analyser_hj3415 2.5.0__py2.py3-none-any.whl → 2.5.2__py2.py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- analyser_hj3415/.DS_Store +0 -0
- analyser_hj3415/analysers/eval.py +295 -289
- analyser_hj3415/analysers/report.py +182 -182
- analyser_hj3415/analysers/score.py +364 -364
- analyser_hj3415/cli.py +88 -18
- analyser_hj3415/settings.json +1 -0
- analyser_hj3415/tools.py +1 -0
- {analyser_hj3415-2.5.0.dist-info → analyser_hj3415-2.5.2.dist-info}/METADATA +3 -3
- analyser_hj3415-2.5.2.dist-info/RECORD +15 -0
- analyser_hj3415-2.5.2.dist-info/entry_points.txt +3 -0
- analyser_hj3415-2.5.0.dist-info/RECORD +0 -14
- analyser_hj3415-2.5.0.dist-info/entry_points.txt +0 -3
- {analyser_hj3415-2.5.0.dist-info → analyser_hj3415-2.5.2.dist-info}/LICENSE +0 -0
- {analyser_hj3415-2.5.0.dist-info → analyser_hj3415-2.5.2.dist-info}/WHEEL +0 -0
@@ -1,364 +1,364 @@
|
|
1
|
-
import math
|
2
|
-
import numpy
|
3
|
-
import pprint
|
4
|
-
import copy
|
5
|
-
from typing import Tuple
|
6
|
-
|
7
|
-
from db_hj3415 import myredis, mymongo
|
8
|
-
from analyser_hj3415.analysers import eval
|
9
|
-
from utils_hj3415 import utils
|
10
|
-
|
11
|
-
import logging
|
12
|
-
|
13
|
-
logger = logging.getLogger(__name__)
|
14
|
-
formatter = logging.Formatter('%(levelname)s: [%(name)s] %(message)s')
|
15
|
-
ch = logging.StreamHandler()
|
16
|
-
ch.setFormatter(formatter)
|
17
|
-
logger.addHandler(ch)
|
18
|
-
logger.setLevel(logging.WARNING)
|
19
|
-
|
20
|
-
|
21
|
-
def cal_deviation(v1: float, v2: float) -> float:
|
22
|
-
"""
|
23
|
-
괴리율 구하는 공식
|
24
|
-
:param v1:
|
25
|
-
:param v2:
|
26
|
-
:return:
|
27
|
-
"""
|
28
|
-
try:
|
29
|
-
deviation = abs((v1 - v2) / v1) * 100
|
30
|
-
except ZeroDivisionError:
|
31
|
-
deviation = math.nan
|
32
|
-
return deviation
|
33
|
-
|
34
|
-
|
35
|
-
def red(code: str) -> int:
|
36
|
-
"""red price와 최근 주가의 괴리율 파악
|
37
|
-
|
38
|
-
Returns:
|
39
|
-
int : 주가와 red price 비교한 괴리율
|
40
|
-
"""
|
41
|
-
try:
|
42
|
-
recent_price = utils.to_int(myredis.C101(code).get_recent()['주가'])
|
43
|
-
except KeyError:
|
44
|
-
recent_price = float('nan')
|
45
|
-
return 0
|
46
|
-
|
47
|
-
red_price = eval.red(code)['red_price']
|
48
|
-
deviation = cal_deviation(recent_price, red_price)
|
49
|
-
if red_price < 0 or (recent_price >= red_price):
|
50
|
-
score = 0
|
51
|
-
else:
|
52
|
-
score = math.log10(deviation + 1) * 33 # desmos그래프상 33이 제일 적당한듯(최대100점에 가깝게)
|
53
|
-
|
54
|
-
#print(f"최근주가 : {recent_price}", f"red가격 : {red_price}", f"괴리율 : {utils.to_int(deviation)}", f"score : {utils.to_int(score)}")
|
55
|
-
|
56
|
-
return utils.to_int(score)
|
57
|
-
|
58
|
-
|
59
|
-
def mil(code: str) -> Tuple[int, int, int, int]:
|
60
|
-
"""
|
61
|
-
- 재무활동현금흐름이 마이너스라는 것은 배당급 지급했거나, 자사주 매입했거나, 부채를 상환한 상태임.
|
62
|
-
- 반대는 채권자로 자금을 조달했거나 신주를 발행했다는 의미
|
63
|
-
<주주수익률> - 재무활동현금흐름/시가총액 => 5%이상인가?
|
64
|
-
|
65
|
-
투하자본수익률(ROIC)가 30%이상인가
|
66
|
-
ROE(자기자본이익률) 20%이상이면 아주 우수 다른 투자이익률과 비교해볼것 10%미만이면 별로...단, 부채비율을 확인해야함.
|
67
|
-
|
68
|
-
이익지표 ...영업현금흐름이 순이익보다 많은가 - 결과값이 음수인가..
|
69
|
-
|
70
|
-
FCF는 영업현금흐름에서 자본적 지출(유·무형투자 비용)을 차감한 순수한 현금력이라 할 수 있다.
|
71
|
-
말 그대로 자유롭게(Free) 사용할 수 있는 여윳돈을 뜻한다.
|
72
|
-
잉여현금흐름이 플러스라면 미래의 투자나 채무상환에 쓸 재원이 늘어난 것이다.
|
73
|
-
CAPEX(Capital expenditures)는 미래의 이윤을 창출하기 위해 지출된 비용을 말한다.
|
74
|
-
이는 기업이 고정자산을 구매하거나, 유효수명이 당회계년도를 초과하는 기존의 고정자산에 대한 투자에 돈이 사용될 때 발생한다.
|
75
|
-
|
76
|
-
잉여현금흐름이 마이너스일때는 설비투자가 많은 시기라 주가가 약세이며 이후 설비투자 마무리되면서 주가가 상승할수 있다.
|
77
|
-
주가는 잉여현금흐름이 증가할때 상승하는 경향이 있다.
|
78
|
-
fcf = 영업현금흐름 - capex
|
79
|
-
|
80
|
-
가치지표평가
|
81
|
-
price to fcf 계산
|
82
|
-
https://www.investopedia.com/terms/p/pricetofreecashflow.asp
|
83
|
-
pcr보다 정확하게 주식의 가치를 평가할수 있음. 10배이하 추천
|
84
|
-
|
85
|
-
Returns:
|
86
|
-
tuple: 주주수익률, 이익지표, 투자수익률, PFCF포인트
|
87
|
-
"""
|
88
|
-
mil_dict = eval.mil(code)
|
89
|
-
|
90
|
-
# print(pprint.pformat(mil_dict, width=200))
|
91
|
-
|
92
|
-
# 주주수익률 평가
|
93
|
-
if math.isnan(mil_dict['주주수익률']):
|
94
|
-
score1 = 0
|
95
|
-
else:
|
96
|
-
주주수익률평가 = math.ceil(mil_dict['주주수익률'] - (eval.EXPECT_EARN * 100))
|
97
|
-
score1 = 0 if 0 > 주주수익률평가 else 주주수익률평가
|
98
|
-
|
99
|
-
# 이익지표 평가
|
100
|
-
score2 = 10 if mil_dict['이익지표'] < 0 else 0
|
101
|
-
|
102
|
-
# 투자수익률 평가
|
103
|
-
MAX3 = 20
|
104
|
-
score3 = 0
|
105
|
-
roic = mil_dict['투자수익률']['ROIC']
|
106
|
-
roe = mil_dict['투자수익률']['ROE']
|
107
|
-
if math.isnan(roic) or roic <= 0:
|
108
|
-
# roic 가 비정상이라 평가할 수 없는 경우
|
109
|
-
if 10 < roe <= 20:
|
110
|
-
score3 += round(MAX3 * 0.333)
|
111
|
-
elif 20 < roe:
|
112
|
-
score3 += round(MAX3 * 0.666)
|
113
|
-
elif 0 < roic:
|
114
|
-
# roic 로 평가할 수 있는 경우
|
115
|
-
if 0 < roic <= 15:
|
116
|
-
score3 += round(MAX3 * 0.333)
|
117
|
-
elif 15 < roic <= 30:
|
118
|
-
score3 += round(MAX3 * 0.666)
|
119
|
-
elif 30 < roic:
|
120
|
-
score3 += MAX3
|
121
|
-
|
122
|
-
# PFCF 평가
|
123
|
-
pfcf_dict = mil_dict['가치지표']['PFCF']
|
124
|
-
_, pfcf = mymongo.C1034.latest_dict_value(pfcf_dict)
|
125
|
-
|
126
|
-
logger.debug(f'recent pfcf {_}, {pfcf}')
|
127
|
-
try:
|
128
|
-
p = round(-40 * math.log10(pfcf) + 40)
|
129
|
-
except ValueError:
|
130
|
-
p = 0
|
131
|
-
score4 = 0 if 0 > p else p
|
132
|
-
|
133
|
-
return score1, score2, score3, score4
|
134
|
-
|
135
|
-
|
136
|
-
def blue(code: str) -> Tuple[int, int, int, int, int]:
|
137
|
-
"""회사의 안정성을 보는 지표들
|
138
|
-
|
139
|
-
0을 기준으로 상태가 좋치 않을 수록 마이너스 값을 가진다.
|
140
|
-
|
141
|
-
Returns:
|
142
|
-
tuple : 유동비율, 이자보상배율, 순부채비율, 순운전자본회전율, 재고자산회전율 평가 포인트
|
143
|
-
|
144
|
-
Notes:
|
145
|
-
<유동비율>
|
146
|
-
100미만이면 주의하나 현금흐름창출력이 좋으면 괜찮을수 있다.
|
147
|
-
만약 100%이하면 유동자산에 추정영업현금흐름을 더해서 다시계산해보아 기회를 준다.
|
148
|
-
<이자보상배율>
|
149
|
-
이자보상배율 영업이익/이자비용으로 1이면 자금사정빡빡 5이상이면 양호
|
150
|
-
<순운전자금회전율>
|
151
|
-
순운전자금 => 기업활동을 하기 위해 필요한 자금 (매출채권 + 재고자산 - 매입채무)
|
152
|
-
순운전자본회전율은 매출액/순운전자본으로 일정비율이 유지되는것이 좋으며 너무 작아지면 순운전자본이 많아졌다는 의미로 재고나 외상이 쌓인다는 뜻
|
153
|
-
<재고자산회전율>
|
154
|
-
재고자산회전율은 매출액/재고자산으로 회전율이 낮을수록 재고가 많다는 이야기이므로 불리 전년도등과 비교해서 큰차이 발생하면 알람.
|
155
|
-
재고자산회전율이 작아지면 재고가 쌓인다는뜻
|
156
|
-
<순부채비율>
|
157
|
-
부채비율은 업종마다 달라 일괄비교 어려우나 순부채 비율이 20%이하인것이 좋고 꾸준히 늘어나지 않는것이 좋다.
|
158
|
-
순부채 비율이 30%이상이면 좋치 않다.
|
159
|
-
"""
|
160
|
-
def _calc_point_with_std(data: dict) -> int:
|
161
|
-
"""표준편차를 통해 점수를 계산하는 내부 함수
|
162
|
-
|
163
|
-
Args:
|
164
|
-
data(dict): 재무재표상의 연/분기 딕셔너리 데이터
|
165
|
-
"""
|
166
|
-
NEG_MAX = -5
|
167
|
-
d_values = [i for i in data.values() if not math.isnan(i)]
|
168
|
-
logger.debug(f'd_values : {d_values}')
|
169
|
-
if len(d_values) == 0:
|
170
|
-
p = NEG_MAX
|
171
|
-
else:
|
172
|
-
std = numpy.std(d_values)
|
173
|
-
# 표준편차가 작을수록 데이터의 변환가 적다는 의미임.
|
174
|
-
logger.debug(f'표준편차 : {std}')
|
175
|
-
p = NEG_MAX if float(std) > -NEG_MAX else -math.floor(float(std))
|
176
|
-
|
177
|
-
return int(p)
|
178
|
-
|
179
|
-
c104y = myredis.C104(code, 'c104y')
|
180
|
-
|
181
|
-
blue_dict = eval.blue(code)
|
182
|
-
|
183
|
-
# print(pprint.pformat(blue_dict, width=200))
|
184
|
-
|
185
|
-
def 유동비율평가(유동비율: float) -> int:
|
186
|
-
# 채점은 0을 기준으로 마이너스 해간다. 즉 0이 제일 좋은 상태임.
|
187
|
-
# 유동비율 평가 - 100 이하는 문제 있음
|
188
|
-
NEG_MAX = -10
|
189
|
-
if math.isnan(유동비율) or 유동비율 <= 0:
|
190
|
-
p = NEG_MAX
|
191
|
-
elif math.isinf(유동비율):
|
192
|
-
p = 0
|
193
|
-
else:
|
194
|
-
p = 0 if 100 < round(유동비율) else NEG_MAX + round(유동비율/10)
|
195
|
-
logger.debug(f'유동비율평가 point : {p}')
|
196
|
-
return int(p)
|
197
|
-
|
198
|
-
p1 = 유동비율평가(blue_dict['유동비율'])
|
199
|
-
|
200
|
-
def 이자보상배율평가(이자보상배율: tuple) -> int:
|
201
|
-
# 이자보상배율평가 : 1이면 자금사정 빡빡 5이상이면 양호
|
202
|
-
NEG_MAX = -5
|
203
|
-
최근이자보상배율q, dict_y = 이자보상배율
|
204
|
-
|
205
|
-
if math.isnan(최근이자보상배율q) or 최근이자보상배율q <= 1:
|
206
|
-
# 최근 분기의 값이 비정상이면 최근 년도를 한번 더 비교해 보지만 좀더 엄격하게 전년대비도 비교한다.
|
207
|
-
|
208
|
-
_, 최근이자보상배율y = mymongo.C1034.latest_dict_value(dict_y)
|
209
|
-
c104y.page = 'c104y'
|
210
|
-
전년대비 = c104y.find_yoy(title='이자보상배율')
|
211
|
-
|
212
|
-
if math.isnan(최근이자보상배율y) or 최근이자보상배율y <= 1 or math.isnan(전년대비) or 전년대비 < 0:
|
213
|
-
p = NEG_MAX
|
214
|
-
else:
|
215
|
-
p = 0 if 5 < 최근이자보상배율y else NEG_MAX + round(최근이자보상배율y)
|
216
|
-
else:
|
217
|
-
p = 0 if 5 < 최근이자보상배율q else NEG_MAX + round(최근이자보상배율q)
|
218
|
-
logger.debug(f'이자보상배율평가 point : {p}')
|
219
|
-
return int(p)
|
220
|
-
|
221
|
-
p2 = 이자보상배율평가(blue_dict['이자보상배율'])
|
222
|
-
|
223
|
-
def 순부채비율평가(순부채비율: tuple) -> int:
|
224
|
-
# 부채비율은 업종마다 달라 일괄비교 어려우나 순부채 비율이 20%이하인것이 좋고 꾸준히 늘어나지 않는것이 좋다.
|
225
|
-
# 순부채 비율이 30%이상이면 좋치 않다.
|
226
|
-
NEG_MAX = -5
|
227
|
-
최근순부채비율q, dict_y = 순부채비율
|
228
|
-
|
229
|
-
if math.isnan(최근순부채비율q) or 최근순부채비율q >= 80:
|
230
|
-
# 최근 분기의 값이 비정상이면 최근 년도를 한번 더 비교해 보지만 좀더 엄격하게 전년대비도 비교한다.
|
231
|
-
_, 최근순부채비율y = mymongo.C1034.latest_dict_value(dict_y)
|
232
|
-
c104y.page = 'c104y'
|
233
|
-
전년대비 = c104y.find_yoy(title='순부채비율')
|
234
|
-
if math.isnan(최근순부채비율y) or 최근순부채비율y >= 80 or math.isnan(전년대비) or 전년대비 > 0:
|
235
|
-
p = NEG_MAX
|
236
|
-
else:
|
237
|
-
p = 0 if 최근순부채비율y < 30 else round((30 - 최근순부채비율y) / 10)
|
238
|
-
else:
|
239
|
-
p = 0 if 최근순부채비율q < 30 else round((30 - 최근순부채비율q) / 10)
|
240
|
-
logger.debug(f'순부채비율평가 point : {p}')
|
241
|
-
return int(p)
|
242
|
-
|
243
|
-
p3 = 순부채비율평가(blue_dict['순부채비율'])
|
244
|
-
|
245
|
-
def 순운전자본회전율평가(순운전자본회전율: tuple) -> int:
|
246
|
-
# 순운전자본회전율은 매출액/순운전자본으로 일정비율이 유지되는것이 좋으며 너무 작아지면 순운전자본이 많아졌다는 의미로 재고나 외상이 쌓인다는 뜻
|
247
|
-
_, dict_y = 순운전자본회전율
|
248
|
-
p = _calc_point_with_std(data=dict_y)
|
249
|
-
logger.debug(f'순운전자본회전율평가 point : {p}')
|
250
|
-
return p
|
251
|
-
|
252
|
-
p4 = 순운전자본회전율평가(blue_dict['순운전자본회전율'])
|
253
|
-
|
254
|
-
def 재고자산회전율평가(재고자산회전율: tuple) -> int:
|
255
|
-
# 재고자산회전율은 매출액/재고자산으로 회전율이 낮을수록 재고가 많다는 이야기이므로 불리 전년도등과 비교해서 큰차이 발생하면 알람.
|
256
|
-
# 재고자산회전율이 작아지면 재고가 쌓인다는뜻
|
257
|
-
_, dict_y = 재고자산회전율
|
258
|
-
p = _calc_point_with_std(data=dict_y)
|
259
|
-
logger.debug(f'재고자산회전율평가 point : {p}')
|
260
|
-
return p
|
261
|
-
|
262
|
-
p5 = 재고자산회전율평가(blue_dict['재고자산회전율'])
|
263
|
-
|
264
|
-
return p1, p2, p3, p4, p5
|
265
|
-
|
266
|
-
|
267
|
-
def growth(code: str) -> Tuple[int, int]:
|
268
|
-
"""회사의 성장성을 보는 지표들
|
269
|
-
|
270
|
-
<매출액>
|
271
|
-
매출액은 어떤경우에도 성장하는 기업이 좋다.매출이 20%씩 늘어나는 종목은 유망한 종목
|
272
|
-
<영업이익률>
|
273
|
-
영업이익률은 기업의 경쟁력척도로 경쟁사에 비해 높으면 경제적해자를 갖춘셈
|
274
|
-
|
275
|
-
Returns:
|
276
|
-
tuple : 매출액증가율, 영업이익률 평가 포인트
|
277
|
-
"""
|
278
|
-
growth_dict = eval.growth(code)
|
279
|
-
|
280
|
-
logger.debug(pprint.pformat(growth_dict, width=200))
|
281
|
-
|
282
|
-
def 매출액증가율평가(매출액증가율: tuple) -> int:
|
283
|
-
# 매출액은 어떤경우에도 성장하는 기업이 좋다.매출이 20%씩 늘어나는 종목은 유망한 종목
|
284
|
-
MAX = 20
|
285
|
-
최근매출액증가율q, dict_y = 매출액증가율
|
286
|
-
_, 최근매출액증가율y = mymongo.C1034.latest_dict_value(dict_y)
|
287
|
-
|
288
|
-
# 최근 자료가 성장하는 중인지 판단
|
289
|
-
if math.isnan(최근매출액증가율q):
|
290
|
-
최근매출액증가율q = 최근매출액증가율y
|
291
|
-
|
292
|
-
sp1 = 0
|
293
|
-
if math.isnan(최근매출액증가율y):
|
294
|
-
pass
|
295
|
-
elif 0 < 최근매출액증가율y and 0 < 최근매출액증가율q:
|
296
|
-
# 최근에 마이너스 성장이 아닌경우 MAX/10점 보너스
|
297
|
-
sp1 += MAX / 10
|
298
|
-
if 최근매출액증가율y < 최근매출액증가율q:
|
299
|
-
# 최근에 이전보다 더 성장중이면 MAX/10점 보너스
|
300
|
-
sp1 += MAX / 10
|
301
|
-
# 나머지는 성장률 기반 점수 배정
|
302
|
-
sp1 += MAX / 2 if 최근매출액증가율q > MAX else 최근매출액증가율q / 2
|
303
|
-
elif 최근매출액증가율y <= 0 < 최근매출액증가율q:
|
304
|
-
# 직전에 마이너스였다가 최근에 회복된 경우 MAX/10점 보너스
|
305
|
-
sp1 += MAX / 10
|
306
|
-
# 나머지는 성장률 기반 점수 배정
|
307
|
-
sp1 += MAX / 2 if 최근매출액증가율q > MAX else 최근매출액증가율q / 2
|
308
|
-
else:
|
309
|
-
# 최근 자료가 마이너스인 경우 마이너스만큼 점수를 차감한다.
|
310
|
-
sp1 += -(MAX / 2) if 최근매출액증가율q < -MAX else 최근매출액증가율q / 2
|
311
|
-
|
312
|
-
# 평균매출액증가율 구하기
|
313
|
-
d_values = [i for i in dict_y.values() if not math.isnan(i)]
|
314
|
-
logger.debug(f'평균매출액증가율 d_values : {d_values}')
|
315
|
-
|
316
|
-
if len(d_values) == 0:
|
317
|
-
평균매출액증가율 = float('nan')
|
318
|
-
else:
|
319
|
-
평균매출액증가율 = float(numpy.mean(d_values))
|
320
|
-
logger.debug(f'평균 : {평균매출액증가율}')
|
321
|
-
|
322
|
-
sp2 = 0
|
323
|
-
if math.isnan(평균매출액증가율):
|
324
|
-
sp2 += -(MAX/2)
|
325
|
-
elif 평균매출액증가율 <= 0:
|
326
|
-
# 평균매출액증가율이 마이너스인 경우 마이너스만큼 점수를 차감한다.
|
327
|
-
sp2 += -(MAX / 2) if 평균매출액증가율 < -MAX else 평균매출액증가율 / 2
|
328
|
-
else:
|
329
|
-
sp2 = MAX / 2 if 평균매출액증가율 > MAX else 평균매출액증가율 / 2
|
330
|
-
|
331
|
-
logger.debug(f'매출액증가율평가 point : {sp1 + sp2}')
|
332
|
-
|
333
|
-
return int(sp1 + sp2)
|
334
|
-
|
335
|
-
p1 = 매출액증가율평가(growth_dict['매출액증가율'])
|
336
|
-
|
337
|
-
def 영업이익률평가(영업이익률: dict) -> int:
|
338
|
-
# 영업이익률은 기업의 경쟁력척도로 경쟁사에 비해 높으면 경제적해자를 갖춘셈
|
339
|
-
영업이익률 = copy.deepcopy(영업이익률)
|
340
|
-
name = myredis.Corps.get_name(code)
|
341
|
-
|
342
|
-
p = 0
|
343
|
-
try:
|
344
|
-
myprofit = utils.to_float(영업이익률.pop(name))
|
345
|
-
except KeyError:
|
346
|
-
logger.warning(f'{name} 영업이익률 does not exist.')
|
347
|
-
return 0
|
348
|
-
logger.debug(f'종목영업이익률 : {myprofit}')
|
349
|
-
|
350
|
-
for profit in 영업이익률.values():
|
351
|
-
profit = utils.to_float(profit)
|
352
|
-
if math.isnan(profit):
|
353
|
-
continue
|
354
|
-
elif myprofit > profit:
|
355
|
-
p += 1
|
356
|
-
else:
|
357
|
-
continue
|
358
|
-
|
359
|
-
logger.debug(f'영업이익률평가 point : {p}')
|
360
|
-
return p
|
361
|
-
|
362
|
-
p2 = 영업이익률평가(growth_dict['영업이익률'])
|
363
|
-
|
364
|
-
return p1, p2
|
1
|
+
import math
|
2
|
+
import numpy
|
3
|
+
import pprint
|
4
|
+
import copy
|
5
|
+
from typing import Tuple
|
6
|
+
|
7
|
+
from db_hj3415 import myredis, mymongo
|
8
|
+
from analyser_hj3415.analysers import eval
|
9
|
+
from utils_hj3415 import utils
|
10
|
+
|
11
|
+
import logging
|
12
|
+
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
formatter = logging.Formatter('%(levelname)s: [%(name)s] %(message)s')
|
15
|
+
ch = logging.StreamHandler()
|
16
|
+
ch.setFormatter(formatter)
|
17
|
+
logger.addHandler(ch)
|
18
|
+
logger.setLevel(logging.WARNING)
|
19
|
+
|
20
|
+
|
21
|
+
def cal_deviation(v1: float, v2: float) -> float:
|
22
|
+
"""
|
23
|
+
괴리율 구하는 공식
|
24
|
+
:param v1:
|
25
|
+
:param v2:
|
26
|
+
:return:
|
27
|
+
"""
|
28
|
+
try:
|
29
|
+
deviation = abs((v1 - v2) / v1) * 100
|
30
|
+
except ZeroDivisionError:
|
31
|
+
deviation = math.nan
|
32
|
+
return deviation
|
33
|
+
|
34
|
+
|
35
|
+
def red(code: str) -> int:
|
36
|
+
"""red price와 최근 주가의 괴리율 파악
|
37
|
+
|
38
|
+
Returns:
|
39
|
+
int : 주가와 red price 비교한 괴리율
|
40
|
+
"""
|
41
|
+
try:
|
42
|
+
recent_price = utils.to_int(myredis.C101(code).get_recent()['주가'])
|
43
|
+
except KeyError:
|
44
|
+
recent_price = float('nan')
|
45
|
+
return 0
|
46
|
+
|
47
|
+
red_price = eval.red(code)['red_price']
|
48
|
+
deviation = cal_deviation(recent_price, red_price)
|
49
|
+
if red_price < 0 or (recent_price >= red_price):
|
50
|
+
score = 0
|
51
|
+
else:
|
52
|
+
score = math.log10(deviation + 1) * 33 # desmos그래프상 33이 제일 적당한듯(최대100점에 가깝게)
|
53
|
+
|
54
|
+
#print(f"최근주가 : {recent_price}", f"red가격 : {red_price}", f"괴리율 : {utils.to_int(deviation)}", f"score : {utils.to_int(score)}")
|
55
|
+
|
56
|
+
return utils.to_int(score)
|
57
|
+
|
58
|
+
|
59
|
+
def mil(code: str) -> Tuple[int, int, int, int]:
|
60
|
+
"""
|
61
|
+
- 재무활동현금흐름이 마이너스라는 것은 배당급 지급했거나, 자사주 매입했거나, 부채를 상환한 상태임.
|
62
|
+
- 반대는 채권자로 자금을 조달했거나 신주를 발행했다는 의미
|
63
|
+
<주주수익률> - 재무활동현금흐름/시가총액 => 5%이상인가?
|
64
|
+
|
65
|
+
투하자본수익률(ROIC)가 30%이상인가
|
66
|
+
ROE(자기자본이익률) 20%이상이면 아주 우수 다른 투자이익률과 비교해볼것 10%미만이면 별로...단, 부채비율을 확인해야함.
|
67
|
+
|
68
|
+
이익지표 ...영업현금흐름이 순이익보다 많은가 - 결과값이 음수인가..
|
69
|
+
|
70
|
+
FCF는 영업현금흐름에서 자본적 지출(유·무형투자 비용)을 차감한 순수한 현금력이라 할 수 있다.
|
71
|
+
말 그대로 자유롭게(Free) 사용할 수 있는 여윳돈을 뜻한다.
|
72
|
+
잉여현금흐름이 플러스라면 미래의 투자나 채무상환에 쓸 재원이 늘어난 것이다.
|
73
|
+
CAPEX(Capital expenditures)는 미래의 이윤을 창출하기 위해 지출된 비용을 말한다.
|
74
|
+
이는 기업이 고정자산을 구매하거나, 유효수명이 당회계년도를 초과하는 기존의 고정자산에 대한 투자에 돈이 사용될 때 발생한다.
|
75
|
+
|
76
|
+
잉여현금흐름이 마이너스일때는 설비투자가 많은 시기라 주가가 약세이며 이후 설비투자 마무리되면서 주가가 상승할수 있다.
|
77
|
+
주가는 잉여현금흐름이 증가할때 상승하는 경향이 있다.
|
78
|
+
fcf = 영업현금흐름 - capex
|
79
|
+
|
80
|
+
가치지표평가
|
81
|
+
price to fcf 계산
|
82
|
+
https://www.investopedia.com/terms/p/pricetofreecashflow.asp
|
83
|
+
pcr보다 정확하게 주식의 가치를 평가할수 있음. 10배이하 추천
|
84
|
+
|
85
|
+
Returns:
|
86
|
+
tuple: 주주수익률, 이익지표, 투자수익률, PFCF포인트
|
87
|
+
"""
|
88
|
+
mil_dict = eval.mil(code)
|
89
|
+
|
90
|
+
# print(pprint.pformat(mil_dict, width=200))
|
91
|
+
|
92
|
+
# 주주수익률 평가
|
93
|
+
if math.isnan(mil_dict['주주수익률']):
|
94
|
+
score1 = 0
|
95
|
+
else:
|
96
|
+
주주수익률평가 = math.ceil(mil_dict['주주수익률'] - (eval.EXPECT_EARN * 100))
|
97
|
+
score1 = 0 if 0 > 주주수익률평가 else 주주수익률평가
|
98
|
+
|
99
|
+
# 이익지표 평가
|
100
|
+
score2 = 10 if mil_dict['이익지표'] < 0 else 0
|
101
|
+
|
102
|
+
# 투자수익률 평가
|
103
|
+
MAX3 = 20
|
104
|
+
score3 = 0
|
105
|
+
roic = mil_dict['투자수익률']['ROIC']
|
106
|
+
roe = mil_dict['투자수익률']['ROE']
|
107
|
+
if math.isnan(roic) or roic <= 0:
|
108
|
+
# roic 가 비정상이라 평가할 수 없는 경우
|
109
|
+
if 10 < roe <= 20:
|
110
|
+
score3 += round(MAX3 * 0.333)
|
111
|
+
elif 20 < roe:
|
112
|
+
score3 += round(MAX3 * 0.666)
|
113
|
+
elif 0 < roic:
|
114
|
+
# roic 로 평가할 수 있는 경우
|
115
|
+
if 0 < roic <= 15:
|
116
|
+
score3 += round(MAX3 * 0.333)
|
117
|
+
elif 15 < roic <= 30:
|
118
|
+
score3 += round(MAX3 * 0.666)
|
119
|
+
elif 30 < roic:
|
120
|
+
score3 += MAX3
|
121
|
+
|
122
|
+
# PFCF 평가
|
123
|
+
pfcf_dict = mil_dict['가치지표']['PFCF']
|
124
|
+
_, pfcf = mymongo.C1034.latest_dict_value(pfcf_dict)
|
125
|
+
|
126
|
+
logger.debug(f'recent pfcf {_}, {pfcf}')
|
127
|
+
try:
|
128
|
+
p = round(-40 * math.log10(pfcf) + 40)
|
129
|
+
except ValueError:
|
130
|
+
p = 0
|
131
|
+
score4 = 0 if 0 > p else p
|
132
|
+
|
133
|
+
return score1, score2, score3, score4
|
134
|
+
|
135
|
+
|
136
|
+
def blue(code: str) -> Tuple[int, int, int, int, int]:
|
137
|
+
"""회사의 안정성을 보는 지표들
|
138
|
+
|
139
|
+
0을 기준으로 상태가 좋치 않을 수록 마이너스 값을 가진다.
|
140
|
+
|
141
|
+
Returns:
|
142
|
+
tuple : 유동비율, 이자보상배율, 순부채비율, 순운전자본회전율, 재고자산회전율 평가 포인트
|
143
|
+
|
144
|
+
Notes:
|
145
|
+
<유동비율>
|
146
|
+
100미만이면 주의하나 현금흐름창출력이 좋으면 괜찮을수 있다.
|
147
|
+
만약 100%이하면 유동자산에 추정영업현금흐름을 더해서 다시계산해보아 기회를 준다.
|
148
|
+
<이자보상배율>
|
149
|
+
이자보상배율 영업이익/이자비용으로 1이면 자금사정빡빡 5이상이면 양호
|
150
|
+
<순운전자금회전율>
|
151
|
+
순운전자금 => 기업활동을 하기 위해 필요한 자금 (매출채권 + 재고자산 - 매입채무)
|
152
|
+
순운전자본회전율은 매출액/순운전자본으로 일정비율이 유지되는것이 좋으며 너무 작아지면 순운전자본이 많아졌다는 의미로 재고나 외상이 쌓인다는 뜻
|
153
|
+
<재고자산회전율>
|
154
|
+
재고자산회전율은 매출액/재고자산으로 회전율이 낮을수록 재고가 많다는 이야기이므로 불리 전년도등과 비교해서 큰차이 발생하면 알람.
|
155
|
+
재고자산회전율이 작아지면 재고가 쌓인다는뜻
|
156
|
+
<순부채비율>
|
157
|
+
부채비율은 업종마다 달라 일괄비교 어려우나 순부채 비율이 20%이하인것이 좋고 꾸준히 늘어나지 않는것이 좋다.
|
158
|
+
순부채 비율이 30%이상이면 좋치 않다.
|
159
|
+
"""
|
160
|
+
def _calc_point_with_std(data: dict) -> int:
|
161
|
+
"""표준편차를 통해 점수를 계산하는 내부 함수
|
162
|
+
|
163
|
+
Args:
|
164
|
+
data(dict): 재무재표상의 연/분기 딕셔너리 데이터
|
165
|
+
"""
|
166
|
+
NEG_MAX = -5
|
167
|
+
d_values = [i for i in data.values() if not math.isnan(i)]
|
168
|
+
logger.debug(f'd_values : {d_values}')
|
169
|
+
if len(d_values) == 0:
|
170
|
+
p = NEG_MAX
|
171
|
+
else:
|
172
|
+
std = numpy.std(d_values)
|
173
|
+
# 표준편차가 작을수록 데이터의 변환가 적다는 의미임.
|
174
|
+
logger.debug(f'표준편차 : {std}')
|
175
|
+
p = NEG_MAX if float(std) > -NEG_MAX else -math.floor(float(std))
|
176
|
+
|
177
|
+
return int(p)
|
178
|
+
|
179
|
+
c104y = myredis.C104(code, 'c104y')
|
180
|
+
|
181
|
+
blue_dict = eval.blue(code)
|
182
|
+
|
183
|
+
# print(pprint.pformat(blue_dict, width=200))
|
184
|
+
|
185
|
+
def 유동비율평가(유동비율: float) -> int:
|
186
|
+
# 채점은 0을 기준으로 마이너스 해간다. 즉 0이 제일 좋은 상태임.
|
187
|
+
# 유동비율 평가 - 100 이하는 문제 있음
|
188
|
+
NEG_MAX = -10
|
189
|
+
if math.isnan(유동비율) or 유동비율 <= 0:
|
190
|
+
p = NEG_MAX
|
191
|
+
elif math.isinf(유동비율):
|
192
|
+
p = 0
|
193
|
+
else:
|
194
|
+
p = 0 if 100 < round(유동비율) else NEG_MAX + round(유동비율/10)
|
195
|
+
logger.debug(f'유동비율평가 point : {p}')
|
196
|
+
return int(p)
|
197
|
+
|
198
|
+
p1 = 유동비율평가(blue_dict['유동비율'])
|
199
|
+
|
200
|
+
def 이자보상배율평가(이자보상배율: tuple) -> int:
|
201
|
+
# 이자보상배율평가 : 1이면 자금사정 빡빡 5이상이면 양호
|
202
|
+
NEG_MAX = -5
|
203
|
+
최근이자보상배율q, dict_y = 이자보상배율
|
204
|
+
|
205
|
+
if math.isnan(최근이자보상배율q) or 최근이자보상배율q <= 1:
|
206
|
+
# 최근 분기의 값이 비정상이면 최근 년도를 한번 더 비교해 보지만 좀더 엄격하게 전년대비도 비교한다.
|
207
|
+
|
208
|
+
_, 최근이자보상배율y = mymongo.C1034.latest_dict_value(dict_y)
|
209
|
+
c104y.page = 'c104y'
|
210
|
+
전년대비 = c104y.find_yoy(title='이자보상배율')
|
211
|
+
|
212
|
+
if math.isnan(최근이자보상배율y) or 최근이자보상배율y <= 1 or math.isnan(전년대비) or 전년대비 < 0:
|
213
|
+
p = NEG_MAX
|
214
|
+
else:
|
215
|
+
p = 0 if 5 < 최근이자보상배율y else NEG_MAX + round(최근이자보상배율y)
|
216
|
+
else:
|
217
|
+
p = 0 if 5 < 최근이자보상배율q else NEG_MAX + round(최근이자보상배율q)
|
218
|
+
logger.debug(f'이자보상배율평가 point : {p}')
|
219
|
+
return int(p)
|
220
|
+
|
221
|
+
p2 = 이자보상배율평가(blue_dict['이자보상배율'])
|
222
|
+
|
223
|
+
def 순부채비율평가(순부채비율: tuple) -> int:
|
224
|
+
# 부채비율은 업종마다 달라 일괄비교 어려우나 순부채 비율이 20%이하인것이 좋고 꾸준히 늘어나지 않는것이 좋다.
|
225
|
+
# 순부채 비율이 30%이상이면 좋치 않다.
|
226
|
+
NEG_MAX = -5
|
227
|
+
최근순부채비율q, dict_y = 순부채비율
|
228
|
+
|
229
|
+
if math.isnan(최근순부채비율q) or 최근순부채비율q >= 80:
|
230
|
+
# 최근 분기의 값이 비정상이면 최근 년도를 한번 더 비교해 보지만 좀더 엄격하게 전년대비도 비교한다.
|
231
|
+
_, 최근순부채비율y = mymongo.C1034.latest_dict_value(dict_y)
|
232
|
+
c104y.page = 'c104y'
|
233
|
+
전년대비 = c104y.find_yoy(title='순부채비율')
|
234
|
+
if math.isnan(최근순부채비율y) or 최근순부채비율y >= 80 or math.isnan(전년대비) or 전년대비 > 0:
|
235
|
+
p = NEG_MAX
|
236
|
+
else:
|
237
|
+
p = 0 if 최근순부채비율y < 30 else round((30 - 최근순부채비율y) / 10)
|
238
|
+
else:
|
239
|
+
p = 0 if 최근순부채비율q < 30 else round((30 - 최근순부채비율q) / 10)
|
240
|
+
logger.debug(f'순부채비율평가 point : {p}')
|
241
|
+
return int(p)
|
242
|
+
|
243
|
+
p3 = 순부채비율평가(blue_dict['순부채비율'])
|
244
|
+
|
245
|
+
def 순운전자본회전율평가(순운전자본회전율: tuple) -> int:
|
246
|
+
# 순운전자본회전율은 매출액/순운전자본으로 일정비율이 유지되는것이 좋으며 너무 작아지면 순운전자본이 많아졌다는 의미로 재고나 외상이 쌓인다는 뜻
|
247
|
+
_, dict_y = 순운전자본회전율
|
248
|
+
p = _calc_point_with_std(data=dict_y)
|
249
|
+
logger.debug(f'순운전자본회전율평가 point : {p}')
|
250
|
+
return p
|
251
|
+
|
252
|
+
p4 = 순운전자본회전율평가(blue_dict['순운전자본회전율'])
|
253
|
+
|
254
|
+
def 재고자산회전율평가(재고자산회전율: tuple) -> int:
|
255
|
+
# 재고자산회전율은 매출액/재고자산으로 회전율이 낮을수록 재고가 많다는 이야기이므로 불리 전년도등과 비교해서 큰차이 발생하면 알람.
|
256
|
+
# 재고자산회전율이 작아지면 재고가 쌓인다는뜻
|
257
|
+
_, dict_y = 재고자산회전율
|
258
|
+
p = _calc_point_with_std(data=dict_y)
|
259
|
+
logger.debug(f'재고자산회전율평가 point : {p}')
|
260
|
+
return p
|
261
|
+
|
262
|
+
p5 = 재고자산회전율평가(blue_dict['재고자산회전율'])
|
263
|
+
|
264
|
+
return p1, p2, p3, p4, p5
|
265
|
+
|
266
|
+
|
267
|
+
def growth(code: str) -> Tuple[int, int]:
|
268
|
+
"""회사의 성장성을 보는 지표들
|
269
|
+
|
270
|
+
<매출액>
|
271
|
+
매출액은 어떤경우에도 성장하는 기업이 좋다.매출이 20%씩 늘어나는 종목은 유망한 종목
|
272
|
+
<영업이익률>
|
273
|
+
영업이익률은 기업의 경쟁력척도로 경쟁사에 비해 높으면 경제적해자를 갖춘셈
|
274
|
+
|
275
|
+
Returns:
|
276
|
+
tuple : 매출액증가율, 영업이익률 평가 포인트
|
277
|
+
"""
|
278
|
+
growth_dict = eval.growth(code)
|
279
|
+
|
280
|
+
logger.debug(pprint.pformat(growth_dict, width=200))
|
281
|
+
|
282
|
+
def 매출액증가율평가(매출액증가율: tuple) -> int:
|
283
|
+
# 매출액은 어떤경우에도 성장하는 기업이 좋다.매출이 20%씩 늘어나는 종목은 유망한 종목
|
284
|
+
MAX = 20
|
285
|
+
최근매출액증가율q, dict_y = 매출액증가율
|
286
|
+
_, 최근매출액증가율y = mymongo.C1034.latest_dict_value(dict_y)
|
287
|
+
|
288
|
+
# 최근 자료가 성장하는 중인지 판단
|
289
|
+
if math.isnan(최근매출액증가율q):
|
290
|
+
최근매출액증가율q = 최근매출액증가율y
|
291
|
+
|
292
|
+
sp1 = 0
|
293
|
+
if math.isnan(최근매출액증가율y):
|
294
|
+
pass
|
295
|
+
elif 0 < 최근매출액증가율y and 0 < 최근매출액증가율q:
|
296
|
+
# 최근에 마이너스 성장이 아닌경우 MAX/10점 보너스
|
297
|
+
sp1 += MAX / 10
|
298
|
+
if 최근매출액증가율y < 최근매출액증가율q:
|
299
|
+
# 최근에 이전보다 더 성장중이면 MAX/10점 보너스
|
300
|
+
sp1 += MAX / 10
|
301
|
+
# 나머지는 성장률 기반 점수 배정
|
302
|
+
sp1 += MAX / 2 if 최근매출액증가율q > MAX else 최근매출액증가율q / 2
|
303
|
+
elif 최근매출액증가율y <= 0 < 최근매출액증가율q:
|
304
|
+
# 직전에 마이너스였다가 최근에 회복된 경우 MAX/10점 보너스
|
305
|
+
sp1 += MAX / 10
|
306
|
+
# 나머지는 성장률 기반 점수 배정
|
307
|
+
sp1 += MAX / 2 if 최근매출액증가율q > MAX else 최근매출액증가율q / 2
|
308
|
+
else:
|
309
|
+
# 최근 자료가 마이너스인 경우 마이너스만큼 점수를 차감한다.
|
310
|
+
sp1 += -(MAX / 2) if 최근매출액증가율q < -MAX else 최근매출액증가율q / 2
|
311
|
+
|
312
|
+
# 평균매출액증가율 구하기
|
313
|
+
d_values = [i for i in dict_y.values() if not math.isnan(i)]
|
314
|
+
logger.debug(f'평균매출액증가율 d_values : {d_values}')
|
315
|
+
|
316
|
+
if len(d_values) == 0:
|
317
|
+
평균매출액증가율 = float('nan')
|
318
|
+
else:
|
319
|
+
평균매출액증가율 = float(numpy.mean(d_values))
|
320
|
+
logger.debug(f'평균 : {평균매출액증가율}')
|
321
|
+
|
322
|
+
sp2 = 0
|
323
|
+
if math.isnan(평균매출액증가율):
|
324
|
+
sp2 += -(MAX/2)
|
325
|
+
elif 평균매출액증가율 <= 0:
|
326
|
+
# 평균매출액증가율이 마이너스인 경우 마이너스만큼 점수를 차감한다.
|
327
|
+
sp2 += -(MAX / 2) if 평균매출액증가율 < -MAX else 평균매출액증가율 / 2
|
328
|
+
else:
|
329
|
+
sp2 = MAX / 2 if 평균매출액증가율 > MAX else 평균매출액증가율 / 2
|
330
|
+
|
331
|
+
logger.debug(f'매출액증가율평가 point : {sp1 + sp2}')
|
332
|
+
|
333
|
+
return int(sp1 + sp2)
|
334
|
+
|
335
|
+
p1 = 매출액증가율평가(growth_dict['매출액증가율'])
|
336
|
+
|
337
|
+
def 영업이익률평가(영업이익률: dict) -> int:
|
338
|
+
# 영업이익률은 기업의 경쟁력척도로 경쟁사에 비해 높으면 경제적해자를 갖춘셈
|
339
|
+
영업이익률 = copy.deepcopy(영업이익률)
|
340
|
+
name = myredis.Corps.get_name(code)
|
341
|
+
|
342
|
+
p = 0
|
343
|
+
try:
|
344
|
+
myprofit = utils.to_float(영업이익률.pop(name))
|
345
|
+
except KeyError:
|
346
|
+
logger.warning(f'{name} 영업이익률 does not exist.')
|
347
|
+
return 0
|
348
|
+
logger.debug(f'종목영업이익률 : {myprofit}')
|
349
|
+
|
350
|
+
for profit in 영업이익률.values():
|
351
|
+
profit = utils.to_float(profit)
|
352
|
+
if math.isnan(profit):
|
353
|
+
continue
|
354
|
+
elif myprofit > profit:
|
355
|
+
p += 1
|
356
|
+
else:
|
357
|
+
continue
|
358
|
+
|
359
|
+
logger.debug(f'영업이익률평가 point : {p}')
|
360
|
+
return p
|
361
|
+
|
362
|
+
p2 = 영업이익률평가(growth_dict['영업이익률'])
|
363
|
+
|
364
|
+
return p1, p2
|