analyser_hj3415 2.6.6__py2.py3-none-any.whl → 2.7.0__py2.py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- analyser_hj3415/cli.py +111 -41
- analyser_hj3415/eval.py +948 -0
- analyser_hj3415/workroom/__init__.py +0 -0
- analyser_hj3415/workroom/lstm.py +113 -0
- analyser_hj3415/workroom/myprophet.py +58 -0
- analyser_hj3415/workroom/mysklearn.py +50 -0
- analyser_hj3415/workroom/mysklearn2.py +39 -0
- analyser_hj3415/{analysers → workroom}/score.py +1 -52
- {analyser_hj3415-2.6.6.dist-info → analyser_hj3415-2.7.0.dist-info}/METADATA +3 -3
- analyser_hj3415-2.7.0.dist-info/RECORD +16 -0
- analyser_hj3415/analysers/eval.py +0 -274
- analyser_hj3415/analysers/report.py +0 -182
- analyser_hj3415/myredis.py +0 -187
- analyser_hj3415/tools.py +0 -247
- analyser_hj3415-2.6.6.dist-info/RECORD +0 -14
- /analyser_hj3415/{trash.py → workroom/trash.py} +0 -0
- {analyser_hj3415-2.6.6.dist-info → analyser_hj3415-2.7.0.dist-info}/LICENSE +0 -0
- {analyser_hj3415-2.6.6.dist-info → analyser_hj3415-2.7.0.dist-info}/WHEEL +0 -0
- {analyser_hj3415-2.6.6.dist-info → analyser_hj3415-2.7.0.dist-info}/entry_points.txt +0 -0
analyser_hj3415/eval.py
ADDED
@@ -0,0 +1,948 @@
|
|
1
|
+
from dataclasses import dataclass, asdict
|
2
|
+
|
3
|
+
from utils_hj3415 import utils, helpers
|
4
|
+
from typing import Tuple
|
5
|
+
from db_hj3415 import myredis, mymongo
|
6
|
+
import math
|
7
|
+
from analyser_hj3415.cli import AnalyserSettingsManager
|
8
|
+
from collections import OrderedDict
|
9
|
+
import logging
|
10
|
+
|
11
|
+
analyser_logger = helpers.setup_logger('analyser_logger', logging.INFO)
|
12
|
+
|
13
|
+
|
14
|
+
class Tools:
|
15
|
+
@staticmethod
|
16
|
+
def cal_deviation(v1: float, v2: float) -> float:
|
17
|
+
"""
|
18
|
+
괴리율 구하는 공식
|
19
|
+
:param v1:
|
20
|
+
:param v2:
|
21
|
+
:return:
|
22
|
+
"""
|
23
|
+
try:
|
24
|
+
deviation = abs((v1 - v2) / v1) * 100
|
25
|
+
except ZeroDivisionError:
|
26
|
+
deviation = math.nan
|
27
|
+
return deviation
|
28
|
+
|
29
|
+
@staticmethod
|
30
|
+
def date_set(*args) -> list:
|
31
|
+
"""
|
32
|
+
비유효한 내용 제거(None,nan)하고 중복된 항목 제거하고 리스트로 반환한다.
|
33
|
+
여기서 set의 의미는 집합을 뜻함
|
34
|
+
:param args:
|
35
|
+
:return:
|
36
|
+
"""
|
37
|
+
return [i for i in {*args} if i != "" and i is not math.nan and i is not None]
|
38
|
+
|
39
|
+
@staticmethod
|
40
|
+
def calc당기순이익(c103: myredis.C103, refresh: bool) -> Tuple[str, float]:
|
41
|
+
"""
|
42
|
+
지배지분 당기순이익 계산
|
43
|
+
|
44
|
+
일반적인 경우로는 직전 지배주주지분 당기순이익을 찾아서 반환한다.\n
|
45
|
+
금융기관의 경우는 지배당기순이익이 없기 때문에\n
|
46
|
+
계산을 통해서 간접적으로 구한다.\n
|
47
|
+
"""
|
48
|
+
name = myredis.Corps(c103.code, 'c101').get_name(refresh=refresh)
|
49
|
+
|
50
|
+
analyser_logger.info(f'{c103.code} / {name} Tools : 당기순이익 계산.. refresh : {refresh}')
|
51
|
+
c103.page = 'c103재무상태표q'
|
52
|
+
|
53
|
+
d1, 지배당기순이익 = c103.latest_value_pop2('*(지배)당기순이익', refresh)
|
54
|
+
analyser_logger.debug(f"*(지배)당기순이익: {지배당기순이익}")
|
55
|
+
|
56
|
+
if math.isnan(지배당기순이익):
|
57
|
+
analyser_logger.warning(f"{c103.code} / {name} - (지배)당기순이익이 없는 종목. 수동으로 계산합니다.")
|
58
|
+
c103.page = 'c103손익계산서q'
|
59
|
+
d2, 최근4분기당기순이익 = c103.sum_recent_4q('당기순이익', refresh)
|
60
|
+
analyser_logger.debug(f"{c103.code} / {name} - 최근4분기당기순이익 : {최근4분기당기순이익}")
|
61
|
+
c103.page = 'c103재무상태표y'
|
62
|
+
d3, 비지배당기순이익 = c103.latest_value_pop2('*(비지배)당기순이익', refresh)
|
63
|
+
analyser_logger.debug(f"{c103.code} / {name} - 비지배당기순이익y : {비지배당기순이익}")
|
64
|
+
# 가변리스트 언패킹으로 하나의 날짜만 사용하고 나머지는 버린다.
|
65
|
+
# 여기서 *_는 “나머지 값을 다 무시하겠다”는 의미
|
66
|
+
analyser_logger.debug(f"d2:{d2}, d3: {d3}")
|
67
|
+
try:
|
68
|
+
date, *_ = Tools.date_set(d2, d3)
|
69
|
+
except ValueError:
|
70
|
+
# 날짜 데이터가 없는경우
|
71
|
+
date = ''
|
72
|
+
계산된지배당기순이익= round(최근4분기당기순이익 - utils.nan_to_zero(비지배당기순이익), 1)
|
73
|
+
analyser_logger.debug(f"{c103.code} / {name} - 계산된 지배당기순이익 : {계산된지배당기순이익}")
|
74
|
+
return date, 계산된지배당기순이익
|
75
|
+
else:
|
76
|
+
return d1, 지배당기순이익
|
77
|
+
|
78
|
+
@staticmethod
|
79
|
+
def calc유동자산(c103: myredis.C103, refresh: bool) -> Tuple[str, float]:
|
80
|
+
"""유효한 유동자산 계산
|
81
|
+
|
82
|
+
일반적인 경우로 유동자산을 찾아서 반환한다.\n
|
83
|
+
금융기관의 경우는 간접적으로 계산한다.\n
|
84
|
+
"""
|
85
|
+
name = myredis.Corps(c103.code, 'c101').get_name(refresh=refresh)
|
86
|
+
|
87
|
+
analyser_logger.info(f'{c103.code} / {name} Tools : 유동자산계산... refresh : {refresh}')
|
88
|
+
c103.page = 'c103재무상태표q'
|
89
|
+
|
90
|
+
d, 유동자산 = c103.sum_recent_4q('유동자산', refresh)
|
91
|
+
if math.isnan(유동자산):
|
92
|
+
analyser_logger.warning(f"{c103.code} / {name} - 유동자산이 없는 종목. 수동으로 계산합니다(금융관련업종일 가능성있음).")
|
93
|
+
d1, v1 = c103.latest_value_pop2('현금및예치금', refresh)
|
94
|
+
d2, v2 = c103.latest_value_pop2('단기매매금융자산', refresh)
|
95
|
+
d3, v3 = c103.latest_value_pop2('매도가능금융자산', refresh)
|
96
|
+
d4, v4 = c103.latest_value_pop2('만기보유금융자산', refresh)
|
97
|
+
analyser_logger.debug(f'{c103.code} / {name} 현금및예치금 : {d1}, {v1}')
|
98
|
+
analyser_logger.debug(f'{c103.code} / {name} 단기매매금융자산 : {d2}, {v2}')
|
99
|
+
analyser_logger.debug(f'{c103.code} / {name} 매도가능금융자산 : {d3}, {v3}')
|
100
|
+
analyser_logger.debug(f'{c103.code} / {name} 만기보유금융자산 : {d4}, {v4}')
|
101
|
+
|
102
|
+
try:
|
103
|
+
date, *_ = Tools.date_set(d1, d2, d3, d4)
|
104
|
+
except ValueError:
|
105
|
+
# 날짜 데이터가 없는경우
|
106
|
+
date = ''
|
107
|
+
계산된유동자산value = round(utils.nan_to_zero(v1) + utils.nan_to_zero(v2) + utils.nan_to_zero(v3) + utils.nan_to_zero(v4),1)
|
108
|
+
|
109
|
+
analyser_logger.info(f"{c103.code} / {name} - 계산된 유동자산 : {계산된유동자산value}")
|
110
|
+
return date, 계산된유동자산value
|
111
|
+
else:
|
112
|
+
return d, 유동자산
|
113
|
+
|
114
|
+
@staticmethod
|
115
|
+
def calc유동부채(c103: myredis.C103, refresh: bool) -> Tuple[str, float]:
|
116
|
+
"""유효한 유동부채 계산
|
117
|
+
|
118
|
+
일반적인 경우로 유동부채를 찾아서 반환한다.\n
|
119
|
+
금융기관의 경우는 간접적으로 계산한다.\n
|
120
|
+
"""
|
121
|
+
name = myredis.Corps(c103.code, 'c101').get_name(refresh=refresh)
|
122
|
+
|
123
|
+
analyser_logger.info(f'{c103.code} / {name} Tools : 유동부채계산... refresh : {refresh}')
|
124
|
+
c103.page = 'c103재무상태표q'
|
125
|
+
|
126
|
+
d, 유동부채 = c103.sum_recent_4q('유동부채', refresh)
|
127
|
+
if math.isnan(유동부채):
|
128
|
+
analyser_logger.warning(f"{c103.code} / {name} - 유동부채가 없는 종목. 수동으로 계산합니다.")
|
129
|
+
d1, v1 = c103.latest_value_pop2('당기손익인식(지정)금융부채', refresh)
|
130
|
+
d2, v2 = c103.latest_value_pop2('당기손익-공정가치측정금융부채', refresh)
|
131
|
+
d3, v3 = c103.latest_value_pop2('매도파생결합증권', refresh)
|
132
|
+
d4, v4 = c103.latest_value_pop2('단기매매금융부채', refresh)
|
133
|
+
analyser_logger.debug(f'{c103.code} / {name} 당기손익인식(지정)금융부채 : {d1}, {v1}')
|
134
|
+
analyser_logger.debug(f'{c103.code} / {name} 당기손익-공정가치측정금융부채 : {d2}, {v2}')
|
135
|
+
analyser_logger.debug(f'{c103.code} / {name} 매도파생결합증권 : {d3}, {v3}')
|
136
|
+
analyser_logger.debug(f'{c103.code} / {name} 단기매매금융부채 : {d4}, {v4}')
|
137
|
+
|
138
|
+
try:
|
139
|
+
date, *_ = Tools.date_set(d1, d2, d3, d4)
|
140
|
+
except ValueError:
|
141
|
+
# 날짜 데이터가 없는경우
|
142
|
+
date = ''
|
143
|
+
계산된유동부채value = round(utils.nan_to_zero(v1) + utils.nan_to_zero(v2) + utils.nan_to_zero(v3) + utils.nan_to_zero(v4), 1)
|
144
|
+
|
145
|
+
analyser_logger.info(f"{c103.code} / {name} - 계산된 유동부채 : {계산된유동부채value}")
|
146
|
+
return date, 계산된유동부채value
|
147
|
+
else:
|
148
|
+
return d, 유동부채
|
149
|
+
|
150
|
+
|
151
|
+
|
152
|
+
|
153
|
+
|
154
|
+
|
155
|
+
|
156
|
+
@dataclass
|
157
|
+
class RedData:
|
158
|
+
code: str
|
159
|
+
name: str
|
160
|
+
|
161
|
+
# 사업가치 계산 - 지배주주지분 당기순이익 / 기대수익률
|
162
|
+
사업가치: float
|
163
|
+
지배주주당기순이익: float
|
164
|
+
expect_earn: float
|
165
|
+
|
166
|
+
# 재산가치 계산 - 유동자산 - (유동부채*1.2) + 고정자산중 투자자산
|
167
|
+
재산가치: float
|
168
|
+
유동자산: float
|
169
|
+
유동부채: float
|
170
|
+
투자자산: float
|
171
|
+
투자부동산: float
|
172
|
+
|
173
|
+
# 부채평가 - 비유동부채
|
174
|
+
부채평가: float
|
175
|
+
|
176
|
+
# 발행주식수
|
177
|
+
발행주식수: int
|
178
|
+
|
179
|
+
date: list
|
180
|
+
|
181
|
+
red_price: float
|
182
|
+
score: int
|
183
|
+
|
184
|
+
def __post_init__(self):
|
185
|
+
if not utils.is_6digit(self.code):
|
186
|
+
raise ValueError(f"code는 6자리 숫자형 문자열이어야합니다. (입력값: {self.code})")
|
187
|
+
|
188
|
+
|
189
|
+
class Red:
|
190
|
+
expect_earn = AnalyserSettingsManager().get_value('EXPECT_EARN')
|
191
|
+
|
192
|
+
def __init__(self, code: str):
|
193
|
+
assert utils.is_6digit(code), f'Invalid value : {code}'
|
194
|
+
analyser_logger.debug(f"Red : 초기화 ({code})")
|
195
|
+
self.c101 = myredis.C101(code)
|
196
|
+
self.c103 = myredis.C103(code, 'c103재무상태표q')
|
197
|
+
|
198
|
+
self.name = self.c101.get_name()
|
199
|
+
self._code = code
|
200
|
+
|
201
|
+
def __str__(self):
|
202
|
+
return f"Red({self.code}/{self.name})"
|
203
|
+
|
204
|
+
@property
|
205
|
+
def code(self) -> str:
|
206
|
+
return self._code
|
207
|
+
|
208
|
+
@code.setter
|
209
|
+
def code(self, code: str):
|
210
|
+
assert utils.is_6digit(code), f'Invalid value : {code}'
|
211
|
+
analyser_logger.debug(f"Red : 종목코드 변경({self.code} -> {code})")
|
212
|
+
self.c101.code = code
|
213
|
+
self.c103.code = code
|
214
|
+
|
215
|
+
self.name = self.c101.get_name()
|
216
|
+
self._code = code
|
217
|
+
|
218
|
+
def _calc비유동부채(self, refresh: bool) -> Tuple[str, float]:
|
219
|
+
"""유효한 비유동부채 계산
|
220
|
+
|
221
|
+
일반적인 경우로 비유동부채를 찾아서 반환한다.\n
|
222
|
+
금융기관의 경우는 간접적으로 계산한다.\n
|
223
|
+
"""
|
224
|
+
analyser_logger.info(f'In the calc비유동부채... refresh : {refresh}')
|
225
|
+
self.c103.page = 'c103재무상태표q'
|
226
|
+
|
227
|
+
d, 비유동부채 = self.c103.sum_recent_4q('비유동부채', refresh)
|
228
|
+
if math.isnan(비유동부채):
|
229
|
+
analyser_logger.warning(f"{self} - 비유동부채가 없는 종목. 수동으로 계산합니다.")
|
230
|
+
# 보험관련업종은 예수부채가 없는대신 보험계약부채가 있다...
|
231
|
+
d1, v1 = self.c103.latest_value_pop2('예수부채', refresh)
|
232
|
+
d2, v2 = self.c103.latest_value_pop2('보험계약부채(책임준비금)', refresh)
|
233
|
+
d3, v3 = self.c103.latest_value_pop2('차입부채', refresh)
|
234
|
+
d4, v4 = self.c103.latest_value_pop2('기타부채', refresh)
|
235
|
+
analyser_logger.debug(f'예수부채 : {d1}, {v1}')
|
236
|
+
analyser_logger.debug(f'보험계약부채(책임준비금) : {d2}, {v2}')
|
237
|
+
analyser_logger.debug(f'차입부채 : {d3}, {v3}')
|
238
|
+
analyser_logger.debug(f'기타부채 : {d4}, {v4}')
|
239
|
+
|
240
|
+
try:
|
241
|
+
date, *_ = Tools.date_set(d1, d2, d3, d4)
|
242
|
+
except ValueError:
|
243
|
+
# 날짜 데이터가 없는경우
|
244
|
+
date = ''
|
245
|
+
계산된비유동부채value = round(utils.nan_to_zero(v1) + utils.nan_to_zero(v2) + utils.nan_to_zero(v3) + utils.nan_to_zero(v4),1)
|
246
|
+
analyser_logger.info(f"{self} - 계산된 비유동부채 : {계산된비유동부채value}")
|
247
|
+
return date, 계산된비유동부채value
|
248
|
+
else:
|
249
|
+
return d, 비유동부채
|
250
|
+
|
251
|
+
def _score(self, red_price: int, refresh: bool) -> int:
|
252
|
+
"""red price와 최근 주가의 괴리율 파악
|
253
|
+
|
254
|
+
Returns:
|
255
|
+
int : 주가와 red price 비교한 괴리율
|
256
|
+
"""
|
257
|
+
try:
|
258
|
+
recent_price = utils.to_int(self.c101.get_recent(refresh)['주가'])
|
259
|
+
except KeyError:
|
260
|
+
return 0
|
261
|
+
|
262
|
+
deviation = Tools.cal_deviation(recent_price, red_price)
|
263
|
+
if red_price < 0 or (recent_price >= red_price):
|
264
|
+
score = 0
|
265
|
+
else:
|
266
|
+
score = utils.to_int(math.log10(deviation + 1) * 33) # desmos그래프상 33이 제일 적당한듯(최대100점에 가깝게)
|
267
|
+
|
268
|
+
analyser_logger.debug(f"최근주가 : {recent_price} red가격 : {red_price} 괴리율 : {utils.to_int(deviation)} score : {score}")
|
269
|
+
|
270
|
+
return score
|
271
|
+
|
272
|
+
def _generate_data(self, refresh: bool) -> RedData:
|
273
|
+
d1, 지배주주당기순이익 = Tools.calc당기순이익(self.c103, refresh)
|
274
|
+
analyser_logger.debug(f"{self} 지배주주당기순이익: {지배주주당기순이익}")
|
275
|
+
d2, 유동자산 = Tools.calc유동자산(self.c103, refresh)
|
276
|
+
d3, 유동부채 = Tools.calc유동부채(self.c103, refresh)
|
277
|
+
d4, 부채평가 = self._calc비유동부채(refresh)
|
278
|
+
|
279
|
+
self.c103.page = 'c103재무상태표q'
|
280
|
+
d5, 투자자산 = self.c103.latest_value_pop2('투자자산', refresh)
|
281
|
+
d6, 투자부동산 = self.c103.latest_value_pop2('투자부동산', refresh)
|
282
|
+
|
283
|
+
# 사업가치 계산 - 지배주주지분 당기순이익 / 기대수익률
|
284
|
+
사업가치 = round(지배주주당기순이익 / Red.expect_earn, 2)
|
285
|
+
|
286
|
+
# 재산가치 계산 - 유동자산 - (유동부채*1.2) + 고정자산중 투자자산
|
287
|
+
재산가치 = round(유동자산 - (유동부채 * 1.2) + utils.nan_to_zero(투자자산) + utils.nan_to_zero(투자부동산), 2)
|
288
|
+
|
289
|
+
_, 발행주식수 = self.c103.latest_value_pop2('발행주식수', refresh)
|
290
|
+
if math.isnan(발행주식수):
|
291
|
+
발행주식수 = utils.to_int(self.c101.get_recent(refresh).get('발행주식'))
|
292
|
+
else:
|
293
|
+
발행주식수 = 발행주식수 * 1000
|
294
|
+
|
295
|
+
try:
|
296
|
+
red_price = round(((사업가치 + 재산가치 - 부채평가) * 100000000) / 발행주식수)
|
297
|
+
except (ZeroDivisionError, ValueError):
|
298
|
+
red_price = math.nan
|
299
|
+
|
300
|
+
score = self._score(red_price, refresh)
|
301
|
+
|
302
|
+
try:
|
303
|
+
date_list = Tools.date_set(d1, d2, d3, d4)
|
304
|
+
except ValueError:
|
305
|
+
# 날짜 데이터가 없는경우
|
306
|
+
date_list = ['',]
|
307
|
+
|
308
|
+
return RedData(
|
309
|
+
code = self.code,
|
310
|
+
name = self.name,
|
311
|
+
사업가치 = 사업가치,
|
312
|
+
지배주주당기순이익 = 지배주주당기순이익,
|
313
|
+
expect_earn = Red.expect_earn,
|
314
|
+
재산가치 = 재산가치,
|
315
|
+
유동자산 = 유동자산,
|
316
|
+
유동부채 = 유동부채,
|
317
|
+
투자자산 = 투자자산,
|
318
|
+
투자부동산 = 투자부동산,
|
319
|
+
부채평가 = 부채평가,
|
320
|
+
발행주식수 = 발행주식수,
|
321
|
+
date = date_list,
|
322
|
+
red_price = red_price,
|
323
|
+
score = score,
|
324
|
+
)
|
325
|
+
|
326
|
+
def get(self, refresh = False) -> RedData:
|
327
|
+
"""
|
328
|
+
RedData 형식의 데이터를 계산하여 리턴하고 레디스 캐시에 저장한다.
|
329
|
+
:param refresh:
|
330
|
+
:return:
|
331
|
+
"""
|
332
|
+
redis_name = f"{self.code}_red"
|
333
|
+
analyser_logger.info(f"{self} RedData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
|
334
|
+
|
335
|
+
def fetch_generate_data(refresh_in: bool) -> dict:
|
336
|
+
return asdict(self._generate_data(refresh_in))
|
337
|
+
|
338
|
+
return RedData(**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh))
|
339
|
+
|
340
|
+
@classmethod
|
341
|
+
def ranking(cls, expect_earn: float = None, refresh = False) -> OrderedDict:
|
342
|
+
"""
|
343
|
+
redis를 사용하며 red score를 계산해서 0이상의 값을 가지는 종목을 순서대로 저장하여 반환한다.(캐시 유효시간 12시간)
|
344
|
+
:param expect_earn: 기대수익률(일반적으로 0.06 - 0.10)
|
345
|
+
:param refresh: 캐시를 사용하지 않고 강제로 다시 계산
|
346
|
+
:return: OrderedDict([('023590', 101),
|
347
|
+
('010060', 91),...]), 레디스이름
|
348
|
+
"""
|
349
|
+
|
350
|
+
print("**** Start red_ranking... ****")
|
351
|
+
# expect_earn 및 refresh 설정
|
352
|
+
if expect_earn is None:
|
353
|
+
expect_earn = cls.expect_earn
|
354
|
+
analyser_logger.info(f"기대수익률을 {expect_earn}으로 설정합니다.")
|
355
|
+
previous_expect_earn = float(AnalyserSettingsManager().get_value('RED_RANKING_EXPECT_EARN'))
|
356
|
+
analyser_logger.debug(f"previous red ranking expect earn : {previous_expect_earn}")
|
357
|
+
if previous_expect_earn != expect_earn:
|
358
|
+
analyser_logger.warning(f"expect earn : {expect_earn} / RED_RANKING_EXPECT_EARN : {previous_expect_earn} 두 값이 달라 refresh = True")
|
359
|
+
refresh = True
|
360
|
+
|
361
|
+
redis_name = 'red_ranking'
|
362
|
+
analyser_logger.info(f"redisname: '{redis_name}' / refresh : {refresh}")
|
363
|
+
|
364
|
+
def fetch_ranking(expect_earn_in: float, refresh_in: bool) -> dict:
|
365
|
+
data = {}
|
366
|
+
# 저장된 기대수익률을 불러서 임시저장
|
367
|
+
ee_orig = Red.expect_earn
|
368
|
+
# 원하는 기대수익률로 클래스 세팅
|
369
|
+
Red.expect_earn = expect_earn_in
|
370
|
+
AnalyserSettingsManager().set_value('RED_RANKING_EXPECT_EARN', str(expect_earn_in))
|
371
|
+
for i, code in enumerate(myredis.Corps.list_all_codes()):
|
372
|
+
red = Red(code)
|
373
|
+
red_score = red.get(refresh=refresh_in).score
|
374
|
+
if red_score > 0:
|
375
|
+
data[code] = red_score
|
376
|
+
print(f"{i}: {red} - {red_score}")
|
377
|
+
# 원래 저장되었던 기대수익률로 다시 복원
|
378
|
+
Red.expect_earn = ee_orig
|
379
|
+
return data
|
380
|
+
|
381
|
+
data_dict = myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_ranking, expect_earn, refresh, timer=3600 * 12)
|
382
|
+
|
383
|
+
return OrderedDict(sorted(data_dict.items(), key=lambda item: item[1], reverse=True))
|
384
|
+
|
385
|
+
|
386
|
+
@dataclass
|
387
|
+
class MilData:
|
388
|
+
code: str
|
389
|
+
name: str
|
390
|
+
|
391
|
+
시가총액억: float
|
392
|
+
|
393
|
+
주주수익률: float
|
394
|
+
재무활동현금흐름: float
|
395
|
+
|
396
|
+
이익지표: float
|
397
|
+
영업활동현금흐름: float
|
398
|
+
지배주주당기순이익: float
|
399
|
+
|
400
|
+
#투자수익률
|
401
|
+
roic_r: float
|
402
|
+
roic_dict: dict
|
403
|
+
roe_r: float
|
404
|
+
roe_106: dict
|
405
|
+
roa_r: float
|
406
|
+
|
407
|
+
#가치지표
|
408
|
+
fcf_dict: dict
|
409
|
+
pfcf_dict: dict
|
410
|
+
pcr_dict: dict
|
411
|
+
|
412
|
+
score: list
|
413
|
+
date: list
|
414
|
+
|
415
|
+
|
416
|
+
class Mil:
|
417
|
+
def __init__(self, code: str):
|
418
|
+
assert utils.is_6digit(code), f'Invalid value : {code}'
|
419
|
+
analyser_logger.debug(f"Mil : 종목코드 ({code})")
|
420
|
+
|
421
|
+
self.c101 = myredis.C101(code)
|
422
|
+
self.c103 = myredis.C103(code, 'c103현금흐름표q')
|
423
|
+
self.c104 = myredis.C104(code, 'c104q')
|
424
|
+
self.c106 = myredis.C106(code, 'c106q')
|
425
|
+
|
426
|
+
self.name = self.c101.get_name()
|
427
|
+
self._code = code
|
428
|
+
|
429
|
+
def __str__(self):
|
430
|
+
return f"Mil({self.code}/{self.name})"
|
431
|
+
|
432
|
+
@property
|
433
|
+
def code(self) -> str:
|
434
|
+
return self._code
|
435
|
+
|
436
|
+
@code.setter
|
437
|
+
def code(self, code: str):
|
438
|
+
assert utils.is_6digit(code), f'Invalid value : {code}'
|
439
|
+
analyser_logger.debug(f"Mil : 종목코드 변경({self.code} -> {code})")
|
440
|
+
|
441
|
+
self.c101.code = code
|
442
|
+
self.c103.code = code
|
443
|
+
self.c104.code = code
|
444
|
+
self.c106.code = code
|
445
|
+
|
446
|
+
self.name = self.c101.get_name()
|
447
|
+
self._code = code
|
448
|
+
|
449
|
+
def get_marketcap억(self, refresh: bool) -> float:
|
450
|
+
"""
|
451
|
+
시가총액(억원) 반환
|
452
|
+
:return:
|
453
|
+
"""
|
454
|
+
c101r = self.c101.get_recent(refresh)
|
455
|
+
시가총액 = int(utils.to_int(c101r.get('시가총액', math.nan)) / 100000000)
|
456
|
+
analyser_logger.debug(f"시가총액: {시가총액}억원")
|
457
|
+
return 시가총액
|
458
|
+
|
459
|
+
def _calc주주수익률(self, 시가총액_억: float, refresh: bool) -> Tuple[str, float, float]:
|
460
|
+
self.c103.page = 'c103현금흐름표q'
|
461
|
+
d, 재무활동현금흐름 = self.c103.sum_recent_4q('재무활동으로인한현금흐름', refresh)
|
462
|
+
try:
|
463
|
+
주주수익률 = round((재무활동현금흐름 / 시가총액_억 * -100), 2)
|
464
|
+
except ZeroDivisionError:
|
465
|
+
주주수익률 = math.nan
|
466
|
+
analyser_logger.warning(f'{self} 주주수익률: {주주수익률} 재무활동현금흐름: {재무활동현금흐름}')
|
467
|
+
return d, 주주수익률, 재무활동현금흐름
|
468
|
+
|
469
|
+
def _calc이익지표(self, 시가총액_억: float, refresh: bool) -> Tuple[str, float, float, float]:
|
470
|
+
d1, 지배주주당기순이익 = Tools.calc당기순이익(self.c103, refresh)
|
471
|
+
self.c103.page = 'c103현금흐름표q'
|
472
|
+
d2, 영업활동현금흐름 = self.c103.sum_recent_4q('영업활동으로인한현금흐름', refresh)
|
473
|
+
try:
|
474
|
+
이익지표 = round(((지배주주당기순이익 - 영업활동현금흐름) / 시가총액_억) * 100, 2)
|
475
|
+
except ZeroDivisionError:
|
476
|
+
이익지표 = math.nan
|
477
|
+
analyser_logger.warning(f'{self} 이익지표: {이익지표} 영업활동현금흐름: {영업활동현금흐름} 지배주주당기순이익: {지배주주당기순이익}')
|
478
|
+
try:
|
479
|
+
date, *_ = Tools.date_set(d1, d2)
|
480
|
+
except ValueError:
|
481
|
+
# 날짜 데이터가 없는경우
|
482
|
+
date = ''
|
483
|
+
return date , 이익지표, 영업활동현금흐름, 지배주주당기순이익
|
484
|
+
|
485
|
+
def _calc투자수익률(self, refresh: bool) -> tuple:
|
486
|
+
self.c104.page = 'c104q'
|
487
|
+
self.c106.page = 'c106q'
|
488
|
+
d1, roic_r = self.c104.sum_recent_4q('ROIC', refresh)
|
489
|
+
_, roic_dict = self.c104.find('ROIC', remove_yoy=True, del_unnamed_key=True, refresh=refresh)
|
490
|
+
d2, roe_r = self.c104.latest_value_pop2('ROE', refresh)
|
491
|
+
roe106 = self.c106.find('ROE', refresh)
|
492
|
+
d3, roa_r = self.c104.latest_value_pop2('ROA', refresh)
|
493
|
+
|
494
|
+
try:
|
495
|
+
date, *_ = Tools.date_set(d1, d2, d3)
|
496
|
+
except ValueError:
|
497
|
+
# 날짜 데이터가 없는경우
|
498
|
+
date = ''
|
499
|
+
|
500
|
+
return date, roic_r, roic_dict, roe_r, roe106, roa_r
|
501
|
+
|
502
|
+
def _calcFCF(self, refresh: bool) -> dict:
|
503
|
+
"""
|
504
|
+
FCF 계산
|
505
|
+
Returns:
|
506
|
+
dict: 계산된 fcf 딕셔너리 또는 영업현금흐름 없는 경우 - {}
|
507
|
+
|
508
|
+
Note:
|
509
|
+
CAPEX 가 없는 업종은 영업활동현금흐름을 그대로 사용한다.\n
|
510
|
+
|
511
|
+
"""
|
512
|
+
self.c103.page = 'c103현금흐름표y'
|
513
|
+
_, 영업활동현금흐름_dict = self.c103.find('영업활동으로인한현금흐름', remove_yoy=True, del_unnamed_key=True, refresh=refresh)
|
514
|
+
|
515
|
+
self.c103.page = 'c103재무상태표y'
|
516
|
+
_, capex = self.c103.find('*CAPEX', remove_yoy=True, del_unnamed_key=True, refresh=refresh)
|
517
|
+
|
518
|
+
analyser_logger.debug(f'영업활동현금흐름 {영업활동현금흐름_dict}')
|
519
|
+
analyser_logger.debug(f'CAPEX {capex}')
|
520
|
+
|
521
|
+
if len(영업활동현금흐름_dict) == 0:
|
522
|
+
return {}
|
523
|
+
|
524
|
+
if len(capex) == 0:
|
525
|
+
# CAPEX 가 없는 업종은 영업활동현금흐름을 그대로 사용한다.
|
526
|
+
analyser_logger.warning(f"{self} - CAPEX가 없는 업종으로 영업현금흐름을 그대로 사용합니다..")
|
527
|
+
return 영업활동현금흐름_dict
|
528
|
+
|
529
|
+
# 영업 활동으로 인한 현금 흐름에서 CAPEX 를 각 연도별로 빼주어 fcf 를 구하고 리턴값으로 fcf 딕셔너리를 반환한다.
|
530
|
+
fcf_dict = {}
|
531
|
+
for i in range(len(영업활동현금흐름_dict)):
|
532
|
+
# 영업활동현금흐름에서 아이템을 하나씩 꺼내서 CAPEX 전체와 비교하여 같으면 차를 구해서 fcf_dict 에 추가한다.
|
533
|
+
영업활동현금흐름date, 영업활동현금흐름value = 영업활동현금흐름_dict.popitem()
|
534
|
+
# 해당 연도의 capex 가 없는 경우도 있어 일단 capex를 0으로 치고 먼저 추가한다.
|
535
|
+
fcf_dict[영업활동현금흐름date] = 영업활동현금흐름value
|
536
|
+
for CAPEXdate, CAPEXvalue in capex.items():
|
537
|
+
if 영업활동현금흐름date == CAPEXdate:
|
538
|
+
fcf_dict[영업활동현금흐름date] = round(영업활동현금흐름value - CAPEXvalue, 2)
|
539
|
+
|
540
|
+
analyser_logger.debug(f'fcf_dict {fcf_dict}')
|
541
|
+
# 연도순으로 정렬해서 딕셔너리로 반환한다.
|
542
|
+
return dict(sorted(fcf_dict.items(), reverse=False))
|
543
|
+
|
544
|
+
def _calcPFCF(self, 시가총액_억: float, fcf_dict: dict) -> dict:
|
545
|
+
"""Price to Free Cash Flow Ratio(주가 대비 자유 현금 흐름 비율)계산
|
546
|
+
|
547
|
+
PFCF = 시가총액 / FCF
|
548
|
+
|
549
|
+
Note:
|
550
|
+
https://www.investopedia.com/terms/p/pricetofreecashflow.asp
|
551
|
+
"""
|
552
|
+
if math.isnan(시가총액_억):
|
553
|
+
analyser_logger.warning(f"{self} - 시가총액이 nan으로 pFCF를 계산할수 없습니다.")
|
554
|
+
return {}
|
555
|
+
|
556
|
+
# pfcf 계산
|
557
|
+
pfcf_dict = {}
|
558
|
+
for FCFdate, FCFvalue in fcf_dict.items():
|
559
|
+
if FCFvalue == 0:
|
560
|
+
pfcf_dict[FCFdate] = math.nan
|
561
|
+
else:
|
562
|
+
pfcf_dict[FCFdate] = round(시가총액_억 / FCFvalue, 2)
|
563
|
+
|
564
|
+
pfcf_dict = mymongo.C1034.del_unnamed_key(pfcf_dict)
|
565
|
+
|
566
|
+
analyser_logger.debug(f'pfcf_dict : {pfcf_dict}')
|
567
|
+
return pfcf_dict
|
568
|
+
|
569
|
+
def _calc가치지표(self, 시가총액_억: float, refresh: bool) -> tuple:
|
570
|
+
self.c104.page = 'c104q'
|
571
|
+
|
572
|
+
fcf_dict = self._calcFCF(refresh)
|
573
|
+
pfcf_dict = self._calcPFCF(시가총액_억, fcf_dict)
|
574
|
+
|
575
|
+
d, pcr_dict = self.c104.find('PCR', remove_yoy=True, del_unnamed_key=True, refresh=refresh)
|
576
|
+
return d, fcf_dict, pfcf_dict, pcr_dict
|
577
|
+
|
578
|
+
def _score(self) -> list:
|
579
|
+
return [0,]
|
580
|
+
|
581
|
+
def _generate_data(self, refresh: bool) -> MilData:
|
582
|
+
analyser_logger.info(f"In generate_data..refresh : {refresh}")
|
583
|
+
시가총액_억 = self.get_marketcap억(refresh)
|
584
|
+
analyser_logger.info(f"{self} 시가총액(억) : {시가총액_억}")
|
585
|
+
|
586
|
+
d1, 주주수익률, 재무활동현금흐름 = self._calc주주수익률(시가총액_억, refresh)
|
587
|
+
analyser_logger.info(f"{self} 주주수익률 : {주주수익률}, {d1}")
|
588
|
+
|
589
|
+
d2, 이익지표, 영업활동현금흐름, 지배주주당기순이익 = self._calc이익지표(시가총액_억, refresh)
|
590
|
+
analyser_logger.info(f"{self} 이익지표 : {이익지표}, {d2}")
|
591
|
+
|
592
|
+
d3, roic_r, roic_dict, roe_r, roe106, roa_r = self._calc투자수익률(refresh)
|
593
|
+
d4, fcf_dict, pfcf_dict, pcr_dict = self._calc가치지표(시가총액_억, refresh)
|
594
|
+
|
595
|
+
score = self._score()
|
596
|
+
|
597
|
+
try:
|
598
|
+
date_list = Tools.date_set(d1, d2, d3, d4)
|
599
|
+
except ValueError:
|
600
|
+
# 날짜 데이터가 없는경우
|
601
|
+
date_list = ['',]
|
602
|
+
|
603
|
+
return MilData(
|
604
|
+
code= self.code,
|
605
|
+
name= self.name,
|
606
|
+
|
607
|
+
시가총액억= 시가총액_억,
|
608
|
+
|
609
|
+
주주수익률= 주주수익률,
|
610
|
+
재무활동현금흐름= 재무활동현금흐름,
|
611
|
+
|
612
|
+
이익지표= 이익지표,
|
613
|
+
영업활동현금흐름= 영업활동현금흐름,
|
614
|
+
지배주주당기순이익= 지배주주당기순이익,
|
615
|
+
|
616
|
+
roic_r= roic_r,
|
617
|
+
roic_dict= roic_dict,
|
618
|
+
roe_r= roe_r,
|
619
|
+
roe_106= roe106,
|
620
|
+
roa_r= roa_r,
|
621
|
+
|
622
|
+
fcf_dict= fcf_dict,
|
623
|
+
pfcf_dict= pfcf_dict,
|
624
|
+
pcr_dict= pcr_dict,
|
625
|
+
|
626
|
+
score= score,
|
627
|
+
date = date_list,
|
628
|
+
)
|
629
|
+
|
630
|
+
def get(self, refresh = False) -> MilData:
|
631
|
+
"""
|
632
|
+
MilData 형식의 데이터를 계산하여 리턴하고 레디스 캐시에 저장한다.
|
633
|
+
:param refresh:
|
634
|
+
:return:
|
635
|
+
"""
|
636
|
+
redis_name = f"{self.code}_mil"
|
637
|
+
analyser_logger.info(f"{self} MilData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
|
638
|
+
|
639
|
+
def fetch_generate_data(refresh_in: bool) -> dict:
|
640
|
+
return asdict(self._generate_data(refresh_in))
|
641
|
+
|
642
|
+
return MilData(**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh))
|
643
|
+
|
644
|
+
|
645
|
+
@dataclass()
|
646
|
+
class BlueData:
|
647
|
+
code: str
|
648
|
+
name: str
|
649
|
+
|
650
|
+
유동비율: float
|
651
|
+
|
652
|
+
이자보상배율_r: float
|
653
|
+
이자보상배율_dict: dict
|
654
|
+
|
655
|
+
순운전자본회전율_r: float
|
656
|
+
순운전자본회전율_dict: dict
|
657
|
+
|
658
|
+
재고자산회전율_r: float
|
659
|
+
재고자산회전율_dict: dict
|
660
|
+
재고자산회전율_c106: dict
|
661
|
+
|
662
|
+
순부채비율_r: float
|
663
|
+
순부채비율_dict: dict
|
664
|
+
|
665
|
+
score: list
|
666
|
+
date: list
|
667
|
+
|
668
|
+
|
669
|
+
class Blue:
|
670
|
+
def __init__(self, code: str):
|
671
|
+
assert utils.is_6digit(code), f'Invalid value : {code}'
|
672
|
+
analyser_logger.debug(f"Blue : 종목코드 ({code})")
|
673
|
+
|
674
|
+
self.c101 = myredis.C101(code)
|
675
|
+
self.c103 = myredis.C103(code, 'c103재무상태표q')
|
676
|
+
self.c104 = myredis.C104(code, 'c104q')
|
677
|
+
|
678
|
+
self.name = self.c101.get_name()
|
679
|
+
self._code = code
|
680
|
+
|
681
|
+
def __str__(self):
|
682
|
+
return f"Blue({self.code}/{self.name})"
|
683
|
+
|
684
|
+
@property
|
685
|
+
def code(self) -> str:
|
686
|
+
return self._code
|
687
|
+
|
688
|
+
@code.setter
|
689
|
+
def code(self, code: str):
|
690
|
+
assert utils.is_6digit(code), f'Invalid value : {code}'
|
691
|
+
analyser_logger.debug(f"Blue : 종목코드 변경({self.code} -> {code})")
|
692
|
+
|
693
|
+
self.c101.code = code
|
694
|
+
self.c103.code = code
|
695
|
+
self.c104.code = code
|
696
|
+
|
697
|
+
self.name = self.c101.get_name()
|
698
|
+
self._code = code
|
699
|
+
|
700
|
+
def _calc유동비율(self, pop_count: int, refresh: bool) -> Tuple[str, float]:
|
701
|
+
"""유동비율계산 - Blue에서 사용
|
702
|
+
|
703
|
+
c104q에서 최근유동비율 찾아보고 유효하지 않거나 \n
|
704
|
+
100이하인 경우에는수동으로 계산해서 다시 한번 평가해 본다.\n
|
705
|
+
"""
|
706
|
+
analyser_logger.info(f'In the calc유동비율... refresh : {refresh}')
|
707
|
+
self.c104.page = 'c104q'
|
708
|
+
|
709
|
+
유동비율date, 유동비율value = self.c104.latest_value('유동비율', pop_count=pop_count)
|
710
|
+
analyser_logger.info(f'{self} 유동비율 : {유동비율value}/({유동비율date})')
|
711
|
+
|
712
|
+
if math.isnan(유동비율value) or 유동비율value < 100:
|
713
|
+
유동자산date, 유동자산value = Tools.calc유동자산(self.c103, refresh)
|
714
|
+
유동부채date, 유동부채value = Tools.calc유동부채(self.c103, refresh)
|
715
|
+
|
716
|
+
self.c103.page = 'c103현금흐름표q'
|
717
|
+
추정영업현금흐름date, 추정영업현금흐름value = self.c103.sum_recent_4q('영업활동으로인한현금흐름', refresh)
|
718
|
+
analyser_logger.debug(f'{self} 계산전 유동비율 : {유동비율value} / ({유동비율date})')
|
719
|
+
|
720
|
+
계산된유동비율 = 0
|
721
|
+
try:
|
722
|
+
계산된유동비율 = round(((유동자산value + 추정영업현금흐름value) / 유동부채value) * 100, 2)
|
723
|
+
except ZeroDivisionError:
|
724
|
+
analyser_logger.info(f'유동자산: {유동자산value} + 추정영업현금흐름: {추정영업현금흐름value} / 유동부채: {유동부채value}')
|
725
|
+
계산된유동비율 = float('inf')
|
726
|
+
finally:
|
727
|
+
analyser_logger.debug(f'{self} 계산된 유동비율 : {계산된유동비율}')
|
728
|
+
|
729
|
+
try:
|
730
|
+
date, *_ = Tools.date_set(유동자산date, 유동부채date, 추정영업현금흐름date)
|
731
|
+
except ValueError:
|
732
|
+
# 날짜 데이터가 없는경우
|
733
|
+
date = ''
|
734
|
+
analyser_logger.warning(f'{self} 유동비율 이상(100 이하 또는 nan) : {유동비율value} -> 재계산 : {계산된유동비율}')
|
735
|
+
return date, 계산된유동비율
|
736
|
+
else:
|
737
|
+
return 유동비율date, 유동비율value
|
738
|
+
|
739
|
+
def _score(self) -> list:
|
740
|
+
return [0,]
|
741
|
+
|
742
|
+
def _generate_data(self, refresh: bool) -> BlueData:
|
743
|
+
d1, 유동비율 = self._calc유동비율(pop_count=3, refresh=refresh)
|
744
|
+
analyser_logger.info(f'유동비율 {유동비율} / [{d1}]')
|
745
|
+
|
746
|
+
재고자산회전율_c106 = myredis.C106.make_like_c106(self.code, 'c104q', '재고자산회전율', refresh)
|
747
|
+
|
748
|
+
self.c104.page = 'c104y'
|
749
|
+
_, 이자보상배율_dict = self.c104.find('이자보상배율', remove_yoy=True, refresh=refresh)
|
750
|
+
_, 순운전자본회전율_dict = self.c104.find('순운전자본회전율', remove_yoy=True, refresh=refresh)
|
751
|
+
_, 재고자산회전율_dict = self.c104.find('재고자산회전율', remove_yoy=True, refresh=refresh)
|
752
|
+
_, 순부채비율_dict = self.c104.find('순부채비율', remove_yoy=True, refresh=refresh)
|
753
|
+
|
754
|
+
self.c104.page = 'c104q'
|
755
|
+
d6, 이자보상배율_r = self.c104.latest_value_pop2('이자보상배율', refresh)
|
756
|
+
d7, 순운전자본회전율_r = self.c104.latest_value_pop2('순운전자본회전율', refresh)
|
757
|
+
d8, 재고자산회전율_r = self.c104.latest_value_pop2('재고자산회전율', refresh)
|
758
|
+
d9, 순부채비율_r = self.c104.latest_value_pop2('순부채비율', refresh)
|
759
|
+
|
760
|
+
if len(이자보상배율_dict) == 0:
|
761
|
+
analyser_logger.warning(f'empty dict - 이자보상배율 : {이자보상배율_r} / {이자보상배율_dict}')
|
762
|
+
|
763
|
+
if len(순운전자본회전율_dict) == 0:
|
764
|
+
analyser_logger.warning(f'empty dict - 순운전자본회전율 : {순운전자본회전율_r} / {순운전자본회전율_dict}')
|
765
|
+
|
766
|
+
if len(재고자산회전율_dict) == 0:
|
767
|
+
analyser_logger.warning(f'empty dict - 재고자산회전율 : {재고자산회전율_r} / {재고자산회전율_dict}')
|
768
|
+
|
769
|
+
if len(순부채비율_dict) == 0:
|
770
|
+
analyser_logger.warning(f'empty dict - 순부채비율 : {순부채비율_r} / {순부채비율_dict}')
|
771
|
+
|
772
|
+
score = self._score()
|
773
|
+
|
774
|
+
try:
|
775
|
+
date_list = Tools.date_set(d1, d6, d7, d8, d9)
|
776
|
+
except ValueError:
|
777
|
+
# 날짜 데이터가 없는경우
|
778
|
+
date_list = ['',]
|
779
|
+
|
780
|
+
return BlueData(
|
781
|
+
code= self.code,
|
782
|
+
name= self.name,
|
783
|
+
유동비율= 유동비율,
|
784
|
+
이자보상배율_r= 이자보상배율_r,
|
785
|
+
이자보상배율_dict= 이자보상배율_dict,
|
786
|
+
|
787
|
+
순운전자본회전율_r= 순운전자본회전율_r,
|
788
|
+
순운전자본회전율_dict= 순운전자본회전율_dict,
|
789
|
+
|
790
|
+
재고자산회전율_r= 재고자산회전율_r,
|
791
|
+
재고자산회전율_dict= 재고자산회전율_dict,
|
792
|
+
재고자산회전율_c106= 재고자산회전율_c106,
|
793
|
+
|
794
|
+
순부채비율_r= 순부채비율_r,
|
795
|
+
순부채비율_dict= 순부채비율_dict,
|
796
|
+
|
797
|
+
score= score,
|
798
|
+
date= date_list,
|
799
|
+
)
|
800
|
+
|
801
|
+
def get(self, refresh = False) -> BlueData:
|
802
|
+
"""
|
803
|
+
BlueData 형식의 데이터를 계산하여 리턴하고 레디스 캐시에 저장한다.
|
804
|
+
:param refresh:
|
805
|
+
:return:
|
806
|
+
"""
|
807
|
+
redis_name = f"{self.code}_blue"
|
808
|
+
analyser_logger.info(f"{self} BlueData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
|
809
|
+
|
810
|
+
def fetch_generate_data(refresh_in: bool) -> dict:
|
811
|
+
return asdict(self._generate_data(refresh_in))
|
812
|
+
|
813
|
+
return BlueData(**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh))
|
814
|
+
|
815
|
+
|
816
|
+
|
817
|
+
@dataclass()
|
818
|
+
class GrowthData:
|
819
|
+
code: str
|
820
|
+
name: str
|
821
|
+
|
822
|
+
매출액증가율_r: float
|
823
|
+
매출액증가율_dict: dict
|
824
|
+
|
825
|
+
영업이익률_c106: dict
|
826
|
+
|
827
|
+
score: list
|
828
|
+
date: list
|
829
|
+
|
830
|
+
|
831
|
+
class Growth:
|
832
|
+
def __init__(self, code: str):
|
833
|
+
assert utils.is_6digit(code), f'Invalid value : {code}'
|
834
|
+
analyser_logger.debug(f"Growth : 종목코드 ({code})")
|
835
|
+
|
836
|
+
self.c101 = myredis.C101(code)
|
837
|
+
self.c104 = myredis.C104(code, 'c104q')
|
838
|
+
self.c106 = myredis.C106(code, 'c106q')
|
839
|
+
|
840
|
+
self.name = self.c101.get_name()
|
841
|
+
self._code = code
|
842
|
+
|
843
|
+
def __str__(self):
|
844
|
+
return f"Growth({self.code}/{self.name})"
|
845
|
+
|
846
|
+
@property
|
847
|
+
def code(self) -> str:
|
848
|
+
return self._code
|
849
|
+
|
850
|
+
@code.setter
|
851
|
+
def code(self, code: str):
|
852
|
+
assert utils.is_6digit(code), f'Invalid value : {code}'
|
853
|
+
analyser_logger.debug(f"Growth : 종목코드 변경({self.code} -> {code})")
|
854
|
+
|
855
|
+
self.c101.code = code
|
856
|
+
self.c104.code = code
|
857
|
+
self.c106.code = code
|
858
|
+
|
859
|
+
self.name = self.c101.get_name()
|
860
|
+
self._code = code
|
861
|
+
|
862
|
+
def _score(self) -> list:
|
863
|
+
return [0,]
|
864
|
+
|
865
|
+
def _generate_data(self, refresh=False) -> GrowthData:
|
866
|
+
self.c104.page = 'c104y'
|
867
|
+
_, 매출액증가율_dict = self.c104.find('매출액증가율', remove_yoy=True, refresh=refresh)
|
868
|
+
|
869
|
+
self.c104.page = 'c104q'
|
870
|
+
d2, 매출액증가율_r = self.c104.latest_value_pop2('매출액증가율')
|
871
|
+
|
872
|
+
analyser_logger.info(f'매출액증가율 : {매출액증가율_r} {매출액증가율_dict}')
|
873
|
+
|
874
|
+
# c106 에서 타 기업과 영업이익률 비교
|
875
|
+
self.c106.page = 'c106y'
|
876
|
+
영업이익률_c106 = self.c106.find('영업이익률', refresh)
|
877
|
+
|
878
|
+
score = self._score()
|
879
|
+
|
880
|
+
try:
|
881
|
+
date_list = Tools.date_set(d2)
|
882
|
+
except ValueError:
|
883
|
+
# 날짜 데이터가 없는경우
|
884
|
+
date_list = ['', ]
|
885
|
+
|
886
|
+
return GrowthData(
|
887
|
+
code= self.code,
|
888
|
+
name= self.name,
|
889
|
+
|
890
|
+
매출액증가율_r= 매출액증가율_r,
|
891
|
+
매출액증가율_dict= 매출액증가율_dict,
|
892
|
+
|
893
|
+
영업이익률_c106= 영업이익률_c106,
|
894
|
+
|
895
|
+
score= score,
|
896
|
+
date= date_list,
|
897
|
+
)
|
898
|
+
|
899
|
+
def get(self, refresh = False) -> GrowthData:
|
900
|
+
"""
|
901
|
+
GrowthData 형식의 데이터를 계산하여 리턴하고 레디스 캐시에 저장한다.
|
902
|
+
:param refresh:
|
903
|
+
:return:
|
904
|
+
"""
|
905
|
+
redis_name = f"{self.code}_growth"
|
906
|
+
analyser_logger.info(f"{self} GrowthData를 레디스캐시에서 가져오거나 새로 생성합니다.. refresh : {refresh}")
|
907
|
+
|
908
|
+
def fetch_generate_data(refresh_in: bool) -> dict:
|
909
|
+
return asdict(self._generate_data(refresh_in))
|
910
|
+
|
911
|
+
return GrowthData(**myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_generate_data, refresh))
|
912
|
+
|
913
|
+
|
914
|
+
|
915
|
+
|
916
|
+
"""
|
917
|
+
- 각분기의 합이 연이 아닌 타이틀(즉 sum_4q를 사용하면 안됨)
|
918
|
+
'*(지배)당기순이익'
|
919
|
+
'*(비지배)당기순이익'
|
920
|
+
'장기차입금'
|
921
|
+
'현금및예치금'
|
922
|
+
'매도가능금융자산'
|
923
|
+
'매도파생결합증권'
|
924
|
+
'만기보유금융자산'
|
925
|
+
'당기손익-공정가치측정금융부채'
|
926
|
+
'당기손익인식(지정)금융부채'
|
927
|
+
'단기매매금융자산'
|
928
|
+
'단기매매금융부채'
|
929
|
+
'예수부채'
|
930
|
+
'차입부채'
|
931
|
+
'기타부채'
|
932
|
+
'보험계약부채(책임준비금)'
|
933
|
+
'*CAPEX'
|
934
|
+
'ROE'
|
935
|
+
"""
|
936
|
+
|
937
|
+
"""
|
938
|
+
- sum_4q를 사용해도 되는 타이틀
|
939
|
+
'자산총계'
|
940
|
+
'당기순이익'
|
941
|
+
'유동자산'
|
942
|
+
'유동부채'
|
943
|
+
'비유동부채'
|
944
|
+
|
945
|
+
'영업활동으로인한현금흐름'
|
946
|
+
'재무활동으로인한현금흐름'
|
947
|
+
'ROIC'
|
948
|
+
"""
|