
+ 일반적인 경우로 유동부채를 찾아서 반환한다.\n
119
+ 금융기관의 경우는 간접적으로 계산한다.\n
120
+ """
121
+ name = myredis.Corps(c103.code, 'c101').get_name(refresh=refresh)
122
+
123
+ analyser_logger.info(f'{c103.code} / {name} Tools : 유동부채계산... refresh : {refresh}')
124
+ c103.page = 'c103재무상태표q'
125
+
126
+ d, 유동부채 = c103.sum_recent_4q('유동부채', refresh)
127
+ if math.isnan(유동부채):
128
+ analyser_logger.warning(f"{c103.code} / {name} - 유동부채가 없는 종목. 수동으로 계산합니다.")
129
+ d1, v1 = c103.latest_value_pop2('당기손익인식(지정)금융부채', refresh)
130
+ d2, v2 = c103.latest_value_pop2('당기손익-공정가치측정금융부채', refresh)
131
+ d3, v3 = c103.latest_value_pop2('매도파생결합증권', refresh)
132
+ d4, v4 = c103.latest_value_pop2('단기매매금융부채', refresh)
133
+ analyser_logger.debug(f'{c103.code} / {name} 당기손익인식(지정)금융부채 : {d1}, {v1}')
134
+ analyser_logger.debug(f'{c103.code} / {name} 당기손익-공정가치측정금융부채 : {d2}, {v2}')
135
+ analyser_logger.debug(f'{c103.code} / {name} 매도파생결합증권 : {d3}, {v3}')
136
+ analyser_logger.debug(f'{c103.code} / {name} 단기매매금융부채 : {d4}, {v4}')
137
+
138
+ try:
139
+ date, *_ = Tools.date_set(d1, d2, d3, d4)
140
+ except ValueError:
141
+ # 날짜 데이터가 없는경우
142
+ date = ''
143
+ 계산된유동부채value = round(utils.nan_to_zero(v1) + utils.nan_to_zero(v2) + utils.nan_to_zero(v3) + utils.nan_to_zero(v4), 1)
144
+
145
+ analyser_logger.info(f"{c103.code} / {name} - 계산된 유동부채 : {계산된유동부채value}")
146
+ return date, 계산된유동부채value
147
+ else:
148
+ return d, 유동부채
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
+ @dataclass
157
+ class RedData:
158
+ code: str
159
+ name: str
160
+
161
+ # 사업가치 계산 - 지배주주지분 당기순이익 / 기대수익률
162
+ 사업가치: float
163
+ 지배주주당기순이익: float
164
+ expect_earn: float
165
+
166
+ # 재산가치 계산 - 유동자산 - (유동부채*1.2) + 고정자산중 투자자산
167
+ 재산가치: float
168
+ 유동자산: float
169
+ 유동부채: float
170
+ 투자자산: float
171
+ 투자부동산: float
172
+
173
+ # 부채평가 - 비유동부채
174
+ 부채평가: float
175
+
176
+ # 발행주식수
177
+ 발행주식수: int
178
+
179
+ date: list
180
+
181
+ red_price: float
182
+ score: int
183
+
184
+ def __post_init__(self):
185
+ if not utils.is_6digit(self.code):
186
+ raise ValueError(f"code는 6자리 숫자형 문자열이어야합니다. (입력값: {self.code})")
187
+
188
+
189
+ class Red:
190
+ expect_earn = AnalyserSettingsManager().get_value('EXPECT_EARN')
191
+
192
+ def __init__(self, code: str):
193
+ assert utils.is_6digit(code), f'Invalid value : {code}'
194
+ analyser_logger.debug(f"Red : 초기화 ({code})")
195
+ self.c101 = myredis.C101(code)
196
+ self.c103 = myredis.C103(code, 'c103재무상태표q')
197
+
198
+ self.name = self.c101.get_name()
199
+ self._code = code
200
+
201
+ def __str__(self):
202
+ return f"Red({self.code}/{self.name})"
203
+
204
+ @property
205
+ def code(self) -> str:
206
+ return self._code
207
+
208
+ @code.setter
209
+ def code(self, code: str):
210
+ assert utils.is_6digit(code), f'Invalid value : {code}'
211
+ analyser_logger.debug(f"Red : 종목코드 변경({self.code} -> {code})")
212
+ self.c101.code = code
213
+ self.c103.code = code
214
+
215
+ self.name = self.c101.get_name()
216
+ self._code = code
217
+
218
+ def _calc비유동부채(self, refresh: bool) -> Tuple[str, float]:
219
+ """유효한 비유동부채 계산
220
+
221
+ 일반적인 경우로 비유동부채를 찾아서 반환한다.\n
222
+ 금융기관의 경우는 간접적으로 계산한다.\n
223
+ """
224
+ analyser_logger.info(f'In the calc비유동부채... refresh : {refresh}')
225
+ self.c103.page = 'c103재무상태표q'
226
+
227
+ d, 비유동부채 = self.c103.sum_recent_4q('비유동부채', refresh)
228
+ if math.isnan(비유동부채):
229
+ analyser_logger.warning(f"{self} - 비유동부채가 없는 종목. 수동으로 계산합니다.")
230
+ # 보험관련업종은 예수부채가 없는대신 보험계약부채가 있다...
231
+ d1, v1 = self.c103.latest_value_pop2('예수부채', refresh)
232
+ d2, v2 = self.c103.latest_value_pop2('보험계약부채(책임준비금)', refresh)
233
+ d3, v3 = self.c103.latest_value_pop2('차입부채', refresh)
234
+ d4, v4 = self.c103.latest_value_pop2('기타부채', refresh)
235
+ analyser_logger.debug(f'예수부채 : {d1}, {v1}')
236
+ analyser_logger.debug(f'보험계약부채(책임준비금) : {d2}, {v2}')
237
+ analyser_logger.debug(f'차입부채 : {d3}, {v3}')
238
+ analyser_logger.debug(f'기타부채 : {d4}, {v4}')
239
+
240
+ try:
241
+ date, *_ = Tools.date_set(d1, d2, d3, d4)
242
+ except ValueError:
243
+ # 날짜 데이터가 없는경우
244
+ date = ''
245
+ 계산된비유동부채value = round(utils.nan_to_zero(v1) + utils.nan_to_zero(v2) + utils.nan_to_zero(v3) + utils.nan_to_zero(v4),1)
246
+ analyser_logger.info(f"{self} - 계산된 비유동부채 : {계산된비유동부채value}")
247
+ return date, 계산된비유동부채value
248
+ else:
249
+ return d, 비유동부채
250
+
251
+ def _score(self, red_price: int, refresh: bool) -> int:
252
+ """red price와 최근 주가의 괴리율 파악
253
+
254
+ Returns:
255
+ int : 주가와 red price 비교한 괴리율
256
+ """
257
+ try:
258
+ recent_price = utils.to_int(self.c101.get_recent(refresh)['주가'])
259
+ except KeyError:
260
+ return 0
261
+
262
+ deviation = Tools.cal_deviation(recent_price, red_price)
263
+ if red_price < 0 or (recent_price >= red_price):
264
+ score = 0
265
+ else:
266
+ score = utils.to_int(math.log10(deviation + 1) * 33) # desmos그래프상 33이 제일 적당한듯(최대100점에 가깝게)
267
+
268
+ analyser_logger.debug(f"최근주가 : {recent_price} red가격 : {red_price} 괴리율 : {utils.to_int(deviation)} score : {score}")
269
+
270
+ return score
271
+
272
+ def _generate_data(self, refresh: bool) -> RedData:
273
+ d1, 지배주주당기순이익 = Tools.calc당기순이익(self.c103, refresh)
274
+ analyser_logger.debug(f"{self} 지배주주당기순이익: {지배주주당기순이익}")
275
+ d2, 유동자산 = Tools.calc유동자산(self.c103, refresh)
276
+ d3, 유동부채 = Tools.calc유동부채(self.c103, refresh)
277
+ d4, 부채평가 = self._calc비유동부채(refresh)
278
+
279
+ self.c103.page = 'c103재무상태표q'
280
+ d5, 투자자산 = self.c103.latest_value_pop2('투자자산', refresh)
281
+ d6, 투자부동산 = self.c103.latest_value_pop2('투자부동산', refresh)
282
+
283
+ # 사업가치 계산 - 지배주주지분 당기순이익 / 기대수익률
284
+ 사업가치 = round(지배주주당기순이익 / Red.expect_earn, 2)
285
+
286
+ # 재산가치 계산 - 유동자산 - (유동부채*1.2) + 고정자산중 투자자산
287
+ 재산가치 = round(유동자산 - (유동부채 * 1.2) + utils.nan_to_zero(투자자산) + utils.nan_to_zero(투자부동산), 2)
288
+
289
+ _, 발행주식수 = self.c103.latest_value_pop2('발행주식수', refresh)
290
+ if math.isnan(발행주식수):
291
+ 발행주식수 = utils.to_int(self.c101.get_recent(refresh).get('발행주식'))
292
+ else:
293
+ 발행주식수 = 발행주식수 * 1000
294
+
295
+ try:
296
+ red_price = round(((사업가치 + 재산가치 - 부채평가) * 100000000) / 발행주식수)
297
+ except (ZeroDivisionError, ValueError):
298
+ red_price = math.nan
299
+
300
+ score = self._score(red_price, refresh)
301
+
302
+ try:
303
+ date_list = Tools.date_set(d1, d2, d3, d4)
304
+ except ValueError:
305
+ # 날짜 데이터가 없는경우
306
+ date_list = ['',]
307
+
308
+ return RedData(
309
+ code = self.code,
310
+ name = self.name,
311
+ 사업가치 = 사업가치,
312
+ 지배주주당기순이익 = 지배주주당기순이익,
313
+ expect_earn = Red.expect_earn,
314
+ 재산가치 = 재산가치,
315
+ 유동자산 = 유동자산,
316
+ 유동부채 = 유동부채,
317
+ 투자자산 = 투자자산,
318
+ 투자부동산 = 투자부동산,
319
+ 부채평가 = 부채평가,
320
+ 발행주식수 = 발행주식수,
321
+ date = date_list,
322
+ red_price = red_price,
323
+ score = score,
324
+ )
325
+
326
+ def get(self, refresh = False) -> RedData:
327
+ """
328
+ RedData 형식의 데이터를 계산하여 리턴하고 레디스 캐시에 저장한다.
329
+ :param refresh:
330
+ :return:
331
+ """
332
+ redis_name = f"{self.code}_red"
333
+ analyser_logger.info(f"{self} RedData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
334
+
335
+ def fetch_generate_data(refresh_in: bool) -> dict:
336
+ return asdict(self._generate_data(refresh_in))
337
+
338
+ return RedData(**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh))
339
+
340
+ @classmethod
341
+ def ranking(cls, expect_earn: float = None, refresh = False) -> OrderedDict:
342
+ """
343
+ redis를 사용하며 red score를 계산해서 0이상의 값을 가지는 종목을 순서대로 저장하여 반환한다.(캐시 유효시간 12시간)
344
+ :param expect_earn: 기대수익률(일반적으로 0.06 - 0.10)
345
+ :param refresh: 캐시를 사용하지 않고 강제로 다시 계산
346
+ :return: OrderedDict([('023590', 101),
347
+ ('010060', 91),...]), 레디스이름
348
+ """
349
+
350
+ print("**** Start red_ranking... ****")
351
+ # expect_earn 및 refresh 설정
352
+ if expect_earn is None:
353
+ expect_earn = cls.expect_earn
354
+ analyser_logger.info(f"기대수익률을 {expect_earn}으로 설정합니다.")
355
+ previous_expect_earn = float(AnalyserSettingsManager().get_value('RED_RANKING_EXPECT_EARN'))
356
+ analyser_logger.debug(f"previous red ranking expect earn : {previous_expect_earn}")
357
+ if previous_expect_earn != expect_earn:
358
+ analyser_logger.warning(f"expect earn : {expect_earn} / RED_RANKING_EXPECT_EARN : {previous_expect_earn} 두 값이 달라 refresh = True")
359
+ refresh = True
360
+
361
+ redis_name = 'red_ranking'
362
+ analyser_logger.info(f"redisname: '{redis_name}' / refresh : {refresh}")
363
+
364
+ def fetch_ranking(expect_earn_in: float, refresh_in: bool) -> dict:
365
+ data = {}
366
+ # 저장된 기대수익률을 불러서 임시저장
367
+ ee_orig = Red.expect_earn
368
+ # 원하는 기대수익률로 클래스 세팅
369
+ Red.expect_earn = expect_earn_in
370
+ AnalyserSettingsManager().set_value('RED_RANKING_EXPECT_EARN', str(expect_earn_in))
371
+ for i, code in enumerate(myredis.Corps.list_all_codes()):
372
+ red = Red(code)
373
+ red_score = red.get(refresh=refresh_in).score
374
+ if red_score > 0:
375
+ data[code] = red_score
376
+ print(f"{i}: {red} - {red_score}")
377
+ # 원래 저장되었던 기대수익률로 다시 복원
378
+ Red.expect_earn = ee_orig
379
+ return data
380
+
381
+ data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_ranking, expect_earn, refresh, timer=3600 * 12)
382
+
383
+ return OrderedDict(sorted(data_dict.items(), key=lambda item: item[1], reverse=True))
384
+
385
+
386
+ @dataclass
387
+ class MilData:
388
+ code: str
389
+ name: str
390
+
391
+ 시가총액억: float
392
+
393
+ 주주수익률: float
394
+ 재무활동현금흐름: float
395
+
396
+ 이익지표: float
397
+ 영업활동현금흐름: float
398
+ 지배주주당기순이익: float
399
+
400
+ #투자수익률
401
+ roic_r: float
402
+ roic_dict: dict
403
+ roe_r: float
404
+ roe_106: dict
405
+ roa_r: float
406
+
407
+ #가치지표
408
+ fcf_dict: dict
409
+ pfcf_dict: dict
410
+ pcr_dict: dict
411
+
412
+ score: list
413
+ date: list
414
+
415
+
416
+ class Mil:
417
+ def __init__(self, code: str):
418
+ assert utils.is_6digit(code), f'Invalid value : {code}'
419
+ analyser_logger.debug(f"Mil : 종목코드 ({code})")
420
+
421
+ self.c101 = myredis.C101(code)
422
+ self.c103 = myredis.C103(code, 'c103현금흐름표q')
423
+ self.c104 = myredis.C104(code, 'c104q')
424
+ self.c106 = myredis.C106(code, 'c106q')
425
+
426
+ self.name = self.c101.get_name()
427
+ self._code = code
428
+
429
+ def __str__(self):
430
+ return f"Mil({self.code}/{self.name})"
431
+
432
+ @property
433
+ def code(self) -> str:
434
+ return self._code
435
+
436
+ @code.setter
437
+ def code(self, code: str):
438
+ assert utils.is_6digit(code), f'Invalid value : {code}'
439
+ analyser_logger.debug(f"Mil : 종목코드 변경({self.code} -> {code})")
440
+
441
+ self.c101.code = code
442
+ self.c103.code = code
443
+ self.c104.code = code
444
+ self.c106.code = code
445
+
446
+ self.name = self.c101.get_name()
447
+ self._code = code
448
+
449
+ def get_marketcap억(self, refresh: bool) -> float:
450
+ """
451
+ 시가총액(억원) 반환
452
+ :return:
453
+ """
454
+ c101r = self.c101.get_recent(refresh)
455
+ 시가총액 = int(utils.to_int(c101r.get('시가총액', math.nan)) / 100000000)
456
+ analyser_logger.debug(f"시가총액: {시가총액}억원")
457
+ return 시가총액
458
+
459
+ def _calc주주수익률(self, 시가총액_억: float, refresh: bool) -> Tuple[str, float, float]:
460
+ self.c103.page = 'c103현금흐름표q'
461
+ d, 재무활동현금흐름 = self.c103.sum_recent_4q('재무활동으로인한현금흐름', refresh)
462
+ try:
463
+ 주주수익률 = round((재무활동현금흐름 / 시가총액_억 * -100), 2)
464
+ except ZeroDivisionError:
465
+ 주주수익률 = math.nan
466
+ analyser_logger.warning(f'{self} 주주수익률: {주주수익률} 재무활동현금흐름: {재무활동현금흐름}')
467
+ return d, 주주수익률, 재무활동현금흐름
468
+
469
+ def _calc이익지표(self, 시가총액_억: float, refresh: bool) -> Tuple[str, float, float, float]:
470
+ d1, 지배주주당기순이익 = Tools.calc당기순이익(self.c103, refresh)
471
+ self.c103.page = 'c103현금흐름표q'
472
+ d2, 영업활동현금흐름 = self.c103.sum_recent_4q('영업활동으로인한현금흐름', refresh)
473
+ try:
474
+ 이익지표 = round(((지배주주당기순이익 - 영업활동현금흐름) / 시가총액_억) * 100, 2)
475
+ except ZeroDivisionError:
476
+ 이익지표 = math.nan
477
+ analyser_logger.warning(f'{self} 이익지표: {이익지표} 영업활동현금흐름: {영업활동현금흐름} 지배주주당기순이익: {지배주주당기순이익}')
478
+ try:
479
+ date, *_ = Tools.date_set(d1, d2)
480
+ except ValueError:
481
+ # 날짜 데이터가 없는경우
482
+ date = ''
483
+ return date , 이익지표, 영업활동현금흐름, 지배주주당기순이익
484
+
485
+ def _calc투자수익률(self, refresh: bool) -> tuple:
486
+ self.c104.page = 'c104q'
487
+ self.c106.page = 'c106q'
488
+ d1, roic_r = self.c104.sum_recent_4q('ROIC', refresh)
489
+ _, roic_dict = self.c104.find('ROIC', remove_yoy=True, del_unnamed_key=True, refresh=refresh)
490
+ d2, roe_r = self.c104.latest_value_pop2('ROE', refresh)
491
+ roe106 = self.c106.find('ROE', refresh)
492
+ d3, roa_r = self.c104.latest_value_pop2('ROA', refresh)
493
+
494
+ try:
495
+ date, *_ = Tools.date_set(d1, d2, d3)
496
+ except ValueError:
497
+ # 날짜 데이터가 없는경우
498
+ date = ''
499
+
500
+ return date, roic_r, roic_dict, roe_r, roe106, roa_r
501
+
502
+ def _calcFCF(self, refresh: bool) -> dict:
503
+ """
504
+ FCF 계산
505
+ Returns:
506
+ dict: 계산된 fcf 딕셔너리 또는 영업현금흐름 없는 경우 - {}
507
+
508
+ Note:
509
+ CAPEX 가 없는 업종은 영업활동현금흐름을 그대로 사용한다.\n
510
+
511
+ """
512
+ self.c103.page = 'c103현금흐름표y'
513
+ _, 영업활동현금흐름_dict = self.c103.find('영업활동으로인한현금흐름', remove_yoy=True, del_unnamed_key=True, refresh=refresh)
514
+
515
+ self.c103.page = 'c103재무상태표y'
516
+ _, capex = self.c103.find('*CAPEX', remove_yoy=True, del_unnamed_key=True, refresh=refresh)
517
+
518
+ analyser_logger.debug(f'영업활동현금흐름 {영업활동현금흐름_dict}')
519
+ analyser_logger.debug(f'CAPEX {capex}')
520
+
521
+ if len(영업활동현금흐름_dict) == 0:
522
+ return {}
523
+
524
+ if len(capex) == 0:
525
+ # CAPEX 가 없는 업종은 영업활동현금흐름을 그대로 사용한다.
526
+ analyser_logger.warning(f"{self} - CAPEX가 없는 업종으로 영업현금흐름을 그대로 사용합니다..")
527
+ return 영업활동현금흐름_dict
528
+
529
+ # 영업 활동으로 인한 현금 흐름에서 CAPEX 를 각 연도별로 빼주어 fcf 를 구하고 리턴값으로 fcf 딕셔너리를 반환한다.
530
+ fcf_dict = {}
531
+ for i in range(len(영업활동현금흐름_dict)):
532
+ # 영업활동현금흐름에서 아이템을 하나씩 꺼내서 CAPEX 전체와 비교하여 같으면 차를 구해서 fcf_dict 에 추가한다.
533
+ 영업활동현금흐름date, 영업활동현금흐름value = 영업활동현금흐름_dict.popitem()
534
+ # 해당 연도의 capex 가 없는 경우도 있어 일단 capex를 0으로 치고 먼저 추가한다.
535
+ fcf_dict[영업활동현금흐름date] = 영업활동현금흐름value
536
+ for CAPEXdate, CAPEXvalue in capex.items():
537
+ if 영업활동현금흐름date == CAPEXdate:
538
+ fcf_dict[영업활동현금흐름date] = round(영업활동현금흐름value - CAPEXvalue, 2)
539
+
540
+ analyser_logger.debug(f'fcf_dict {fcf_dict}')
541
+ # 연도순으로 정렬해서 딕셔너리로 반환한다.
542
+ return dict(sorted(fcf_dict.items(), reverse=False))
543
+
544
+ def _calcPFCF(self, 시가총액_억: float, fcf_dict: dict) -> dict:
545
+ """Price to Free Cash Flow Ratio(주가 대비 자유 현금 흐름 비율)계산
546
+
547
+ PFCF = 시가총액 / FCF
548
+
549
+ Note:
550
+ https://www.investopedia.com/terms/p/pricetofreecashflow.asp
551
+ """
552
+ if math.isnan(시가총액_억):
553
+ analyser_logger.warning(f"{self} - 시가총액이 nan으로 pFCF를 계산할수 없습니다.")
554
+ return {}
555
+
556
+ # pfcf 계산
557
+ pfcf_dict = {}
558
+ for FCFdate, FCFvalue in fcf_dict.items():
559
+ if FCFvalue == 0:
560
+ pfcf_dict[FCFdate] = math.nan
561
+ else:
562
+ pfcf_dict[FCFdate] = round(시가총액_억 / FCFvalue, 2)
563
+
564
+ pfcf_dict = mymongo.C1034.del_unnamed_key(pfcf_dict)
565
+
566
+ analyser_logger.debug(f'pfcf_dict : {pfcf_dict}')
567
+ return pfcf_dict
568
+
569
+ def _calc가치지표(self, 시가총액_억: float, refresh: bool) -> tuple:
570
+ self.c104.page = 'c104q'
571
+
572
+ fcf_dict = self._calcFCF(refresh)
573
+ pfcf_dict = self._calcPFCF(시가총액_억, fcf_dict)
574
+
575
+ d, pcr_dict = self.c104.find('PCR', remove_yoy=True, del_unnamed_key=True, refresh=refresh)
576
+ return d, fcf_dict, pfcf_dict, pcr_dict
577
+
578
+ def _score(self) -> list:
579
+ return [0,]
580
+
581
+ def _generate_data(self, refresh: bool) -> MilData:
582
+ analyser_logger.info(f"In generate_data..refresh : {refresh}")
583
+ 시가총액_억 = self.get_marketcap억(refresh)
584
+ analyser_logger.info(f"{self} 시가총액(억) : {시가총액_억}")
585
+
586
+ d1, 주주수익률, 재무활동현금흐름 = self._calc주주수익률(시가총액_억, refresh)
587
+ analyser_logger.info(f"{self} 주주수익률 : {주주수익률}, {d1}")
588
+
589
+ d2, 이익지표, 영업활동현금흐름, 지배주주당기순이익 = self._calc이익지표(시가총액_억, refresh)
590
+ analyser_logger.info(f"{self} 이익지표 : {이익지표}, {d2}")
591
+
592
+ d3, roic_r, roic_dict, roe_r, roe106, roa_r = self._calc투자수익률(refresh)
593
+ d4, fcf_dict, pfcf_dict, pcr_dict = self._calc가치지표(시가총액_억, refresh)
594
+
595
+ score = self._score()
596
+
597
+ try:
598
+ date_list = Tools.date_set(d1, d2, d3, d4)
599
+ except ValueError:
600
+ # 날짜 데이터가 없는경우
601
+ date_list = ['',]
602
+
603
+ return MilData(
604
+ code= self.code,
605
+ name= self.name,
606
+
607
+ 시가총액억= 시가총액_억,
608
+
609
+ 주주수익률= 주주수익률,
610
+ 재무활동현금흐름= 재무활동현금흐름,
611
+
612
+ 이익지표= 이익지표,
613
+ 영업활동현금흐름= 영업활동현금흐름,
614
+ 지배주주당기순이익= 지배주주당기순이익,
615
+
616
+ roic_r= roic_r,
617
+ roic_dict= roic_dict,
618
+ roe_r= roe_r,
619
+ roe_106= roe106,
620
+ roa_r= roa_r,
621
+
622
+ fcf_dict= fcf_dict,
623
+ pfcf_dict= pfcf_dict,
624
+ pcr_dict= pcr_dict,
625
+
626
+ score= score,
627
+ date = date_list,
628
+ )
629
+
630
+ def get(self, refresh = False) -> MilData:
631
+ """
632
+ MilData 형식의 데이터를 계산하여 리턴하고 레디스 캐시에 저장한다.
633
+ :param refresh:
634
+ :return:
635
+ """
636
+ redis_name = f"{self.code}_mil"
637
+ analyser_logger.info(f"{self} MilData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
638
+
639
+ def fetch_generate_data(refresh_in: bool) -> dict:
640
+ return asdict(self._generate_data(refresh_in))
641
+
642
+ return MilData(**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh))
643
+
644
+
645
+ @dataclass()
646
+ class BlueData:
647
+ code: str
648
+ name: str
649
+
650
+ 유동비율: float
651
+
652
+ 이자보상배율_r: float
653
+ 이자보상배율_dict: dict
654
+
655
+ 순운전자본회전율_r: float
656
+ 순운전자본회전율_dict: dict
657
+
658
+ 재고자산회전율_r: float
659
+ 재고자산회전율_dict: dict
660
+ 재고자산회전율_c106: dict
661
+
662
+ 순부채비율_r: float
663
+ 순부채비율_dict: dict
664
+
665
+ score: list
666
+ date: list
667
+
668
+
669
+ class Blue:
670
+ def __init__(self, code: str):
671
+ assert utils.is_6digit(code), f'Invalid value : {code}'
672
+ analyser_logger.debug(f"Blue : 종목코드 ({code})")
673
+
674
+ self.c101 = myredis.C101(code)
675
+ self.c103 = myredis.C103(code, 'c103재무상태표q')
676
+ self.c104 = myredis.C104(code, 'c104q')
677
+
678
+ self.name = self.c101.get_name()
679
+ self._code = code
680
+
681
+ def __str__(self):
682
+ return f"Blue({self.code}/{self.name})"
683
+
684
+ @property
685
+ def code(self) -> str:
686
+ return self._code
687
+
688
+ @code.setter
689
+ def code(self, code: str):
690
+ assert utils.is_6digit(code), f'Invalid value : {code}'
691
+ analyser_logger.debug(f"Blue : 종목코드 변경({self.code} -> {code})")
692
+
693
+ self.c101.code = code
694
+ self.c103.code = code
695
+ self.c104.code = code
696
+
697
+ self.name = self.c101.get_name()
698
+ self._code = code
699
+
700
+ def _calc유동비율(self, pop_count: int, refresh: bool) -> Tuple[str, float]:
701
+ """유동비율계산 - Blue에서 사용
702
+
703
+ c104q에서 최근유동비율 찾아보고 유효하지 않거나 \n
704
+ 100이하인 경우에는수동으로 계산해서 다시 한번 평가해 본다.\n
705
+ """
706
+ analyser_logger.info(f'In the calc유동비율... refresh : {refresh}')
707
+ self.c104.page = 'c104q'
708
+
709
+ 유동비율date, 유동비율value = self.c104.latest_value('유동비율', pop_count=pop_count)
710
+ analyser_logger.info(f'{self} 유동비율 : {유동비율value}/({유동비율date})')
711
+
712
+ if math.isnan(유동비율value) or 유동비율value < 100:
713
+ 유동자산date, 유동자산value = Tools.calc유동자산(self.c103, refresh)
714
+ 유동부채date, 유동부채value = Tools.calc유동부채(self.c103, refresh)
715
+
716
+ self.c103.page = 'c103현금흐름표q'
717
+ 추정영업현금흐름date, 추정영업현금흐름value = self.c103.sum_recent_4q('영업활동으로인한현금흐름', refresh)
718
+ analyser_logger.debug(f'{self} 계산전 유동비율 : {유동비율value} / ({유동비율date})')
719
+
720
+ 계산된유동비율 = 0
721
+ try:
722
+ 계산된유동비율 = round(((유동자산value + 추정영업현금흐름value) / 유동부채value) * 100, 2)
723
+ except ZeroDivisionError:
724
+ analyser_logger.info(f'유동자산: {유동자산value} + 추정영업현금흐름: {추정영업현금흐름value} / 유동부채: {유동부채value}')
725
+ 계산된유동비율 = float('inf')
726
+ finally:
727
+ analyser_logger.debug(f'{self} 계산된 유동비율 : {계산된유동비율}')
728
+
729
+ try:
730
+ date, *_ = Tools.date_set(유동자산date, 유동부채date, 추정영업현금흐름date)
731
+ except ValueError:
732
+ # 날짜 데이터가 없는경우
733
+ date = ''
734
+ analyser_logger.warning(f'{self} 유동비율 이상(100 이하 또는 nan) : {유동비율value} -> 재계산 : {계산된유동비율}')
735
+ return date, 계산된유동비율
736
+ else:
737
+ return 유동비율date, 유동비율value
738
+
739
+ def _score(self) -> list:
740
+ return [0,]
741
+
742
+ def _generate_data(self, refresh: bool) -> BlueData:
743
+ d1, 유동비율 = self._calc유동비율(pop_count=3, refresh=refresh)
744
+ analyser_logger.info(f'유동비율 {유동비율} / [{d1}]')
745
+
746
+ 재고자산회전율_c106 = myredis.C106.make_like_c106(self.code, 'c104q', '재고자산회전율', refresh)
747
+
748
+ self.c104.page = 'c104y'
749
+ _, 이자보상배율_dict = self.c104.find('이자보상배율', remove_yoy=True, refresh=refresh)
750
+ _, 순운전자본회전율_dict = self.c104.find('순운전자본회전율', remove_yoy=True, refresh=refresh)
751
+ _, 재고자산회전율_dict = self.c104.find('재고자산회전율', remove_yoy=True, refresh=refresh)
752
+ _, 순부채비율_dict = self.c104.find('순부채비율', remove_yoy=True, refresh=refresh)
753
+
754
+ self.c104.page = 'c104q'
755
+ d6, 이자보상배율_r = self.c104.latest_value_pop2('이자보상배율', refresh)
756
+ d7, 순운전자본회전율_r = self.c104.latest_value_pop2('순운전자본회전율', refresh)
757
+ d8, 재고자산회전율_r = self.c104.latest_value_pop2('재고자산회전율', refresh)
758
+ d9, 순부채비율_r = self.c104.latest_value_pop2('순부채비율', refresh)
759
+
760
+ if len(이자보상배율_dict) == 0:
761
+ analyser_logger.warning(f'empty dict - 이자보상배율 : {이자보상배율_r} / {이자보상배율_dict}')
762
+
763
+ if len(순운전자본회전율_dict) == 0:
764
+ analyser_logger.warning(f'empty dict - 순운전자본회전율 : {순운전자본회전율_r} / {순운전자본회전율_dict}')
765
+
766
+ if len(재고자산회전율_dict) == 0:
767
+ analyser_logger.warning(f'empty dict - 재고자산회전율 : {재고자산회전율_r} / {재고자산회전율_dict}')
768
+
769
+ if len(순부채비율_dict) == 0:
770
+ analyser_logger.warning(f'empty dict - 순부채비율 : {순부채비율_r} / {순부채비율_dict}')
771
+
772
+ score = self._score()
773
+
774
+ try:
775
+ date_list = Tools.date_set(d1, d6, d7, d8, d9)
776
+ except ValueError:
777
+ # 날짜 데이터가 없는경우
778
+ date_list = ['',]
779
+
780
+ return BlueData(
781
+ code= self.code,
782
+ name= self.name,
783
+ 유동비율= 유동비율,
784
+ 이자보상배율_r= 이자보상배율_r,
785
+ 이자보상배율_dict= 이자보상배율_dict,
786
+
787
+ 순운전자본회전율_r= 순운전자본회전율_r,
788
+ 순운전자본회전율_dict= 순운전자본회전율_dict,
789
+
790
+ 재고자산회전율_r= 재고자산회전율_r,
791
+ 재고자산회전율_dict= 재고자산회전율_dict,
792
+ 재고자산회전율_c106= 재고자산회전율_c106,
793
+
794
+ 순부채비율_r= 순부채비율_r,
795
+ 순부채비율_dict= 순부채비율_dict,
796
+
797
+ score= score,
798
+ date= date_list,
799
+ )
800
+
801
+ def get(self, refresh = False) -> BlueData:
802
+ """
803
+ BlueData 형식의 데이터를 계산하여 리턴하고 레디스 캐시에 저장한다.
804
+ :param refresh:
805
+ :return:
806
+ """
807
+ redis_name = f"{self.code}_blue"
808
+ analyser_logger.info(f"{self} BlueData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
809
+
810
+ def fetch_generate_data(refresh_in: bool) -> dict:
811
+ return asdict(self._generate_data(refresh_in))
812
+
813
+ return BlueData(**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh))
814
+
815
+
816
+
817
+ @dataclass()
818
+ class GrowthData:
819
+ code: str
820
+ name: str
821
+
822
+ 매출액증가율_r: float
823
+ 매출액증가율_dict: dict
824
+
825
+ 영업이익률_c106: dict
826
+
827
+ score: list
828
+ date: list
829
+
830
+
831
+ class Growth:
832
+ def __init__(self, code: str):
833
+ assert utils.is_6digit(code), f'Invalid value : {code}'
834
+ analyser_logger.debug(f"Growth : 종목코드 ({code})")
835
+
836
+ self.c101 = myredis.C101(code)
837
+ self.c104 = myredis.C104(code, 'c104q')
838
+ self.c106 = myredis.C106(code, 'c106q')
839
+
840
+ self.name = self.c101.get_name()
841
+ self._code = code
842
+
843
+ def __str__(self):
844
+ return f"Growth({self.code}/{self.name})"
845
+
846
+ @property
847
+ def code(self) -> str:
848
+ return self._code
849
+
850
+ @code.setter
851
+ def code(self, code: str):
852
+ assert utils.is_6digit(code), f'Invalid value : {code}'
853
+ analyser_logger.debug(f"Growth : 종목코드 변경({self.code} -> {code})")
854
+
855
+ self.c101.code = code
856
+ self.c104.code = code
857
+ self.c106.code = code
858
+
859
+ self.name = self.c101.get_name()
860
+ self._code = code
861
+
862
+ def _score(self) -> list:
863
+ return [0,]
864
+
865
+ def _generate_data(self, refresh=False) -> GrowthData:
866
+ self.c104.page = 'c104y'
867
+ _, 매출액증가율_dict = self.c104.find('매출액증가율', remove_yoy=True, refresh=refresh)
868
+
869
+ self.c104.page = 'c104q'
870
+ d2, 매출액증가율_r = self.c104.latest_value_pop2('매출액증가율')
871
+
872
+ analyser_logger.info(f'매출액증가율 : {매출액증가율_r} {매출액증가율_dict}')
873
+
874
+ # c106 에서 타 기업과 영업이익률 비교
875
+ self.c106.page = 'c106y'
876
+ 영업이익률_c106 = self.c106.find('영업이익률', refresh)
877
+
878
+ score = self._score()
879
+
880
+ try:
881
+ date_list = Tools.date_set(d2)
882
+ except ValueError:
883
+ # 날짜 데이터가 없는경우
884
+ date_list = ['', ]
885
+
886
+ return GrowthData(
887
+ code= self.code,
888
+ name= self.name,
889
+
890
+ 매출액증가율_r= 매출액증가율_r,
891
+ 매출액증가율_dict= 매출액증가율_dict,
892
+
893
+ 영업이익률_c106= 영업이익률_c106,
894
+
895
+ score= score,
896
+ date= date_list,
897
+ )
898
+
899
+ def get(self, refresh = False) -> GrowthData:
900
+ """
901
+ GrowthData 형식의 데이터를 계산하여 리턴하고 레디스 캐시에 저장한다.
902
+ :param refresh:
903
+ :return:
904
+ """
905
+ redis_name = f"{self.code}_growth"
906
+ analyser_logger.info(f"{self} GrowthData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
907
+
908
+ def fetch_generate_data(refresh_in: bool) -> dict:
909
+ return asdict(self._generate_data(refresh_in))
910
+
911
+ return GrowthData(**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh))
912
+
913
+
914
+
915
+
916
+ """
917
+ - 각분기의 합이 연이 아닌 타이틀(즉 sum_4q를 사용하면 안됨)
918
+ '*(지배)당기순이익'
919
+ '*(비지배)당기순이익'
920
+ '장기차입금'
921
+ '현금및예치금'
922
+ '매도가능금융자산'
923
+ '매도파생결합증권'
924
+ '만기보유금융자산'
925
+ '당기손익-공정가치측정금융부채'
926
+ '당기손익인식(지정)금융부채'
927
+ '단기매매금융자산'
928
+ '단기매매금융부채'
929
+ '예수부채'
930
+ '차입부채'
931
+ '기타부채'
932
+ '보험계약부채(책임준비금)'
933
+ '*CAPEX'
934
+ 'ROE'
935
+ """
936
+
937
+ """
938
+ - sum_4q를 사용해도 되는 타이틀
939
+ '자산총계'
940
+ '당기순이익'
941
+ '유동자산'
942
+ '유동부채'
943
+ '비유동부채'
944
+
945
+ '영업활동으로인한현금흐름'
946
+ '재무활동으로인한현금흐름'
947
+ 'ROIC'
948
+ """