analyser_hj3415 2.0.1__py2.py3-none-any.whl → 2.1.0__py2.py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- analyser_hj3415/.DS_Store +0 -0
- analyser_hj3415/analysers/eval.py +289 -0
- analyser_hj3415/{report.py → analysers/report.py} +23 -59
- analyser_hj3415/{score.py → analysers/score.py} +56 -61
- analyser_hj3415/{db/evaltools.py → tools.py} +102 -79
- analyser_hj3415/trash.py +210 -0
- {analyser_hj3415-2.0.1.dist-info → analyser_hj3415-2.1.0.dist-info}/METADATA +5 -9
- analyser_hj3415-2.1.0.dist-info/RECORD +14 -0
- analyser_hj3415/db/.DS_Store +0 -0
- analyser_hj3415/db/chk_db.py +0 -240
- analyser_hj3415/db/mongo.py +0 -934
- analyser_hj3415/eval.py +0 -382
- analyser_hj3415-2.0.1.dist-info/RECORD +0 -16
- /analyser_hj3415/{db/__init__.py → run.py} +0 -0
- {analyser_hj3415-2.0.1.dist-info → analyser_hj3415-2.1.0.dist-info}/LICENSE +0 -0
- {analyser_hj3415-2.0.1.dist-info → analyser_hj3415-2.1.0.dist-info}/WHEEL +0 -0
- {analyser_hj3415-2.0.1.dist-info → analyser_hj3415-2.1.0.dist-info}/entry_points.txt +0 -0
analyser_hj3415/eval.py
DELETED
@@ -1,382 +0,0 @@
|
|
1
|
-
"""red, mil, blue 3가지 분야에서 자료를 계산하여 리턴하는 함수 모음
|
2
|
-
"""
|
3
|
-
import math
|
4
|
-
import time
|
5
|
-
import datetime
|
6
|
-
import pandas as pd
|
7
|
-
from multiprocessing import Process, Queue
|
8
|
-
|
9
|
-
from .db import mongo, evaltools
|
10
|
-
from utils_hj3415 import utils
|
11
|
-
|
12
|
-
import logging
|
13
|
-
|
14
|
-
logger = logging.getLogger(__name__)
|
15
|
-
formatter = logging.Formatter('%(levelname)s: [%(name)s] %(message)s')
|
16
|
-
ch = logging.StreamHandler()
|
17
|
-
ch.setFormatter(formatter)
|
18
|
-
logger.addHandler(ch)
|
19
|
-
logger.setLevel(logging.WARNING)
|
20
|
-
|
21
|
-
# 주식을 통한 기대수익률 - 금리가 3%일 경우 두배인 6% 정도로 잡는다.
|
22
|
-
EXPECT_EARN = 0.04
|
23
|
-
|
24
|
-
|
25
|
-
def red(client, code: str) -> dict:
|
26
|
-
"""
|
27
|
-
리턴값
|
28
|
-
{
|
29
|
-
'red_price': red_price,
|
30
|
-
'사업가치': 사업가치,
|
31
|
-
'재산가치': 재산가치,
|
32
|
-
'부채평가': 부채평가,
|
33
|
-
'발행주식수': 발행주식수,
|
34
|
-
'date': [각 유효한 값의 년월값 리스트(ex- 2020/09)],
|
35
|
-
}
|
36
|
-
"""
|
37
|
-
c101 = mongo.C101(client, code)
|
38
|
-
c103q = mongo.C103(client, code, 'c103재무상태표q')
|
39
|
-
|
40
|
-
d1, 지배주주당기순이익 = evaltools.calc당기순이익(client, code)
|
41
|
-
d2, 유동자산 = evaltools.calc유동자산(client, code)
|
42
|
-
d3, 유동부채 = evaltools.calc유동부채(client, code)
|
43
|
-
d4, 부채평가 = evaltools.calc비유동부채(client, code)
|
44
|
-
|
45
|
-
c103q.page = 'c103재무상태표q'
|
46
|
-
d5, 투자자산 = c103q.latest_value('투자자산', nan_to_zero=True, allow_empty=True)
|
47
|
-
d6, 투자부동산 = c103q.latest_value('투자부동산', nan_to_zero=True, allow_empty=True)
|
48
|
-
|
49
|
-
# 사업가치 계산 - 지배주주지분 당기순이익 / 기대수익률
|
50
|
-
사업가치 = round(지배주주당기순이익 / EXPECT_EARN, 2)
|
51
|
-
|
52
|
-
# 재산가치 계산 - 유동자산 - (유동부채*1.2) + 고정자산중 투자자산
|
53
|
-
재산가치 = round(유동자산 - (유동부채 * 1.2) + 투자자산 + 투자부동산, 2)
|
54
|
-
if math.isnan(재산가치):
|
55
|
-
logger.warning(f'유동자산: {유동자산} - 유동부채: {유동부채} * 1.2 + 투자자산: {투자자산} + 투자부동산: {투자부동산}')
|
56
|
-
|
57
|
-
d, 발행주식수 = c103q.latest_value('발행주식수', allow_empty=True)
|
58
|
-
if math.isnan(발행주식수):
|
59
|
-
rc101 = c101.get_recent()
|
60
|
-
logger.error(rc101)
|
61
|
-
발행주식수 = utils.to_int(rc101.get('발행주식'))
|
62
|
-
else:
|
63
|
-
발행주식수 = 발행주식수 * 1000
|
64
|
-
|
65
|
-
try:
|
66
|
-
red_price = round(((사업가치 + 재산가치 - 부채평가) * 100000000) / 발행주식수)
|
67
|
-
except (ZeroDivisionError, ValueError) as e:
|
68
|
-
logger.error(f'In calc red price... {e} : {code}')
|
69
|
-
red_price = math.nan
|
70
|
-
|
71
|
-
logger.debug(f'Red Price : {red_price}원')
|
72
|
-
return {
|
73
|
-
'red_price': red_price,
|
74
|
-
'사업가치': 사업가치,
|
75
|
-
'재산가치': 재산가치,
|
76
|
-
'부채평가': 부채평가,
|
77
|
-
'발행주식수': 발행주식수,
|
78
|
-
'date': [i for i in {d1, d2, d3, d4, d5, d6} if i != ''], # ''값을 제거하고 리스트로 바꾼다.
|
79
|
-
}
|
80
|
-
|
81
|
-
|
82
|
-
def mil(client, code: str) -> dict:
|
83
|
-
"""
|
84
|
-
리턴값
|
85
|
-
{
|
86
|
-
'주주수익률': 주주수익률,
|
87
|
-
'이익지표': 이익지표,
|
88
|
-
'투자수익률': {'ROIC': roic, 'ROE': roe},
|
89
|
-
'가치지표': {'FCF': fcf_dict, 'PFCF': pfcf_dict, 'PCR': pcr_dict},
|
90
|
-
'date': [각 유효한 값의 년월값 리스트(ex- 2020/09)],
|
91
|
-
}
|
92
|
-
"""
|
93
|
-
c103 = mongo.C103(client, code, 'c103현금흐름표q')
|
94
|
-
c104 = mongo.C104(client, code, 'c104q')
|
95
|
-
|
96
|
-
marketcap억 = evaltools.get_marketcap(client, code, nan_to_zero=False) / 100000000
|
97
|
-
logger.debug(f'{code} market cap: {marketcap억}')
|
98
|
-
fcf_dict = evaltools.findFCF(client, code)
|
99
|
-
pfcf_dict = evaltools.findPFCF(client, code)
|
100
|
-
d1, 지배주주당기순이익 = evaltools.calc당기순이익(client, code)
|
101
|
-
|
102
|
-
d2, 재무활동현금흐름 = c103.sum_recent_4q(title='재무활동으로인한현금흐름', nan_to_zero=False)
|
103
|
-
d3, 영업활동현금흐름 = c103.sum_recent_4q(title='영업활동으로인한현금흐름', nan_to_zero=False)
|
104
|
-
|
105
|
-
d4, roic = c104.sum_recent_4q('ROIC', nan_to_zero=False)
|
106
|
-
d5, roe = c104.latest_value('ROE', nan_to_zero=False, allow_empty=True)
|
107
|
-
pcr_dict = c104.find('PCR', allow_empty=True)
|
108
|
-
|
109
|
-
try:
|
110
|
-
주주수익률 = round((재무활동현금흐름 / marketcap억 * -100), 2)
|
111
|
-
이익지표 = round((지배주주당기순이익 - 영업활동현금흐름) / marketcap억, 5)
|
112
|
-
except ZeroDivisionError:
|
113
|
-
주주수익률 = math.nan
|
114
|
-
이익지표 = math.nan
|
115
|
-
|
116
|
-
if math.isnan(주주수익률) or math.isnan(이익지표):
|
117
|
-
logger.warning(f'주주수익률: {주주수익률} 이익지표: {이익지표}')
|
118
|
-
logger.warning(f'재무활동현금흐름: {재무활동현금흐름}지배주주당기순이익: {지배주주당기순이익}영업활동현금흐름: {영업활동현금흐름}')
|
119
|
-
|
120
|
-
logger.debug(f'{code} fcf_dict : {fcf_dict}')
|
121
|
-
logger.debug(f"{code} market_cap : {marketcap억}")
|
122
|
-
logger.debug(f'{code} pfcf_dict : {pfcf_dict}')
|
123
|
-
logger.debug(f'{code} pcr_dict : {pcr_dict}')
|
124
|
-
|
125
|
-
return {
|
126
|
-
'주주수익률': 주주수익률,
|
127
|
-
'이익지표': 이익지표,
|
128
|
-
'투자수익률': {'ROIC': roic, 'ROE': roe},
|
129
|
-
'가치지표': {'FCF': fcf_dict, 'PFCF': pfcf_dict, 'PCR': pcr_dict},
|
130
|
-
'date': [i for i in {d1, d2, d3, d4, d5} if i != ''], # ''값을 제거하고 리스트로 바꾼다.
|
131
|
-
}
|
132
|
-
|
133
|
-
|
134
|
-
def blue(client, code: str) -> dict:
|
135
|
-
"""
|
136
|
-
리턴값
|
137
|
-
{
|
138
|
-
'date': [각 유효한 값의 최근분기 값 리스트(ex- 2020/09)],
|
139
|
-
'순부채비율': (29.99, {'2018/12': 19.45, '2019/12': 19.52, '2020/12': 12.07, '2021/12': 82.2, '2022/12': 29.99, '2023/12': nan}),
|
140
|
-
'순운전자본회전율': (1.04, {'2018/12': 21.91, '2019/12': 23.12, '2020/12': 5.88, '2021/12': 5.6, '2022/12': 6.04, '2023/12': nan}),
|
141
|
-
'유동비율': 64.29,
|
142
|
-
'이자보상배율': (-3.64, {'2018/12': 4.01, '2019/12': 1.3, '2020/12': -5.05, '2021/12': 0.56, '2022/12': -1.28, '2023/12': nan}),
|
143
|
-
'재고자산회전율': (1.66, {'2018/12': 12.41, '2019/12': 12.44, '2020/12': 9.18, '2021/12': 9.76, '2022/12': 8.79, '2023/12': nan})
|
144
|
-
}
|
145
|
-
|
146
|
-
<유동비율>
|
147
|
-
100미만이면 주의하나 현금흐름창출력이 좋으면 괜찮을수 있다.
|
148
|
-
만약 100%이하면 유동자산에 추정영업현금흐름을 더해서 다시계산해보아 기회를 준다.
|
149
|
-
<이자보상배율>
|
150
|
-
이자보상배율 영업이익/이자비용으로 1이면 자금사정빡빡 5이상이면 양호
|
151
|
-
<순운전자금회전율>
|
152
|
-
순운전자금 => 기업활동을 하기 위해 필요한 자금 (매출채권 + 재고자산 - 매입채무)
|
153
|
-
순운전자본회전율은 매출액/순운전자본으로 일정비율이 유지되는것이 좋으며 너무 작아지면 순운전자본이 많아졌다는 의미로 재고나 외상이 쌓인다는 뜻
|
154
|
-
<재고자산회전율>
|
155
|
-
재고자산회전율은 매출액/재고자산으로 회전율이 낮을수록 재고가 많다는 이야기이므로 불리 전년도등과 비교해서 큰차이 발생하면 알람.
|
156
|
-
재고자산회전율이 작아지면 재고가 쌓인다는뜻
|
157
|
-
<순부채비율>
|
158
|
-
부채비율은 업종마다 달라 일괄비교 어려우나 순부채 비율이 20%이하인것이 좋고 꾸준히 늘어나지 않는것이 좋다.
|
159
|
-
순부채 비율이 30%이상이면 좋치 않다.
|
160
|
-
<매출액>
|
161
|
-
매출액은 어떤경우에도 성장하는 기업이 좋다.매출이 20%씩 늘어나는 종목은 유망한 종목
|
162
|
-
<영업이익률>
|
163
|
-
영업이익률은 기업의 경쟁력척도로 경쟁사에 비해 높으면 경제적해자를 갖춘셈
|
164
|
-
"""
|
165
|
-
|
166
|
-
d1, 유동비율 = evaltools.calc유동비율(client, code, pop_count=3)
|
167
|
-
logger.debug(f'유동비율 {유동비율} / [{d1}]')
|
168
|
-
|
169
|
-
c104y = mongo.C104(client, code, 'c104y')
|
170
|
-
dict이자보상배율y = c104y.find('이자보상배율', allow_empty=True)
|
171
|
-
dict순운전자본회전율y = c104y.find('순운전자본회전율', allow_empty=True)
|
172
|
-
dict재고자산회전율y = c104y.find('재고자산회전율', allow_empty=True)
|
173
|
-
dict순부채비율y = c104y.find('순부채비율', allow_empty=True)
|
174
|
-
|
175
|
-
c104q = mongo.C104(client, code, 'c104q')
|
176
|
-
d2, 이자보상배율q = c104q.latest_value('이자보상배율', allow_empty=True)
|
177
|
-
d3, 순운전자본회전율q = c104q.latest_value('순운전자본회전율', allow_empty=True)
|
178
|
-
d4, 재고자산회전율q = c104q.latest_value('재고자산회전율', allow_empty=True)
|
179
|
-
d5, 순부채비율q = c104q.latest_value('순부채비율', allow_empty=True)
|
180
|
-
|
181
|
-
if len(dict이자보상배율y) == 0:
|
182
|
-
logger.warning(f'empty dict - 이자보상배율 : {이자보상배율q} {dict이자보상배율y}')
|
183
|
-
|
184
|
-
if len(dict순운전자본회전율y) == 0:
|
185
|
-
logger.warning(f'empty dict - 순운전자본회전율 : {순운전자본회전율q} {dict순운전자본회전율y}')
|
186
|
-
|
187
|
-
if len(dict재고자산회전율y) == 0:
|
188
|
-
logger.warning(f'empty dict - 재고자산회전율 : {재고자산회전율q} {dict재고자산회전율y}')
|
189
|
-
|
190
|
-
if len(dict순부채비율y) == 0:
|
191
|
-
logger.warning(f'empty dict - 순부채비율 : {순부채비율q} {dict순부채비율y}')
|
192
|
-
|
193
|
-
################################################################
|
194
|
-
|
195
|
-
return {
|
196
|
-
'유동비율': 유동비율,
|
197
|
-
'이자보상배율': (이자보상배율q, dict이자보상배율y),
|
198
|
-
'순운전자본회전율': (순운전자본회전율q, dict순운전자본회전율y),
|
199
|
-
'재고자산회전율': (재고자산회전율q, dict재고자산회전율y),
|
200
|
-
'순부채비율': (순부채비율q, dict순부채비율y),
|
201
|
-
'date': [i for i in {d1, d2, d3, d4, d5} if i != ''], # ''값을 제거하고 리스트로 바꾼다.
|
202
|
-
}
|
203
|
-
|
204
|
-
|
205
|
-
def growth(client, code: str) -> dict:
|
206
|
-
"""
|
207
|
-
리턴값
|
208
|
-
{'date': [각 유효한 값의 최근분기 값 리스트(ex- 2020/09)],
|
209
|
-
'매출액증가율': (-14.37, {'2018/12': -24.56, '2019/12': -20.19, '2020/12': -12.64, '2021/12': 38.65, '2022/12': -8.56, '2023/12': nan}),
|
210
|
-
'영업이익률': {'뉴프렉스': '17.36', '동일기연': '13.58', '비에이치': '16.23', '에이엔피': '-9.30', '이브이첨단소재': '-4.93'}}
|
211
|
-
|
212
|
-
<매출액>
|
213
|
-
매출액은 어떤경우에도 성장하는 기업이 좋다.매출이 20%씩 늘어나는 종목은 유망한 종목
|
214
|
-
<영업이익률>
|
215
|
-
영업이익률은 기업의 경쟁력척도로 경쟁사에 비해 높으면 경제적해자를 갖춘셈
|
216
|
-
"""
|
217
|
-
c104y = mongo.C104(client, code, 'c104y')
|
218
|
-
c106y = mongo.C106(client, code, 'c106y')
|
219
|
-
|
220
|
-
dict매출액증가율y = c104y.find('매출액증가율', allow_empty=True)
|
221
|
-
|
222
|
-
c104q = mongo.C104(client, code, 'c104q')
|
223
|
-
d1, 매출액증가율q = c104q.latest_value('매출액증가율', nan_to_zero=False, allow_empty=True)
|
224
|
-
|
225
|
-
logger.debug(f'매출액증가율 : {매출액증가율q} {dict매출액증가율y}')
|
226
|
-
|
227
|
-
################################################################
|
228
|
-
|
229
|
-
# c106 에서 타 기업과 영업이익률 비교
|
230
|
-
dict영업이익률 = c106y.find('영업이익률', allow_empty=True)
|
231
|
-
|
232
|
-
return {
|
233
|
-
'매출액증가율': (매출액증가율q, dict매출액증가율y),
|
234
|
-
'영업이익률': dict영업이익률,
|
235
|
-
'date': [d1, ]}
|
236
|
-
|
237
|
-
|
238
|
-
"""
|
239
|
-
- 각분기의 합이 연이 아닌 타이틀(즉 sum_4q를 사용하면 안됨)
|
240
|
-
'*(지배)당기순이익'
|
241
|
-
'*(비지배)당기순이익'
|
242
|
-
'장기차입금'
|
243
|
-
'현금및예치금'
|
244
|
-
'매도가능금융자산'
|
245
|
-
'매도파생결합증권'
|
246
|
-
'만기보유금융자산'
|
247
|
-
'당기손익-공정가치측정금융부채'
|
248
|
-
'당기손익인식(지정)금융부채'
|
249
|
-
'단기매매금융자산'
|
250
|
-
'단기매매금융부채'
|
251
|
-
'예수부채'
|
252
|
-
'차입부채'
|
253
|
-
'기타부채'
|
254
|
-
'보험계약부채(책임준비금)'
|
255
|
-
'*CAPEX'
|
256
|
-
'ROE'
|
257
|
-
"""
|
258
|
-
|
259
|
-
"""
|
260
|
-
- sum_4q를 사용해도 되는 타이틀
|
261
|
-
'자산총계'
|
262
|
-
'당기순이익'
|
263
|
-
'유동자산'
|
264
|
-
'유동부채'
|
265
|
-
'비유동부채'
|
266
|
-
|
267
|
-
'영업활동으로인한현금흐름'
|
268
|
-
'재무활동으로인한현금흐름'
|
269
|
-
'ROIC'
|
270
|
-
"""
|
271
|
-
|
272
|
-
|
273
|
-
def _make_df_part(db_addr, codes: list, q):
|
274
|
-
def make_record(my_client, my_code: str) -> dict:
|
275
|
-
# 장고에서 사용할 eval 테이블을 만들기 위해 각각의 레코드를 구성하는 함수
|
276
|
-
c101 = mongo.C101(my_client, my_code).get_recent()
|
277
|
-
|
278
|
-
red_dict = red(my_client, my_code)
|
279
|
-
mil_dict = mil(my_client, my_code)
|
280
|
-
growth_dict = growth(my_client, my_code)
|
281
|
-
|
282
|
-
mil_date = mil_dict['date']
|
283
|
-
red_date = red_dict['date']
|
284
|
-
growth_date = growth_dict['date']
|
285
|
-
|
286
|
-
return {
|
287
|
-
'code': c101['코드'],
|
288
|
-
'종목명': c101['종목명'],
|
289
|
-
'주가': utils.to_int(c101['주가']),
|
290
|
-
'PER': utils.to_float(c101['PER']),
|
291
|
-
'PBR': utils.to_float(c101['PBR']),
|
292
|
-
'시가총액': utils.to_float(c101['시가총액']),
|
293
|
-
'RED': utils.to_int(red_dict['red_price']),
|
294
|
-
'주주수익률': utils.to_float(mil_dict['주주수익률']),
|
295
|
-
'이익지표': utils.to_float(mil_dict['이익지표']),
|
296
|
-
'ROIC': utils.to_float(mil_dict['투자수익률']['ROIC']),
|
297
|
-
'ROE': utils.to_float(mil_dict['투자수익률']['ROE']),
|
298
|
-
'PFCF': utils.to_float(mongo.Corps.latest_value(mil_dict['가치지표']['PFCF'])[1]),
|
299
|
-
'PCR': utils.to_float(mongo.Corps.latest_value(mil_dict['가치지표']['PCR'])[1]),
|
300
|
-
'매출액증가율': utils.to_float(growth_dict['매출액증가율'][0]),
|
301
|
-
'date': list(set(mil_date + red_date + growth_date))
|
302
|
-
}
|
303
|
-
# 각 코어별로 디비 클라이언트를 만들어야만 한다. 안그러면 에러발생
|
304
|
-
client = mongo.connect_mongo(db_addr)
|
305
|
-
t = len(codes)
|
306
|
-
d = []
|
307
|
-
for i, code in enumerate(codes):
|
308
|
-
print(f'{i+1}/{t} {code}')
|
309
|
-
try:
|
310
|
-
d.append(make_record(client, code))
|
311
|
-
except:
|
312
|
-
logger.error(f'error on {code}')
|
313
|
-
continue
|
314
|
-
df = pd.DataFrame(d)
|
315
|
-
logger.info(df)
|
316
|
-
q.put(df)
|
317
|
-
|
318
|
-
|
319
|
-
def make_today_eval_df(client, refresh: bool = False) -> pd.DataFrame:
|
320
|
-
""" 멀티프로세싱을 사용하여 전체 종목의 eval 을 데이터프레임으로 만들어 반환
|
321
|
-
|
322
|
-
기본값으로 refresh 는 False 로 설정되어 당일자의 저장된 데이터프레임이 있으면 새로 생성하지 않고 mongo DB를 이용한다.
|
323
|
-
"""
|
324
|
-
today_str = datetime.datetime.today().strftime('%Y%m%d')
|
325
|
-
df = mongo.EvalByDate(client, today_str).load_df()
|
326
|
-
if refresh or len(df) == 0:
|
327
|
-
codes_in_db = mongo.Corps.get_all_codes(client)
|
328
|
-
|
329
|
-
print('*' * 25, f"Eval all using multiprocess(refresh={refresh})", '*' * 25)
|
330
|
-
print(f'Total {len(codes_in_db)} items..')
|
331
|
-
logger.debug(codes_in_db)
|
332
|
-
n, divided_list = utils.code_divider_by_cpu_core(codes_in_db)
|
333
|
-
|
334
|
-
addr = mongo.extract_addr_from_client(client)
|
335
|
-
|
336
|
-
start_time = time.time()
|
337
|
-
q = Queue()
|
338
|
-
ths = []
|
339
|
-
for i in range(n):
|
340
|
-
ths.append(Process(target=_make_df_part, args=(addr, divided_list[i], q)))
|
341
|
-
for i in range(n):
|
342
|
-
ths[i].start()
|
343
|
-
|
344
|
-
df_list = []
|
345
|
-
for i in range(n):
|
346
|
-
df_list.append(q.get())
|
347
|
-
# 부분데이터프레임들을 하나로 합침
|
348
|
-
final_df = pd.concat(df_list, ignore_index=True)
|
349
|
-
|
350
|
-
for i in range(n):
|
351
|
-
ths[i].join()
|
352
|
-
|
353
|
-
print(f'Total spent time : {round(time.time() - start_time, 2)} sec.')
|
354
|
-
logger.debug(final_df)
|
355
|
-
print(f"Save to mongo db(db: eval col: {today_str})")
|
356
|
-
mongo.EvalByDate(client, today_str).save_df(final_df)
|
357
|
-
else:
|
358
|
-
print(f"Use saved dataframe from mongo db..")
|
359
|
-
final_df = df
|
360
|
-
return final_df
|
361
|
-
|
362
|
-
|
363
|
-
def yield_valid_spac(client) -> tuple:
|
364
|
-
"""
|
365
|
-
전체 스팩주의 현재가를 평가하여 2000원 이하인 경우 yield한다.
|
366
|
-
|
367
|
-
Returns:
|
368
|
-
tuple: (code, name, price)
|
369
|
-
"""
|
370
|
-
codes = mongo.Corps.get_all_codes(client)
|
371
|
-
logger.debug(f'len(codes) : {len(codes)}')
|
372
|
-
print('<<< Finding valuable SPAC >>>')
|
373
|
-
for i, code in enumerate(codes):
|
374
|
-
name = mongo.Corps.get_name(client, code)
|
375
|
-
logger.debug(f'code : {code} name : {name}')
|
376
|
-
if '스팩' in str(name):
|
377
|
-
logger.debug(f'>>> spac - code : {code} name : {name}')
|
378
|
-
price, _, _ = utils.get_price_now(code=code)
|
379
|
-
if price <= 2000:
|
380
|
-
logger.warning(f'현재가:{price}')
|
381
|
-
print(f"code: {code} name: {name}, price: {price}")
|
382
|
-
yield code, name, price
|
@@ -1,16 +0,0 @@
|
|
1
|
-
analyser_hj3415/.DS_Store,sha256=ru32hJTZXnU4wX_07F4wd6nuiLkH9bA3gTALaIXBamM,6148
|
2
|
-
analyser_hj3415/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
|
-
analyser_hj3415/cli.py,sha256=qzRnpDRJvQnQevSKHBpKbTsBjmSWllZjzTV4z_alg2A,4891
|
4
|
-
analyser_hj3415/eval.py,sha256=v86gNZ722GYHyQKvm1NxHLC8r9mzSx1JgKkznSCyc6Q,16951
|
5
|
-
analyser_hj3415/report.py,sha256=Sr14o6edWDwFZeR_cjE7zWw3K02Rv1nPKkgCUP-3Ah8,10917
|
6
|
-
analyser_hj3415/score.py,sha256=hQCV_i_fsXKOYVKDZ4QIpf1SwFh8iHDrQAVFuM9x4os,16693
|
7
|
-
analyser_hj3415/db/.DS_Store,sha256=1lFlJ5EFymdzGAUAaI30vcaaLHt3F1LwpG7xILf9jsM,6148
|
8
|
-
analyser_hj3415/db/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9
|
-
analyser_hj3415/db/chk_db.py,sha256=NguwgG3TP9Lassh2eJ101AIHGVoWZCxUcESdPt19swE,10115
|
10
|
-
analyser_hj3415/db/evaltools.py,sha256=aSOnMG2uKp5kTv-UPIgnpfeeePNhScIXZVu50mioAnY,11867
|
11
|
-
analyser_hj3415/db/mongo.py,sha256=wc8GPwXhsibKWHERflVrOUCSJNmRlKKe0MzWZ6KQsfs,35309
|
12
|
-
analyser_hj3415-2.0.1.dist-info/entry_points.txt,sha256=dHaCM3eOAGONmxTWuRVqo9Zyq2C7J5TZmpH0PD6FW5k,103
|
13
|
-
analyser_hj3415-2.0.1.dist-info/LICENSE,sha256=QVKTp0dTnB5xG8RLgG17LwSWCKNEzYoVVM6KjoCPKc0,1079
|
14
|
-
analyser_hj3415-2.0.1.dist-info/WHEEL,sha256=Sgu64hAMa6g5FdzHxXv9Xdse9yxpGGMeagVtPMWpJQY,99
|
15
|
-
analyser_hj3415-2.0.1.dist-info/METADATA,sha256=zk_R1PdDx8dSCnv7tOJgUDx2DvqdYkwRruoayAokUVo,6534
|
16
|
-
analyser_hj3415-2.0.1.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|