analyser_hj3415 2.10.6__py3-none-any.whl → 3.0.1__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,670 @@
1
+ """
2
+ Time Series Analysis
3
+ """
4
+ import os
5
+ import numpy as np
6
+ import yfinance as yf
7
+ from datetime import datetime, timedelta
8
+ import pandas as pd
9
+ from typing import Optional, Tuple
10
+ import plotly.graph_objs as go
11
+ from plotly.offline import plot
12
+ import matplotlib.pyplot as plt # Matplotlib 수동 임포트
13
+ from sklearn.preprocessing import MinMaxScaler
14
+ from tensorflow.keras.models import Sequential
15
+ from tensorflow.keras.layers import LSTM, Dense, Dropout
16
+ from tensorflow.keras.callbacks import EarlyStopping
17
+ from tensorflow.keras import Input
18
+ from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
19
+ from dataclasses import dataclass
20
+
21
+ from utils_hj3415 import tools, setup_logger
22
+ from db_hj3415 import myredis
23
+ from analyser_hj3415.analyser import score
24
+
25
+
26
+ mylogger = setup_logger(__name__,'WARNING')
27
+ expire_time = tools.to_int(os.getenv('DEFAULT_EXPIRE_TIME_H', 48)) * 3600
28
+
29
+
30
+ @dataclass
31
+ class LSTMData:
32
+ code: str
33
+
34
+ data_2d: np.ndarray
35
+ train_size: int
36
+ train_data_2d: np.ndarray
37
+ test_data_2d: np.ndarray
38
+
39
+ X_train_3d: np.ndarray
40
+ X_test_3d: np.ndarray
41
+ y_train_1d: np.ndarray
42
+ y_test_1d: np.ndarray
43
+
44
+
45
+ @dataclass
46
+ class LSTMGrade:
47
+ """
48
+ 딥러닝 모델의 학습 결과를 평가하기 위해 사용하는 데이터 클래스
49
+ """
50
+ code: str
51
+ train_mse: float
52
+ train_mae: float
53
+ train_r2: float
54
+ test_mse: float
55
+ test_mae: float
56
+ test_r2: float
57
+
58
+
59
+ class MyLSTM:
60
+ """
61
+ LSTM(Long Short-Term Memory)
62
+ """
63
+ # 미래 몇일을 예측할 것인가?
64
+ future_days = 30
65
+
66
+ def __init__(self, code: str):
67
+ assert tools.is_6digit(code), f'Invalid value : {code}'
68
+ self._code = code
69
+ self.name = myredis.Corps(code, 'c101').get_name()
70
+ self.scaler = MinMaxScaler(feature_range=(0, 1))
71
+ self.raw_data = pd.DataFrame()
72
+ self.lstm_data = LSTMData(
73
+ code=self.code,
74
+ data_2d=np.array([]),
75
+ train_size=0,
76
+ train_data_2d=np.array([]),
77
+ test_data_2d=np.array([]),
78
+ X_train_3d=np.array([]),
79
+ X_test_3d=np.array([]),
80
+ y_train_1d=np.array([]),
81
+ y_test_1d=np.array([]),
82
+ )
83
+
84
+ @property
85
+ def code(self) -> str:
86
+ return self._code
87
+
88
+ @code.setter
89
+ def code(self, code: str):
90
+ assert tools.is_6digit(code), f'Invalid value : {code}'
91
+ mylogger.debug(f'change code : {self.code} -> {code}')
92
+
93
+ self._code = code
94
+ self.name = myredis.Corps(code, 'c101').get_name()
95
+ self.scaler = MinMaxScaler(feature_range=(0, 1))
96
+ self.raw_data = pd.DataFrame()
97
+ self.lstm_data = LSTMData(
98
+ code=self.code,
99
+ data_2d=np.array([]),
100
+ train_size=0,
101
+ train_data_2d=np.array([]),
102
+ test_data_2d=np.array([]),
103
+ X_train_3d=np.array([]),
104
+ X_test_3d=np.array([]),
105
+ y_train_1d=np.array([]),
106
+ y_test_1d=np.array([]),
107
+ )
108
+
109
+ def initializing(self):
110
+ """
111
+ Fetches stock price data for the last four years from Yahoo Finance and prepares
112
+ it for use in an LSTM model by normalizing, splitting into training and testing datasets,
113
+ and reshaping the data.
114
+ """
115
+ def get_raw_data() -> pd.DataFrame:
116
+ """
117
+ 야후에서 해당 종목의 4년간 주가 raw data를 받아온다.
118
+ :return:
119
+ """
120
+ # 오늘 날짜 가져오기
121
+ today = datetime.today()
122
+
123
+ # 4년 전 날짜 계산 (4년 = 365일 * 4)
124
+ four_years_ago = today - timedelta(days=365 * 4)
125
+ mylogger.info(
126
+ f"Get raw data from yfinance - start: {four_years_ago.strftime('%Y-%m-%d')}, end: {today.strftime('%Y-%m-%d')}")
127
+
128
+ df = yf.download(
129
+ self.code + '.KS',
130
+ start=four_years_ago.strftime('%Y-%m-%d'),
131
+ end=today.strftime('%Y-%m-%d')
132
+ )
133
+ df.index = df.index.tz_localize(None)
134
+ mylogger.debug(df)
135
+ return df
136
+
137
+ def preprocessing_for_lstm() -> LSTMData:
138
+ """
139
+ lstm이 사용할 수 있도록 데이터 준비(정규화 및 8:2 훈련데이터 검증데이터 분리 및 차원변환)
140
+ :return:
141
+ """
142
+ mylogger.info("lstm이 사용할 수 있도록 데이터 준비(정규화 및 8:2 훈련데이터 검증데이터 분리 및 차원변환)")
143
+ # 필요한 열만 선택 (종가만 사용) - 2차웜 배열로 변환
144
+ data_2d = self.raw_data['Close'].values.reshape(-1, 1)
145
+ mylogger.debug(f"종가데이터 2차원베열값[:5] : {data_2d[:5]}")
146
+
147
+ # 데이터 정규화 (0과 1 사이로 스케일링)
148
+ scaled_data_2d = self.scaler.fit_transform(data_2d)
149
+
150
+ # 학습 데이터 생성
151
+ # 주가 데이터를 80%는 학습용, 20%는 테스트용으로 분리하는 코드
152
+ train_size = int(len(scaled_data_2d) * 0.8)
153
+ train_data_2d = scaled_data_2d[:train_size]
154
+ test_data_2d = scaled_data_2d[train_size:]
155
+ mylogger.info(f'총 {len(data_2d)}개 데이터, train size : {train_size}')
156
+
157
+ # 학습 데이터에 대한 입력(X)과 정답(y)를 생성
158
+ def create_dataset(data, time_step=60):
159
+ X, y = [], []
160
+ for i in range(len(data) - time_step):
161
+ X.append(data[i:i + time_step, 0])
162
+ y.append(data[i + time_step, 0])
163
+ return np.array(X), np.array(y)
164
+
165
+ X_train, y_train_1d = create_dataset(train_data_2d)
166
+ X_test, y_test_1d = create_dataset(test_data_2d)
167
+ mylogger.debug(f"훈련데이터 shape (입력, 정답) / {X_train.shape}")
168
+ mylogger.debug(f"테스트데이터 shape (입력, 정답) / {X_test.shape}")
169
+
170
+ try:
171
+ mylogger.debug("2차원 데이터를 3차원으로 변환합니다.")
172
+ # LSTM 모델 입력을 위해 데이터를 3차원으로 변환
173
+ X_train_3d = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
174
+ X_test_3d = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
175
+ except IndexError:
176
+ return LSTMData(
177
+ code=self.code,
178
+ data_2d=np.array([]),
179
+ train_size=0,
180
+ train_data_2d=np.array([]),
181
+ test_data_2d=np.array([]),
182
+ X_train_3d=np.array([]),
183
+ X_test_3d=np.array([]),
184
+ y_train_1d=np.array([]),
185
+ y_test_1d=np.array([]),
186
+ )
187
+
188
+ mylogger.debug(
189
+ f'차원 - X_train_3d : {X_train_3d.ndim}, X_test_3d : {X_test_3d.ndim}, y_train : {y_train_1d.ndim}, y_test : {y_test_1d.ndim}')
190
+ mylogger.debug(
191
+ f'len - X_train_3d : {len(X_train_3d)}, X_test_3d : {len(X_test_3d)}, y_train : {len(y_train_1d)}, y_test : {len(y_test_1d)}')
192
+
193
+ return LSTMData(
194
+ code=self.code,
195
+ data_2d=data_2d,
196
+ train_size=train_size,
197
+ train_data_2d=train_data_2d,
198
+ test_data_2d=test_data_2d,
199
+ X_train_3d=X_train_3d,
200
+ X_test_3d=X_test_3d,
201
+ y_train_1d=y_train_1d,
202
+ y_test_1d=y_test_1d,
203
+ )
204
+ self.raw_data = get_raw_data()
205
+ self.lstm_data = preprocessing_for_lstm()
206
+
207
+ def ensemble_training(self, num) -> Tuple[list, LSTMGrade]:
208
+ """
209
+ Represents the implementation for training, predicting, and evaluating an LSTM-based deep learning model.
210
+ Defines functions for LSTM model training, prediction, grading results, and ensemble model training.
211
+
212
+ Methods defined:
213
+ - model_training: Constructs and trains the LSTM model with specified layers and configurations.
214
+ - prediction: Uses a trained model to perform predictions, restores normalization, and returns results.
215
+ - grading: Analyzes the training and testing predictions, computes evaluation metrics, and returns grading details.
216
+ - ensemble_training: Trains multiple LSTM models to create ensemble predictions and future forecasts.
217
+
218
+ ensemble_training:
219
+ Trains multiple LSTM models iteratively and forms ensemble predictions for training, testing datasets,
220
+ and future trend forecasting. Evaluates the models collectively using grading metrics.
221
+
222
+ Arguments:
223
+ num: int
224
+ The number of ensemble LSTM models to train.
225
+
226
+ Returns:
227
+ Tuple[list, LSTMGrade]
228
+ A list of predicted scaled values for future forecasts and the performance grading object.
229
+
230
+ Raises:
231
+ Does not explicitly raise errors but logs warnings for possible issues during training or prediction.
232
+ """
233
+ def model_training() -> Sequential:
234
+ # LSTM 모델 생성 - 유닛과 드롭아웃의 수는 테스트로 최적화 됨.
235
+ model = Sequential()
236
+ mylogger.debug(f"훈련 데이터 shape - {self.lstm_data.X_train_3d.shape}")
237
+ try:
238
+ # Input(shape=(50, 1))는 50개의 타임스텝을 가지는 입력 데이터를 처리하며, 각 타임스텝에 1개의 특성이 있다는 것을 의미
239
+ model.add(Input(shape=(self.lstm_data.X_train_3d.shape[1], 1))) # 입력 레이어에 명시적으로 Input을 사용
240
+ except IndexError:
241
+ mylogger.error("모델 트레이닝을 위한 자료가 부족합니다.")
242
+ return model
243
+
244
+ model.add(LSTM(units=150, return_sequences=True))
245
+ model.add(Dropout(0.2))
246
+ model.add(LSTM(units=75, return_sequences=False))
247
+ model.add(Dropout(0.2))
248
+ model.add(Dense(units=25))
249
+ model.add(Dropout(0.3))
250
+ model.add(Dense(units=1))
251
+
252
+ # 모델 요약 출력
253
+ model.summary()
254
+
255
+ # 모델 컴파일 및 학습
256
+ model.compile(optimizer='adam', loss='mean_squared_error')
257
+
258
+ # 조기 종료 설정
259
+ early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
260
+
261
+ # 모델 학습 - 과적합 방지위한 조기종료 세팅
262
+ model.fit(self.lstm_data.X_train_3d, self.lstm_data.y_train_1d,
263
+ epochs=75, batch_size=32, validation_data=(self.lstm_data.X_test_3d, self.lstm_data.y_test_1d),
264
+ callbacks=[early_stopping])
265
+ return model
266
+
267
+ def prediction(model_in: Sequential, data: np.ndarray) -> np.ndarray:
268
+ """
269
+ 훈련될 모델을 통해 예측을 시행하여 정규화를 복원하고 결과 반환한다.
270
+ :param model_in:
271
+ :param data:
272
+ :return:
273
+ """
274
+ predictions_2d = model_in.predict(data)
275
+ predictions_scaled_2d = self.scaler.inverse_transform(predictions_2d) # 스케일링 복원
276
+ mylogger.info(
277
+ f'predictions_scaled_2d : ndim - {predictions_scaled_2d.ndim} len - {len(predictions_scaled_2d)}') # numpy.ndarray 타입
278
+ mylogger.debug(f'predictions_scaled_2d[:5] :{predictions_scaled_2d[:5]}')
279
+ return predictions_scaled_2d
280
+
281
+ def grading(train_predictions: list, test_predictions: list) -> LSTMGrade:
282
+ """
283
+ 딥러닝 결과를 분석하기 위한 함수
284
+ :param train_predictions:
285
+ :param test_predictions:
286
+ :return:
287
+ """
288
+ if len(train_predictions) == 0 or len(test_predictions) == 0:
289
+ mylogger.warning("딥러닝 결과가 없어서 LSTMGrade 데이터를 비워서 반환합니다.")
290
+ return LSTMGrade(
291
+ code= self.code,
292
+ train_mse=float('nan'),
293
+ train_mae=float('nan'),
294
+ train_r2=float('nan'),
295
+ test_mse=float('nan'),
296
+ test_mae=float('nan'),
297
+ test_r2=float('nan'),
298
+ )
299
+
300
+ # 예측값을 평균내서 최종 예측값 도출
301
+ mean_train_prediction_2d = np.mean(train_predictions, axis=0)
302
+ mean_test_predictions_2d = np.mean(test_predictions, axis=0)
303
+
304
+ # y값(정답) 정규화 해제
305
+ y_train_scaled_2d = self.scaler.inverse_transform(self.lstm_data.y_train_1d.reshape(-1, 1))
306
+ y_test_scaled_2d = self.scaler.inverse_transform(self.lstm_data.y_test_1d.reshape(-1, 1))
307
+
308
+ # 평가 지표 계산
309
+ train_mse = mean_squared_error(y_train_scaled_2d, mean_train_prediction_2d)
310
+ train_mae = mean_absolute_error(y_train_scaled_2d, mean_train_prediction_2d)
311
+ train_r2 = r2_score(y_train_scaled_2d, mean_train_prediction_2d)
312
+
313
+ test_mse = mean_squared_error(y_test_scaled_2d, mean_test_predictions_2d)
314
+ test_mae = mean_absolute_error(y_test_scaled_2d, mean_test_predictions_2d)
315
+ test_r2 = r2_score(y_test_scaled_2d, mean_test_predictions_2d)
316
+
317
+ # 평가 결과 출력
318
+ print("Training Data:")
319
+ print(f"Train MSE: {train_mse}, Train MAE: {train_mae}, Train R²: {train_r2}")
320
+ print("\nTesting Data:")
321
+ print(f"Test MSE: {test_mse}, Test MAE: {test_mae}, Test R²: {test_r2}")
322
+ # mse, mae는 작을수록 좋으며 R^2은 0-1 사이값 1에 가까울수록 정확함
323
+ # 과적합에 대한 평가는 train 과 test를 비교하여 test가 너무 않좋으면 과적합 의심.
324
+
325
+ return LSTMGrade(
326
+ code=self.code,
327
+ train_mse=train_mse,
328
+ train_mae=train_mae,
329
+ train_r2=train_r2,
330
+ test_mse=test_mse,
331
+ test_mae=test_mae,
332
+ test_r2=test_r2,
333
+ )
334
+
335
+ ensemble_train_predictions_2d = []
336
+ ensemble_test_predictions_2d = []
337
+ ensemble_future_predictions_2d = []
338
+
339
+ for i in range(num):
340
+ print(f"Training model {i + 1}/{num}...")
341
+ model = model_training()
342
+
343
+ if len(model.layers) == 0:
344
+ mylogger.warning("이 모델은 빈 Sequential() 입니다.")
345
+ return [], grading([],[])
346
+ else:
347
+ mylogger.info("레이어가 있는 모델입니다.")
348
+
349
+ # 훈련 데이터 예측
350
+ train_predictions_scaled_2d = prediction(model, self.lstm_data.X_train_3d)
351
+ ensemble_train_predictions_2d.append(train_predictions_scaled_2d)
352
+
353
+ # 테스트 데이터 예측
354
+ test_predictions_scaled_2d = prediction(model, self.lstm_data.X_test_3d)
355
+ ensemble_test_predictions_2d.append(test_predictions_scaled_2d)
356
+
357
+ # 8. 미래 30일 예측
358
+ # 마지막 60일간의 데이터를 기반으로 미래 30일을 예측
359
+
360
+ last_60_days_2d = self.lstm_data.test_data_2d[-60:]
361
+ last_60_days_3d = last_60_days_2d.reshape(1, -1, 1)
362
+
363
+ future_predictions = []
364
+ for _ in range(self.future_days):
365
+ predicted_price_2d = model.predict(last_60_days_3d)
366
+ future_predictions.append(predicted_price_2d[0][0])
367
+
368
+ # 예측값을 다시 입력으로 사용하여 새로운 예측을 만듦
369
+ predicted_price_reshaped = np.reshape(predicted_price_2d, (1, 1, 1)) # 3D 배열로 변환
370
+ last_60_days_3d = np.append(last_60_days_3d[:, 1:, :], predicted_price_reshaped, axis=1)
371
+
372
+ # 예측된 주가를 다시 스케일링 복원
373
+ future_predictions_2d = np.array(future_predictions).reshape(-1, 1)
374
+ future_predictions_scaled_2d = self.scaler.inverse_transform(future_predictions_2d)
375
+ ensemble_future_predictions_2d.append(future_predictions_scaled_2d)
376
+
377
+ lstm_grade = grading(ensemble_train_predictions_2d, ensemble_test_predictions_2d)
378
+
379
+ return ensemble_future_predictions_2d, lstm_grade
380
+
381
+ def get_final_predictions(self, refresh: bool, num=5) -> Tuple[dict, LSTMGrade]:
382
+ """
383
+ Fetches final predictions based on an ensemble method using deep learning models. This process averages the
384
+ predictions to forecast future data, primarily for debugging purposes as it is challenging to utilize
385
+ Redis cache for evaluation.
386
+
387
+ Parameters:
388
+ refresh (bool): Flag to indicate whether to refresh cached data.
389
+ num (int, optional): Number of iterations for predictions. Defaults to 5.
390
+
391
+ Returns:
392
+ Tuple[dict, LSTMGrade]: A tuple containing a dictionary of future predictions and their corresponding
393
+ evaluation grade.
394
+
395
+ Raises:
396
+ AssertionError: If the lengths of future dates and predicted values do not match.
397
+
398
+ Notes:
399
+ - This function integrates ensemble training and caching of predictive data.
400
+ - The future prediction keys correspond to the dates in "YYYY-MM-DD" format.
401
+ - Makes use of Redis for data retrieval and caching mechanisms.
402
+ """
403
+ print("**** Start get_final_predictions... ****")
404
+ redis_name = f'{self.code}_mylstm_predictions'
405
+
406
+ print(
407
+ f"redisname: '{redis_name}' / refresh : {refresh} / expire_time : {expire_time/3600}h")
408
+
409
+ def fetch_final_predictions(num_in) -> tuple:
410
+ """
411
+ 앙상블법으로 딥러닝을 모델을 반복해서 평균을 내서 미래를 예측한다. 평가는 래시스 캐시로 반환하기 어려워 일단 디버그 용도로만 사용하기로
412
+ :param num_in:
413
+ :return:
414
+ """
415
+ def make_future_data_dict(future_predictions) -> dict:
416
+ # 시각화를 위한 준비 - 날짜 생성 (미래 예측 날짜), 미래예측값 평균
417
+ mylogger.debug(self.raw_data)
418
+ last_date = self.raw_data.index[-1]
419
+ mylogger.debug(f'last_date : {last_date}')
420
+ future_dates = pd.date_range(last_date, periods=self.future_days + 1).tolist()[1:]
421
+ mylogger.debug(f'future_dates : {future_dates}')
422
+ final_future_predictions = np.mean(future_predictions, axis=0).tolist()
423
+ mylogger.debug(f'final_future_predictions(예측주가 리스트) : {final_future_predictions}')
424
+
425
+ assert len(future_dates) == len(
426
+ final_future_predictions), "future_dates 와 final_future_predictions 개수가 일치하지 않습니다."
427
+
428
+ data = {}
429
+ for i in range(len(future_dates)):
430
+ data[future_dates[i].strftime("%Y-%m-%d")] = final_future_predictions[i][0]
431
+ return data
432
+
433
+ # 앙상블 트레이닝 시행
434
+ future_predictions_2d, lstm_grade = self.ensemble_training(num=num_in)
435
+ mylogger.debug(f'future_predictions_2d[:5] : {future_predictions_2d[:5]}')
436
+ mylogger.debug(f'lstm grade(학습결과평과) : {lstm_grade}')
437
+ if len(future_predictions_2d) == 0:
438
+ return {}, lstm_grade
439
+
440
+ # {날짜(유닉스타임): 예측주가} 형식으로 딕서너리로 제작
441
+ future_data = make_future_data_dict(future_predictions_2d)
442
+ mylogger.debug(f'future_data : {future_data}')
443
+
444
+ return future_data, lstm_grade
445
+
446
+ return myredis.Base.fetch_and_cache_data(redis_name, refresh, fetch_final_predictions, num, timer=expire_time)
447
+
448
+ def export(self, refresh=False, to="str", num=5) -> Optional[str]:
449
+ """
450
+ Prepares and exports stock price trend graphs based on past and predicted data.
451
+ The graphs include markers for actual prices along with a line-plot for forecasted prices.
452
+ The function offers multiple export formats: an HTML string, a PNG file, or an HTML file.
453
+
454
+ Parameters
455
+ ----------
456
+ refresh : bool, optional
457
+ Specifies whether to refresh dataset before preparing future data. Defaults to False.
458
+ to : str, optional
459
+ Determines the export format of the graph. Valid choices are
460
+ 'str', 'png', or 'htmlfile'. Defaults to 'str'.
461
+ num : int, optional
462
+ Specifies the number of future days to include in prediction. Defaults to 5.
463
+
464
+ Returns
465
+ -------
466
+ Optional[str]
467
+ A string representation of the graph in HTML format if `to` is set to 'str'.
468
+ Returns None if `to` is set to either 'png' or 'htmlfile'.
469
+
470
+ Raises
471
+ ------
472
+ Exception
473
+ Raised if the `to` parameter does not match the allowed values: 'str', 'png', or 'htmlfile'.
474
+ """
475
+ def prepare_past_data(past_days) -> tuple:
476
+ # 데이터 준비
477
+ raw_data_copied = self.raw_data.reset_index()
478
+ data = raw_data_copied[['Date', 'Close']][-past_days:].reset_index(drop=True)
479
+
480
+ # 'Date'와 'Close' 열 추출
481
+ past_dates = pd.to_datetime(data['Date'])
482
+ past_prices = data['Close']
483
+
484
+ # 'past_prices'가 Series인지 확인
485
+ if isinstance(past_prices, pd.DataFrame):
486
+ past_prices = past_prices.squeeze()
487
+
488
+ # 'Close' 열의 데이터 타입 변경
489
+ past_prices = past_prices.astype(float)
490
+ return past_dates, past_prices
491
+
492
+ def prepare_future_data(refresh_in, num_in) -> tuple:
493
+ future_data, lstm_grade = self.get_final_predictions(refresh=refresh_in, num=num_in)
494
+
495
+ # 예측 데이터 준비
496
+ future_dates = pd.to_datetime(list(future_data.keys()))
497
+
498
+ future_prices = pd.Series(future_data.values(), index=range(len(future_data.values()))).astype(float)
499
+ return future_dates, future_prices
500
+
501
+ self.initializing()
502
+ past_dates, past_prices = prepare_past_data(past_days=120)
503
+ future_dates, future_prices = prepare_future_data(refresh_in=refresh, num_in=num)
504
+
505
+ # 그래프 생성
506
+ fig = go.Figure()
507
+
508
+ # 실제 데이터 추가
509
+ fig.add_trace(go.Scatter(
510
+ x=past_dates,
511
+ y=past_prices,
512
+ mode='markers',
513
+ name='실제주가'
514
+ ))
515
+
516
+ # 예측 데이터 추가
517
+ fig.add_trace(go.Scatter(
518
+ x=future_dates,
519
+ y=future_prices,
520
+ mode='lines+markers',
521
+ name='예측치(30일)'
522
+ ))
523
+
524
+ # 레이아웃 업데이트
525
+ fig.update_layout(
526
+ xaxis_title='일자',
527
+ yaxis_title='주가(원)',
528
+ xaxis=dict(
529
+ tickformat='%Y/%m',
530
+ ),
531
+ yaxis=dict(
532
+ tickformat=".0f",
533
+ ),
534
+ showlegend=True,
535
+ )
536
+
537
+ mylogger.debug(f"past_dates({len(past_dates)}) - {past_dates}")
538
+ mylogger.debug(f"past_prices({len(past_prices)} - {past_prices}")
539
+ mylogger.debug(f"future_dates({len(future_dates)}) - {future_dates}")
540
+ mylogger.debug(f"future_prices({len(future_prices)}) - {future_prices}")
541
+
542
+ fig.update_layout(
543
+ # title=f'{self.code} {self.name} 주가 예측 그래프(prophet)',
544
+ xaxis_title='일자',
545
+ yaxis_title='주가(원)',
546
+ xaxis=dict(
547
+ tickformat='%Y/%m', # X축을 '연/월' 형식으로 표시
548
+ ),
549
+ yaxis=dict(
550
+ tickformat=".0f", # 소수점 없이 원래 숫자 표시
551
+ ),
552
+ showlegend=False,
553
+ )
554
+
555
+ if to == 'str':
556
+ # 그래프 HTML로 변환 (string 형식으로 저장)
557
+ graph_html = plot(fig, output_type='div')
558
+ return graph_html
559
+ elif to == 'png':
560
+ # 그래프를 PNG 파일로 저장
561
+ fig.write_image(f"myLSTM_{self.code}.png")
562
+ return None
563
+ elif to == 'htmlfile':
564
+ # 그래프를 HTML로 저장
565
+ plot(fig, filename=f'myLSTM_{self.code}.html', auto_open=False)
566
+ return None
567
+ else:
568
+ Exception("to 인자가 맞지 않습니다.")
569
+
570
+ def visualization(self, refresh=True):
571
+ """
572
+ Visualizes actual and predicted stock prices, allowing for an evaluation of the
573
+ predictions made using a Long Short-Term Memory (LSTM) model. The visualization
574
+ includes plots for both future predicted prices and historical price comparisons
575
+ for improved insights.
576
+
577
+ Parameters
578
+ ----------
579
+ refresh : bool, optional
580
+ Indicates whether to refresh and retrieve the latest predictions before
581
+ visualizing. Defaults to True.
582
+
583
+ Raises
584
+ ------
585
+ None
586
+
587
+ Returns
588
+ -------
589
+ None
590
+ """
591
+ self.initializing()
592
+ future_data, _ = self.get_final_predictions(refresh=refresh)
593
+ mylogger.debug(f'future_data : {future_data}')
594
+ future_dates = pd.to_datetime(list(future_data.keys()))
595
+ mylogger.debug(f'future_dates : {future_dates}')
596
+ future_prices = pd.Series(future_data.values(), index=range(len(future_data.values()))).astype(float)
597
+ mylogger.debug(f'future_prices : {future_prices}')
598
+
599
+ # 시각화1
600
+ plt.figure(figsize=(10, 6))
601
+
602
+ # 실제 주가
603
+ plt.plot(self.raw_data.index, self.raw_data['Close'], label='Actual Price')
604
+
605
+ # 미래 주가 예측
606
+ plt.plot(future_dates, future_prices, label='Future Predicted Price', linestyle='--')
607
+
608
+ plt.xlabel('Date')
609
+ plt.ylabel('Stock Price')
610
+ plt.legend()
611
+ plt.title(f'{self.name} Stock Price Prediction with LSTM')
612
+ plt.show()
613
+
614
+ """# 시각화2
615
+ plt.figure(figsize=(10, 6))
616
+ plt.plot(self.raw_data.index[self.lstm_data.train_size + 60:], self.lstm_data.data_2d[self.lstm_data.train_size + 60:], label='Actual Price')
617
+ plt.plot(self.raw_data.index[self.lstm_data.train_size + 60:], lstm_grade.mean_test_predictions_2d, label='Predicted Price')
618
+ plt.xlabel('Date')
619
+ plt.ylabel('Price')
620
+ plt.legend()
621
+ plt.title('Stock Price Prediction with LSTM Ensemble')
622
+ plt.show()"""
623
+
624
+ def is_up(self) -> bool:
625
+ """
626
+ Determines if the predicted data indicates an increasing trend.
627
+
628
+ This method evaluates the results of future predictions and checks if all the
629
+ subsequent values in the prediction data increase compared to their predecessors.
630
+
631
+ Returns:
632
+ bool: True if all future predicted values increase in sequence, False otherwise.
633
+
634
+ Raises:
635
+ None: This method does not raise any exceptions.
636
+ """
637
+ # 튜플의 [0]은 날짜 [1]은 값 배열
638
+ future_data, _ = self.get_final_predictions(refresh=False)
639
+ # 데이터를 1D 배열로 변환
640
+ flattened_data = list(future_data.values())
641
+ mylogger.debug(f"flattened_data : {flattened_data}")
642
+ # 증가 여부 확인
643
+ return all(flattened_data[i] < flattened_data[i + 1] for i in range(len(flattened_data) - 1))
644
+
645
+ @staticmethod
646
+ def caching_based_on_prophet_ranking(refresh: bool, top=20):
647
+ """
648
+ This method utilizes a ranking system generated by the Score class for
649
+ predictive caching.
650
+
651
+ Parameters
652
+ ----------
653
+ refresh : bool
654
+ Whether to refresh the predictions for the selected items.
655
+ top : int, optional
656
+ The number of top-ranked items to process, by default 20.
657
+ """
658
+ ranking_topn = score.Score.ranking(refresh=False, top=top)
659
+ mylogger.info(ranking_topn)
660
+ mylstm = MyLSTM('005930')
661
+ print(f"*** LSTM prediction redis cashing top{top} items ***")
662
+ for i, (code, _) in enumerate(ranking_topn.items()):
663
+ mylstm.code = code
664
+ print(f"{i + 1}. {mylstm.code}/{mylstm.name}")
665
+ mylstm.initializing()
666
+ mylstm.get_final_predictions(refresh=refresh, num=5)
667
+
668
+
669
+
670
+