amazon-bedrock-haystack 3.9.1__py3-none-any.whl → 3.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {amazon_bedrock_haystack-3.9.1.dist-info → amazon_bedrock_haystack-3.11.0.dist-info}/METADATA +10 -34
- {amazon_bedrock_haystack-3.9.1.dist-info → amazon_bedrock_haystack-3.11.0.dist-info}/RECORD +11 -10
- haystack_integrations/components/embedders/amazon_bedrock/__init__.py +2 -1
- haystack_integrations/components/embedders/amazon_bedrock/document_embedder.py +6 -4
- haystack_integrations/components/embedders/amazon_bedrock/document_image_embedder.py +365 -0
- haystack_integrations/components/embedders/amazon_bedrock/text_embedder.py +6 -4
- haystack_integrations/components/generators/amazon_bedrock/chat/chat_generator.py +8 -4
- haystack_integrations/components/generators/amazon_bedrock/chat/utils.py +120 -2
- haystack_integrations/components/generators/amazon_bedrock/generator.py +3 -3
- {amazon_bedrock_haystack-3.9.1.dist-info → amazon_bedrock_haystack-3.11.0.dist-info}/WHEEL +0 -0
- {amazon_bedrock_haystack-3.9.1.dist-info → amazon_bedrock_haystack-3.11.0.dist-info}/licenses/LICENSE.txt +0 -0
{amazon_bedrock_haystack-3.9.1.dist-info → amazon_bedrock_haystack-3.11.0.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: amazon-bedrock-haystack
|
|
3
|
-
Version: 3.
|
|
3
|
+
Version: 3.11.0
|
|
4
4
|
Summary: An integration of Amazon Bedrock as an AmazonBedrockGenerator component.
|
|
5
5
|
Project-URL: Documentation, https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/amazon_bedrock#readme
|
|
6
6
|
Project-URL: Issues, https://github.com/deepset-ai/haystack-core-integrations/issues
|
|
@@ -29,43 +29,19 @@ Description-Content-Type: text/markdown
|
|
|
29
29
|
[](https://pypi.org/project/amazon-bedrock-haystack)
|
|
30
30
|
[](https://pypi.org/project/amazon-bedrock-haystack)
|
|
31
31
|
|
|
32
|
+
- [Integration page](https://haystack.deepset.ai/integrations/amazon-bedrock)
|
|
33
|
+
- [Changelog](https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/amazon_bedrock/CHANGELOG.md)
|
|
32
34
|
-----
|
|
33
35
|
|
|
34
|
-
**Table of Contents**
|
|
35
|
-
|
|
36
|
-
- [Installation](#installation)
|
|
37
|
-
- [Contributing](#contributing)
|
|
38
|
-
- [License](#license)
|
|
39
|
-
|
|
40
|
-
## Installation
|
|
41
|
-
|
|
42
|
-
```console
|
|
43
|
-
pip install amazon-bedrock-haystack
|
|
44
|
-
```
|
|
45
|
-
|
|
46
36
|
## Contributing
|
|
47
37
|
|
|
48
|
-
|
|
49
|
-
```sh
|
|
50
|
-
pip install hatch
|
|
51
|
-
```
|
|
52
|
-
|
|
53
|
-
With `hatch` installed, to run all the tests:
|
|
54
|
-
```
|
|
55
|
-
hatch run test:all
|
|
56
|
-
```
|
|
38
|
+
Refer to the general [Contribution Guidelines](https://github.com/deepset-ai/haystack-core-integrations/blob/main/CONTRIBUTING.md).
|
|
57
39
|
|
|
58
|
-
To
|
|
40
|
+
To run integration tests locally, you need to authenticate with AWS.
|
|
41
|
+
For example, you can do that by exporting the following environment variables:
|
|
59
42
|
```
|
|
60
|
-
|
|
43
|
+
export AWS_ACCESS_KEY_ID=...
|
|
44
|
+
export AWS_SECRET_ACCESS_KEY=...
|
|
45
|
+
export AWS_SESSION_TOKEN=...
|
|
46
|
+
export AWS_DEFAULT_REGION=...
|
|
61
47
|
```
|
|
62
|
-
|
|
63
|
-
To check for static type errors, run:
|
|
64
|
-
|
|
65
|
-
```console
|
|
66
|
-
$ hatch run test:types
|
|
67
|
-
```
|
|
68
|
-
|
|
69
|
-
## License
|
|
70
|
-
|
|
71
|
-
`amazon-bedrock-haystack` is distributed under the terms of the [Apache-2.0](https://spdx.org/licenses/Apache-2.0.html) license.
|
|
@@ -3,20 +3,21 @@ haystack_integrations/common/amazon_bedrock/__init__.py,sha256=6GZ8Y3Lw0rLOsOAqi
|
|
|
3
3
|
haystack_integrations/common/amazon_bedrock/errors.py,sha256=ReheDbY7L3EJkWcUoih6lWHjbPHg2TlUs9SnXIKK7Gg,744
|
|
4
4
|
haystack_integrations/common/amazon_bedrock/utils.py,sha256=ASAwEhInF9F6rhL4CbXFQUFU1pSdscWvG6jcrXkEUhc,2735
|
|
5
5
|
haystack_integrations/components/embedders/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
|
-
haystack_integrations/components/embedders/amazon_bedrock/__init__.py,sha256=
|
|
7
|
-
haystack_integrations/components/embedders/amazon_bedrock/document_embedder.py,sha256=
|
|
8
|
-
haystack_integrations/components/embedders/amazon_bedrock/
|
|
6
|
+
haystack_integrations/components/embedders/amazon_bedrock/__init__.py,sha256=7GlhHJ4jFHCxq5QN5losGuGtrGNjvEx2dSQvEYD2yG0,408
|
|
7
|
+
haystack_integrations/components/embedders/amazon_bedrock/document_embedder.py,sha256=DD34-HAGwGwTU7KWGqKXXlFdwIs21JavBRDHrBqC-m4,13060
|
|
8
|
+
haystack_integrations/components/embedders/amazon_bedrock/document_image_embedder.py,sha256=CHNH0Dt7JQqYNbZi1lKsGvarnEhJn3UNGdghF0IhqWw,16163
|
|
9
|
+
haystack_integrations/components/embedders/amazon_bedrock/text_embedder.py,sha256=3eSqt3XpH2thblTeOPf-ej1V2UbdG2z50d3jInq1bYc,9144
|
|
9
10
|
haystack_integrations/components/generators/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
11
|
haystack_integrations/components/generators/amazon_bedrock/__init__.py,sha256=lv4NouIVm78YavUssWQrHHP_81u-7j21qW8v1kZMJPQ,284
|
|
11
12
|
haystack_integrations/components/generators/amazon_bedrock/adapters.py,sha256=yBC-3YwV6qAwSXMtdZiLSYh2lUpPQIDy7Efl7w-Cu-k,19640
|
|
12
|
-
haystack_integrations/components/generators/amazon_bedrock/generator.py,sha256=
|
|
13
|
+
haystack_integrations/components/generators/amazon_bedrock/generator.py,sha256=Brzw0XvtPJhz2kR2I3liAqWHRmDR6p5HzJerEAPhoJU,14743
|
|
13
14
|
haystack_integrations/components/generators/amazon_bedrock/chat/__init__.py,sha256=6GZ8Y3Lw0rLOsOAqi6Tu5mZC977UzQvgDxKpOWr8IQw,110
|
|
14
|
-
haystack_integrations/components/generators/amazon_bedrock/chat/chat_generator.py,sha256=
|
|
15
|
-
haystack_integrations/components/generators/amazon_bedrock/chat/utils.py,sha256=
|
|
15
|
+
haystack_integrations/components/generators/amazon_bedrock/chat/chat_generator.py,sha256=_0dpBoZGY9kgK9zQOTskcjElcTifwhyBAixXDliK-vY,24918
|
|
16
|
+
haystack_integrations/components/generators/amazon_bedrock/chat/utils.py,sha256=g2SZV8LdLobaCZpwWCreBJn1BtS1V3-wQkpisStJrcY,29015
|
|
16
17
|
haystack_integrations/components/rankers/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
17
18
|
haystack_integrations/components/rankers/amazon_bedrock/__init__.py,sha256=Zrc3BSVkEaXYpliEi6hKG9bqW4J7DNk93p50SuoyT1Q,107
|
|
18
19
|
haystack_integrations/components/rankers/amazon_bedrock/ranker.py,sha256=enAjf2QyDwfpidKkFCdLz954cx-Tjh9emrOS3vINJDg,12344
|
|
19
|
-
amazon_bedrock_haystack-3.
|
|
20
|
-
amazon_bedrock_haystack-3.
|
|
21
|
-
amazon_bedrock_haystack-3.
|
|
22
|
-
amazon_bedrock_haystack-3.
|
|
20
|
+
amazon_bedrock_haystack-3.11.0.dist-info/METADATA,sha256=5nA_v2Ze5xk1p-RQxbshQ0XGa3LYFljVGvNi2VvKU7o,2225
|
|
21
|
+
amazon_bedrock_haystack-3.11.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
22
|
+
amazon_bedrock_haystack-3.11.0.dist-info/licenses/LICENSE.txt,sha256=B05uMshqTA74s-0ltyHKI6yoPfJ3zYgQbvcXfDVGFf8,10280
|
|
23
|
+
amazon_bedrock_haystack-3.11.0.dist-info/RECORD,,
|
|
@@ -2,6 +2,7 @@
|
|
|
2
2
|
#
|
|
3
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
4
4
|
from .document_embedder import AmazonBedrockDocumentEmbedder
|
|
5
|
+
from .document_image_embedder import AmazonBedrockDocumentImageEmbedder
|
|
5
6
|
from .text_embedder import AmazonBedrockTextEmbedder
|
|
6
7
|
|
|
7
|
-
__all__ = ["AmazonBedrockDocumentEmbedder", "AmazonBedrockTextEmbedder"]
|
|
8
|
+
__all__ = ["AmazonBedrockDocumentEmbedder", "AmazonBedrockDocumentImageEmbedder", "AmazonBedrockTextEmbedder"]
|
|
@@ -21,6 +21,7 @@ SUPPORTED_EMBEDDING_MODELS = [
|
|
|
21
21
|
"cohere.embed-english-v3",
|
|
22
22
|
"cohere.embed-multilingual-v3",
|
|
23
23
|
"amazon.titan-embed-text-v2:0",
|
|
24
|
+
"amazon.titan-embed-image-v1",
|
|
24
25
|
]
|
|
25
26
|
|
|
26
27
|
|
|
@@ -38,7 +39,7 @@ class AmazonBedrockDocumentEmbedder:
|
|
|
38
39
|
|
|
39
40
|
os.environ["AWS_ACCESS_KEY_ID"] = "..."
|
|
40
41
|
os.environ["AWS_SECRET_ACCESS_KEY_ID"] = "..."
|
|
41
|
-
os.environ["
|
|
42
|
+
os.environ["AWS_DEFAULT_REGION"] = "..."
|
|
42
43
|
|
|
43
44
|
embedder = AmazonBedrockDocumentEmbedder(
|
|
44
45
|
model="cohere.embed-english-v3",
|
|
@@ -61,6 +62,7 @@ class AmazonBedrockDocumentEmbedder:
|
|
|
61
62
|
"cohere.embed-english-v3",
|
|
62
63
|
"cohere.embed-multilingual-v3",
|
|
63
64
|
"amazon.titan-embed-text-v2:0",
|
|
65
|
+
"amazon.titan-embed-image-v1",
|
|
64
66
|
],
|
|
65
67
|
aws_access_key_id: Optional[Secret] = Secret.from_env_var("AWS_ACCESS_KEY_ID", strict=False), # noqa: B008
|
|
66
68
|
aws_secret_access_key: Optional[Secret] = Secret.from_env_var( # noqa: B008
|
|
@@ -136,9 +138,9 @@ class AmazonBedrockDocumentEmbedder:
|
|
|
136
138
|
aws_region_name=resolve_secret(aws_region_name),
|
|
137
139
|
aws_profile_name=resolve_secret(aws_profile_name),
|
|
138
140
|
)
|
|
139
|
-
config
|
|
140
|
-
|
|
141
|
-
|
|
141
|
+
config = Config(
|
|
142
|
+
user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
|
|
143
|
+
)
|
|
142
144
|
self._client = session.client("bedrock-runtime", config=config)
|
|
143
145
|
except Exception as exception:
|
|
144
146
|
msg = (
|
|
@@ -0,0 +1,365 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
|
|
2
|
+
#
|
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
+
|
|
5
|
+
import json
|
|
6
|
+
from dataclasses import replace
|
|
7
|
+
from typing import Any, Dict, List, Literal, Optional, Tuple
|
|
8
|
+
|
|
9
|
+
from botocore.config import Config
|
|
10
|
+
from botocore.exceptions import ClientError
|
|
11
|
+
from haystack import Document, component, default_from_dict, default_to_dict, logging
|
|
12
|
+
from haystack.components.converters.image.image_utils import (
|
|
13
|
+
_batch_convert_pdf_pages_to_images,
|
|
14
|
+
_encode_image_to_base64,
|
|
15
|
+
_extract_image_sources_info,
|
|
16
|
+
_PDFPageInfo,
|
|
17
|
+
)
|
|
18
|
+
from haystack.dataclasses import ByteStream
|
|
19
|
+
from haystack.utils.auth import Secret, deserialize_secrets_inplace
|
|
20
|
+
from tqdm import tqdm
|
|
21
|
+
|
|
22
|
+
from haystack_integrations.common.amazon_bedrock.errors import (
|
|
23
|
+
AmazonBedrockConfigurationError,
|
|
24
|
+
AmazonBedrockInferenceError,
|
|
25
|
+
)
|
|
26
|
+
from haystack_integrations.common.amazon_bedrock.utils import get_aws_session
|
|
27
|
+
|
|
28
|
+
logger = logging.getLogger(__name__)
|
|
29
|
+
|
|
30
|
+
SUPPORTED_EMBEDDING_MODELS = ["amazon.titan-embed-image-v1", "cohere.embed-english-v3", "cohere.embed-multilingual-v3"]
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@component
|
|
34
|
+
class AmazonBedrockDocumentImageEmbedder:
|
|
35
|
+
"""
|
|
36
|
+
A component for computing Document embeddings based on images using Amazon Bedrock models.
|
|
37
|
+
|
|
38
|
+
The embedding of each Document is stored in the `embedding` field of the Document.
|
|
39
|
+
|
|
40
|
+
### Usage example
|
|
41
|
+
```python
|
|
42
|
+
from haystack import Document
|
|
43
|
+
rom haystack_integrations.components.embedders.amazon_bedrock import AmazonBedrockDocumentImageEmbedder
|
|
44
|
+
|
|
45
|
+
os.environ["AWS_ACCESS_KEY_ID"] = "..."
|
|
46
|
+
os.environ["AWS_SECRET_ACCESS_KEY_ID"] = "..."
|
|
47
|
+
os.environ["AWS_DEFAULT_REGION"] = "..."
|
|
48
|
+
|
|
49
|
+
embedder = AmazonBedrockDocumentImageEmbedder(model="amazon.titan-embed-image-v1")
|
|
50
|
+
|
|
51
|
+
documents = [
|
|
52
|
+
Document(content="A photo of a cat", meta={"file_path": "cat.jpg"}),
|
|
53
|
+
Document(content="A photo of a dog", meta={"file_path": "dog.jpg"}),
|
|
54
|
+
]
|
|
55
|
+
|
|
56
|
+
result = embedder.run(documents=documents)
|
|
57
|
+
documents_with_embeddings = result["documents"]
|
|
58
|
+
print(documents_with_embeddings)
|
|
59
|
+
|
|
60
|
+
# [Document(id=...,
|
|
61
|
+
# content='A photo of a cat',
|
|
62
|
+
# meta={'file_path': 'cat.jpg',
|
|
63
|
+
# 'embedding_source': {'type': 'image', 'file_path_meta_field': 'file_path'}},
|
|
64
|
+
# embedding=vector of size 512),
|
|
65
|
+
# ...]
|
|
66
|
+
```
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
def __init__(
|
|
70
|
+
self,
|
|
71
|
+
*,
|
|
72
|
+
model: Literal["amazon.titan-embed-image-v1", "cohere.embed-english-v3", "cohere.embed-multilingual-v3"],
|
|
73
|
+
aws_access_key_id: Optional[Secret] = Secret.from_env_var("AWS_ACCESS_KEY_ID", strict=False), # noqa: B008
|
|
74
|
+
aws_secret_access_key: Optional[Secret] = Secret.from_env_var( # noqa: B008
|
|
75
|
+
"AWS_SECRET_ACCESS_KEY", strict=False
|
|
76
|
+
),
|
|
77
|
+
aws_session_token: Optional[Secret] = Secret.from_env_var("AWS_SESSION_TOKEN", strict=False), # noqa: B008
|
|
78
|
+
aws_region_name: Optional[Secret] = Secret.from_env_var("AWS_DEFAULT_REGION", strict=False), # noqa: B008
|
|
79
|
+
aws_profile_name: Optional[Secret] = Secret.from_env_var("AWS_PROFILE", strict=False), # noqa: B008
|
|
80
|
+
file_path_meta_field: str = "file_path",
|
|
81
|
+
root_path: Optional[str] = None,
|
|
82
|
+
image_size: Optional[Tuple[int, int]] = None,
|
|
83
|
+
progress_bar: bool = True,
|
|
84
|
+
boto3_config: Optional[Dict[str, Any]] = None,
|
|
85
|
+
**kwargs: Any,
|
|
86
|
+
) -> None:
|
|
87
|
+
"""
|
|
88
|
+
Creates a AmazonBedrockDocumentImageEmbedder component.
|
|
89
|
+
|
|
90
|
+
:param model:
|
|
91
|
+
The Bedrock model to use for calculating embeddings. Pass a valid model ID.
|
|
92
|
+
Supported models:
|
|
93
|
+
- "amazon.titan-embed-image-v1"
|
|
94
|
+
- "cohere.embed-english-v3"
|
|
95
|
+
- "cohere.embed-multilingual-v3"
|
|
96
|
+
:param aws_access_key_id: AWS access key ID.
|
|
97
|
+
:param aws_secret_access_key: AWS secret access key.
|
|
98
|
+
:param aws_session_token: AWS session token.
|
|
99
|
+
:param aws_region_name: AWS region name.
|
|
100
|
+
:param aws_profile_name: AWS profile name.
|
|
101
|
+
:param file_path_meta_field: The metadata field in the Document that contains the file path to the image or PDF.
|
|
102
|
+
:param root_path: The root directory path where document files are located. If provided, file paths in
|
|
103
|
+
document metadata will be resolved relative to this path. If None, file paths are treated as absolute paths.
|
|
104
|
+
:param image_size:
|
|
105
|
+
If provided, resizes the image to fit within the specified dimensions (width, height) while
|
|
106
|
+
maintaining aspect ratio. This reduces file size, memory usage, and processing time, which is beneficial
|
|
107
|
+
when working with models that have resolution constraints or when transmitting images to remote services.
|
|
108
|
+
:param progress_bar:
|
|
109
|
+
If `True`, shows a progress bar when embedding documents.
|
|
110
|
+
:param boto3_config: The configuration for the boto3 client.
|
|
111
|
+
:param kwargs: Additional parameters to pass for model inference.
|
|
112
|
+
For example, `embeddingConfig` for Amazon Titan models and
|
|
113
|
+
`embedding_types` for Cohere models.
|
|
114
|
+
:raises ValueError: If the model is not supported.
|
|
115
|
+
:raises AmazonBedrockConfigurationError: If the AWS environment is not configured correctly.
|
|
116
|
+
"""
|
|
117
|
+
if not model or model not in SUPPORTED_EMBEDDING_MODELS:
|
|
118
|
+
msg = "Please provide a valid model from the list of supported models: " + ", ".join(
|
|
119
|
+
SUPPORTED_EMBEDDING_MODELS
|
|
120
|
+
)
|
|
121
|
+
raise ValueError(msg)
|
|
122
|
+
|
|
123
|
+
self.file_path_meta_field = file_path_meta_field
|
|
124
|
+
self.root_path = root_path or ""
|
|
125
|
+
self.model = model
|
|
126
|
+
self.boto3_config = boto3_config
|
|
127
|
+
|
|
128
|
+
self.aws_access_key_id = aws_access_key_id
|
|
129
|
+
self.aws_secret_access_key = aws_secret_access_key
|
|
130
|
+
self.aws_session_token = aws_session_token
|
|
131
|
+
self.aws_region_name = aws_region_name
|
|
132
|
+
self.aws_profile_name = aws_profile_name
|
|
133
|
+
self.image_size = image_size
|
|
134
|
+
self.progress_bar = progress_bar
|
|
135
|
+
self.kwargs = kwargs
|
|
136
|
+
self.embedding_types = None
|
|
137
|
+
|
|
138
|
+
if emmbedding_types := self.kwargs.get("embedding_types"):
|
|
139
|
+
if len(emmbedding_types) > 1:
|
|
140
|
+
msg = (
|
|
141
|
+
"You have provided multiple embedding_types for Cohere model. "
|
|
142
|
+
"AmazonBedrockDocumentImageEmbedder only supports one embedding_type at a time."
|
|
143
|
+
)
|
|
144
|
+
raise ValueError(msg)
|
|
145
|
+
self.embedding_types = emmbedding_types
|
|
146
|
+
|
|
147
|
+
def resolve_secret(secret: Optional[Secret]) -> Optional[str]:
|
|
148
|
+
return secret.resolve_value() if secret else None
|
|
149
|
+
|
|
150
|
+
try:
|
|
151
|
+
session = get_aws_session(
|
|
152
|
+
aws_access_key_id=resolve_secret(aws_access_key_id),
|
|
153
|
+
aws_secret_access_key=resolve_secret(aws_secret_access_key),
|
|
154
|
+
aws_session_token=resolve_secret(aws_session_token),
|
|
155
|
+
aws_region_name=resolve_secret(aws_region_name),
|
|
156
|
+
aws_profile_name=resolve_secret(aws_profile_name),
|
|
157
|
+
)
|
|
158
|
+
config = Config(
|
|
159
|
+
user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
|
|
160
|
+
)
|
|
161
|
+
self._client = session.client("bedrock-runtime", config=config)
|
|
162
|
+
except Exception as exception:
|
|
163
|
+
msg = (
|
|
164
|
+
"Could not connect to Amazon Bedrock. Make sure the AWS environment is configured correctly. "
|
|
165
|
+
"See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration"
|
|
166
|
+
)
|
|
167
|
+
raise AmazonBedrockConfigurationError(msg) from exception
|
|
168
|
+
|
|
169
|
+
def to_dict(self) -> dict[str, Any]:
|
|
170
|
+
"""
|
|
171
|
+
Serializes the component to a dictionary.
|
|
172
|
+
|
|
173
|
+
:returns:
|
|
174
|
+
Dictionary with serialized data.
|
|
175
|
+
"""
|
|
176
|
+
serialization_dict = default_to_dict(
|
|
177
|
+
self,
|
|
178
|
+
file_path_meta_field=self.file_path_meta_field,
|
|
179
|
+
root_path=self.root_path,
|
|
180
|
+
model=self.model,
|
|
181
|
+
aws_access_key_id=self.aws_access_key_id.to_dict() if self.aws_access_key_id else None,
|
|
182
|
+
aws_secret_access_key=self.aws_secret_access_key.to_dict() if self.aws_secret_access_key else None,
|
|
183
|
+
aws_session_token=self.aws_session_token.to_dict() if self.aws_session_token else None,
|
|
184
|
+
aws_region_name=self.aws_region_name.to_dict() if self.aws_region_name else None,
|
|
185
|
+
aws_profile_name=self.aws_profile_name.to_dict() if self.aws_profile_name else None,
|
|
186
|
+
progress_bar=self.progress_bar,
|
|
187
|
+
boto3_config=self.boto3_config,
|
|
188
|
+
image_size=self.image_size,
|
|
189
|
+
**self.kwargs,
|
|
190
|
+
)
|
|
191
|
+
return serialization_dict
|
|
192
|
+
|
|
193
|
+
@classmethod
|
|
194
|
+
def from_dict(cls, data: dict[str, Any]) -> "AmazonBedrockDocumentImageEmbedder":
|
|
195
|
+
"""
|
|
196
|
+
Deserializes the component from a dictionary.
|
|
197
|
+
|
|
198
|
+
:param data:
|
|
199
|
+
Dictionary to deserialize from.
|
|
200
|
+
:returns:
|
|
201
|
+
Deserialized component.
|
|
202
|
+
"""
|
|
203
|
+
init_params = data["init_parameters"]
|
|
204
|
+
deserialize_secrets_inplace(
|
|
205
|
+
init_params,
|
|
206
|
+
keys=[
|
|
207
|
+
"aws_access_key_id",
|
|
208
|
+
"aws_secret_access_key",
|
|
209
|
+
"aws_session_token",
|
|
210
|
+
"aws_region_name",
|
|
211
|
+
"aws_profile_name",
|
|
212
|
+
],
|
|
213
|
+
)
|
|
214
|
+
return default_from_dict(cls, data)
|
|
215
|
+
|
|
216
|
+
@component.output_types(documents=list[Document])
|
|
217
|
+
def run(self, documents: list[Document]) -> dict[str, list[Document]]:
|
|
218
|
+
"""
|
|
219
|
+
Embed a list of images.
|
|
220
|
+
|
|
221
|
+
:param documents:
|
|
222
|
+
Documents to embed.
|
|
223
|
+
|
|
224
|
+
:returns:
|
|
225
|
+
A dictionary with the following keys:
|
|
226
|
+
- `documents`: Documents with embeddings.
|
|
227
|
+
"""
|
|
228
|
+
if not isinstance(documents, list) or (documents and not isinstance(documents[0], Document)):
|
|
229
|
+
msg = (
|
|
230
|
+
"AmazonBedrockDocumentImageEmbedder expects a list of Documents as input. "
|
|
231
|
+
"In case you want to embed a string, please use the AmazonBedrockTextEmbedder."
|
|
232
|
+
)
|
|
233
|
+
raise TypeError(msg)
|
|
234
|
+
images_source_info = _extract_image_sources_info(
|
|
235
|
+
documents=documents, file_path_meta_field=self.file_path_meta_field, root_path=self.root_path
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
images_to_embed: list = [None] * len(documents)
|
|
239
|
+
pdf_page_infos: list[_PDFPageInfo] = []
|
|
240
|
+
|
|
241
|
+
for doc_idx, image_source_info in enumerate(images_source_info):
|
|
242
|
+
if image_source_info["mime_type"] == "application/pdf":
|
|
243
|
+
# Store PDF documents for later processing
|
|
244
|
+
page_number = image_source_info.get("page_number")
|
|
245
|
+
|
|
246
|
+
pdf_page_info: _PDFPageInfo = {
|
|
247
|
+
"doc_idx": doc_idx,
|
|
248
|
+
"path": image_source_info["path"],
|
|
249
|
+
# page_number is added but mypy doesn't know that
|
|
250
|
+
"page_number": page_number, # type: ignore[typeddict-item]
|
|
251
|
+
}
|
|
252
|
+
pdf_page_infos.append(pdf_page_info)
|
|
253
|
+
else:
|
|
254
|
+
# Process images directly
|
|
255
|
+
image_byte_stream = ByteStream.from_file_path(
|
|
256
|
+
filepath=image_source_info["path"], mime_type=image_source_info["mime_type"]
|
|
257
|
+
)
|
|
258
|
+
mime_type, base64_image = _encode_image_to_base64(bytestream=image_byte_stream, size=self.image_size)
|
|
259
|
+
if "cohere" in self.model:
|
|
260
|
+
images_to_embed[doc_idx] = f"data:{mime_type};base64,{base64_image}"
|
|
261
|
+
else:
|
|
262
|
+
images_to_embed[doc_idx] = base64_image
|
|
263
|
+
|
|
264
|
+
pdf_images_by_doc_idx = _batch_convert_pdf_pages_to_images(
|
|
265
|
+
pdf_page_infos=pdf_page_infos, return_base64=True, size=self.image_size
|
|
266
|
+
)
|
|
267
|
+
|
|
268
|
+
# the pdf_images_by_doc_idx has base64 images but mypy cant detect that
|
|
269
|
+
for doc_idx, base64_image in pdf_images_by_doc_idx.items(): # type: ignore[assignment]
|
|
270
|
+
pdf_image_uri = f"data:application/pdf;base64,{base64_image}" if "cohere" in self.model else base64_image
|
|
271
|
+
images_to_embed[doc_idx] = pdf_image_uri
|
|
272
|
+
|
|
273
|
+
none_images_doc_ids = [documents[doc_idx].id for doc_idx, image in enumerate(images_to_embed) if image is None]
|
|
274
|
+
if none_images_doc_ids:
|
|
275
|
+
msg = f"Conversion failed for some documents. Document IDs: {none_images_doc_ids}."
|
|
276
|
+
raise RuntimeError(msg)
|
|
277
|
+
|
|
278
|
+
if "cohere" in self.model:
|
|
279
|
+
embeddings = self._embed_cohere(image_uris=images_to_embed)
|
|
280
|
+
elif "titan" in self.model:
|
|
281
|
+
embeddings = self._embed_titan(images=images_to_embed)
|
|
282
|
+
else:
|
|
283
|
+
msg = f"Model {self.model} is not supported. Supported models are: {', '.join(SUPPORTED_EMBEDDING_MODELS)}."
|
|
284
|
+
raise ValueError(msg)
|
|
285
|
+
|
|
286
|
+
docs_with_embeddings = []
|
|
287
|
+
|
|
288
|
+
for doc, emb in zip(documents, embeddings):
|
|
289
|
+
# we store this information for later inspection
|
|
290
|
+
new_meta = {
|
|
291
|
+
**doc.meta,
|
|
292
|
+
"embedding_source": {"type": "image", "file_path_meta_field": self.file_path_meta_field},
|
|
293
|
+
}
|
|
294
|
+
new_doc = replace(doc, meta=new_meta, embedding=emb)
|
|
295
|
+
docs_with_embeddings.append(new_doc)
|
|
296
|
+
|
|
297
|
+
return {"documents": docs_with_embeddings}
|
|
298
|
+
|
|
299
|
+
def _embed_titan(self, images: List[str]) -> List[List[float]]:
|
|
300
|
+
"""
|
|
301
|
+
Internal method to embed base64 images using Amazon Titan models.
|
|
302
|
+
|
|
303
|
+
:param images: List of base64 images.
|
|
304
|
+
:return: List of embeddings.
|
|
305
|
+
"""
|
|
306
|
+
|
|
307
|
+
titan_body = {}
|
|
308
|
+
if embedding_config := self.kwargs.get("embeddingConfig"):
|
|
309
|
+
titan_body["embeddingConfig"] = embedding_config # optional parameter for Amazon Titan models
|
|
310
|
+
|
|
311
|
+
all_embeddings = []
|
|
312
|
+
|
|
313
|
+
for image in tqdm(images, disable=not self.progress_bar, desc="Creating embeddings"):
|
|
314
|
+
body = {"inputImage": image, **titan_body}
|
|
315
|
+
try:
|
|
316
|
+
response = self._client.invoke_model(
|
|
317
|
+
body=json.dumps(body), modelId=self.model, accept="*/*", contentType="application/json"
|
|
318
|
+
)
|
|
319
|
+
except ClientError as exception:
|
|
320
|
+
msg = f"Could not perform inference for Amazon Bedrock model {self.model} due to:\n{exception}"
|
|
321
|
+
raise AmazonBedrockInferenceError(msg) from exception
|
|
322
|
+
|
|
323
|
+
response_body = json.loads(response.get("body").read())
|
|
324
|
+
embedding = response_body["embedding"]
|
|
325
|
+
all_embeddings.append(embedding)
|
|
326
|
+
|
|
327
|
+
return all_embeddings
|
|
328
|
+
|
|
329
|
+
def _embed_cohere(self, image_uris: List[str]) -> List[List[float]]:
|
|
330
|
+
"""
|
|
331
|
+
Internal method to embed base64 images using Cohere models.
|
|
332
|
+
|
|
333
|
+
:param image_uris: List of image uris containing the base64 image and the mime type.
|
|
334
|
+
:return: List of embeddings.
|
|
335
|
+
"""
|
|
336
|
+
|
|
337
|
+
cohere_body = {"input_type": "image"}
|
|
338
|
+
if self.embedding_types:
|
|
339
|
+
cohere_body["embedding_types"] = self.embedding_types
|
|
340
|
+
|
|
341
|
+
all_embeddings = []
|
|
342
|
+
|
|
343
|
+
for image in tqdm(image_uris, disable=not self.progress_bar, desc="Creating embeddings"):
|
|
344
|
+
body = {"images": [image], **cohere_body}
|
|
345
|
+
try:
|
|
346
|
+
response = self._client.invoke_model(
|
|
347
|
+
body=json.dumps(body), modelId=self.model, accept="*/*", contentType="application/json"
|
|
348
|
+
)
|
|
349
|
+
except ClientError as exception:
|
|
350
|
+
msg = f"Could not perform inference for Amazon Bedrock model {self.model} due to:\n{exception}"
|
|
351
|
+
raise AmazonBedrockInferenceError(msg) from exception
|
|
352
|
+
|
|
353
|
+
response_body = json.loads(response.get("body").read())
|
|
354
|
+
embeddings = response_body["embeddings"]
|
|
355
|
+
|
|
356
|
+
# if embedding_types is specified, cohere returns a dict with the embedding types as keys
|
|
357
|
+
if isinstance(embeddings, dict):
|
|
358
|
+
for embedding in embeddings.values():
|
|
359
|
+
all_embeddings.append(embedding[0])
|
|
360
|
+
else:
|
|
361
|
+
# if embedding_types is not specified, cohere returns
|
|
362
|
+
# a nested list of float embeddings
|
|
363
|
+
all_embeddings.append(embeddings[0])
|
|
364
|
+
|
|
365
|
+
return all_embeddings
|
|
@@ -19,6 +19,7 @@ SUPPORTED_EMBEDDING_MODELS = [
|
|
|
19
19
|
"cohere.embed-english-v3",
|
|
20
20
|
"cohere.embed-multilingual-v3",
|
|
21
21
|
"amazon.titan-embed-text-v2:0",
|
|
22
|
+
"amazon.titan-embed-image-v1",
|
|
22
23
|
]
|
|
23
24
|
|
|
24
25
|
|
|
@@ -34,7 +35,7 @@ class AmazonBedrockTextEmbedder:
|
|
|
34
35
|
|
|
35
36
|
os.environ["AWS_ACCESS_KEY_ID"] = "..."
|
|
36
37
|
os.environ["AWS_SECRET_ACCESS_KEY_ID"] = "..."
|
|
37
|
-
os.environ["
|
|
38
|
+
os.environ["AWS_DEFAULT_REGION"] = "..."
|
|
38
39
|
|
|
39
40
|
embedder = AmazonBedrockTextEmbedder(
|
|
40
41
|
model="cohere.embed-english-v3",
|
|
@@ -54,6 +55,7 @@ class AmazonBedrockTextEmbedder:
|
|
|
54
55
|
"cohere.embed-english-v3",
|
|
55
56
|
"cohere.embed-multilingual-v3",
|
|
56
57
|
"amazon.titan-embed-text-v2:0",
|
|
58
|
+
"amazon.titan-embed-image-v1",
|
|
57
59
|
],
|
|
58
60
|
aws_access_key_id: Optional[Secret] = Secret.from_env_var("AWS_ACCESS_KEY_ID", strict=False), # noqa: B008
|
|
59
61
|
aws_secret_access_key: Optional[Secret] = Secret.from_env_var( # noqa: B008
|
|
@@ -114,9 +116,9 @@ class AmazonBedrockTextEmbedder:
|
|
|
114
116
|
aws_region_name=resolve_secret(aws_region_name),
|
|
115
117
|
aws_profile_name=resolve_secret(aws_profile_name),
|
|
116
118
|
)
|
|
117
|
-
config
|
|
118
|
-
|
|
119
|
-
|
|
119
|
+
config = Config(
|
|
120
|
+
user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
|
|
121
|
+
)
|
|
120
122
|
self._client = session.client("bedrock-runtime", config=config)
|
|
121
123
|
except Exception as exception:
|
|
122
124
|
msg = (
|
|
@@ -213,9 +213,9 @@ class AmazonBedrockChatGenerator:
|
|
|
213
213
|
def resolve_secret(secret: Optional[Secret]) -> Optional[str]:
|
|
214
214
|
return secret.resolve_value() if secret else None
|
|
215
215
|
|
|
216
|
-
config
|
|
217
|
-
|
|
218
|
-
|
|
216
|
+
config = Config(
|
|
217
|
+
user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
|
|
218
|
+
)
|
|
219
219
|
|
|
220
220
|
try:
|
|
221
221
|
# sync session
|
|
@@ -226,6 +226,7 @@ class AmazonBedrockChatGenerator:
|
|
|
226
226
|
aws_region_name=resolve_secret(aws_region_name),
|
|
227
227
|
aws_profile_name=resolve_secret(aws_profile_name),
|
|
228
228
|
)
|
|
229
|
+
|
|
229
230
|
self.client = session.client("bedrock-runtime", config=config)
|
|
230
231
|
|
|
231
232
|
except Exception as exception:
|
|
@@ -498,7 +499,10 @@ class AmazonBedrockChatGenerator:
|
|
|
498
499
|
session = self._get_async_session()
|
|
499
500
|
# Note: https://aioboto3.readthedocs.io/en/latest/usage.html
|
|
500
501
|
# we need to create a new client for each request
|
|
501
|
-
|
|
502
|
+
config = Config(
|
|
503
|
+
user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
|
|
504
|
+
)
|
|
505
|
+
async with session.client("bedrock-runtime", config=config) as async_client:
|
|
502
506
|
if callback:
|
|
503
507
|
response = await async_client.converse_stream(**params)
|
|
504
508
|
response_stream: EventStream = response.get("stream")
|
|
@@ -55,6 +55,11 @@ def _format_tool_call_message(tool_call_message: ChatMessage) -> Dict[str, Any]:
|
|
|
55
55
|
Dictionary representing the tool call message in Bedrock's expected format
|
|
56
56
|
"""
|
|
57
57
|
content: List[Dict[str, Any]] = []
|
|
58
|
+
|
|
59
|
+
# tool call messages can contain reasoning content
|
|
60
|
+
if reasoning_contents := tool_call_message.meta.get("reasoning_contents"):
|
|
61
|
+
content.extend(_format_reasoning_contents(reasoning_contents=reasoning_contents))
|
|
62
|
+
|
|
58
63
|
# Tool call message can contain text
|
|
59
64
|
if tool_call_message.text:
|
|
60
65
|
content.append({"text": tool_call_message.text})
|
|
@@ -157,6 +162,24 @@ def _repair_tool_result_messages(bedrock_formatted_messages: List[Dict[str, Any]
|
|
|
157
162
|
return [msg for _, msg in repaired_bedrock_formatted_messages]
|
|
158
163
|
|
|
159
164
|
|
|
165
|
+
def _format_reasoning_contents(reasoning_contents: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
166
|
+
"""
|
|
167
|
+
Format reasoning contents to match Bedrock's expected structure.
|
|
168
|
+
|
|
169
|
+
:param reasoning_contents: List of reasoning content dictionaries from Haystack ChatMessage metadata.
|
|
170
|
+
:returns: List of formatted reasoning content dictionaries for Bedrock.
|
|
171
|
+
"""
|
|
172
|
+
formatted_contents = []
|
|
173
|
+
for reasoning_content in reasoning_contents:
|
|
174
|
+
formatted_content = {"reasoningContent": reasoning_content["reasoning_content"]}
|
|
175
|
+
if reasoning_text := formatted_content["reasoningContent"].pop("reasoning_text", None):
|
|
176
|
+
formatted_content["reasoningContent"]["reasoningText"] = reasoning_text
|
|
177
|
+
if redacted_content := formatted_content["reasoningContent"].pop("redacted_content", None):
|
|
178
|
+
formatted_content["reasoningContent"]["redactedContent"] = redacted_content
|
|
179
|
+
formatted_contents.append(formatted_content)
|
|
180
|
+
return formatted_contents
|
|
181
|
+
|
|
182
|
+
|
|
160
183
|
def _format_text_image_message(message: ChatMessage) -> Dict[str, Any]:
|
|
161
184
|
"""
|
|
162
185
|
Format a Haystack ChatMessage containing text and optional image content into Bedrock format.
|
|
@@ -168,6 +191,10 @@ def _format_text_image_message(message: ChatMessage) -> Dict[str, Any]:
|
|
|
168
191
|
content_parts = message._content
|
|
169
192
|
|
|
170
193
|
bedrock_content_blocks: List[Dict[str, Any]] = []
|
|
194
|
+
# Add reasoning content if available as the first content block
|
|
195
|
+
if message.meta.get("reasoning_contents"):
|
|
196
|
+
bedrock_content_blocks.extend(_format_reasoning_contents(reasoning_contents=message.meta["reasoning_contents"]))
|
|
197
|
+
|
|
171
198
|
for part in content_parts:
|
|
172
199
|
if isinstance(part, TextContent):
|
|
173
200
|
bedrock_content_blocks.append({"text": part.text})
|
|
@@ -221,7 +248,6 @@ def _format_messages(messages: List[ChatMessage]) -> Tuple[List[Dict[str, Any]],
|
|
|
221
248
|
return system_prompts, repaired_bedrock_formatted_messages
|
|
222
249
|
|
|
223
250
|
|
|
224
|
-
# Bedrock to Haystack util method
|
|
225
251
|
def _parse_completion_response(response_body: Dict[str, Any], model: str) -> List[ChatMessage]:
|
|
226
252
|
"""
|
|
227
253
|
Parse a Bedrock API response into Haystack ChatMessage objects.
|
|
@@ -255,6 +281,7 @@ def _parse_completion_response(response_body: Dict[str, Any], model: str) -> Lis
|
|
|
255
281
|
# Process all content blocks and combine them into a single message
|
|
256
282
|
text_content = []
|
|
257
283
|
tool_calls = []
|
|
284
|
+
reasoning_contents = []
|
|
258
285
|
for content_block in content_blocks:
|
|
259
286
|
if "text" in content_block:
|
|
260
287
|
text_content.append(content_block["text"])
|
|
@@ -267,6 +294,17 @@ def _parse_completion_response(response_body: Dict[str, Any], model: str) -> Lis
|
|
|
267
294
|
arguments=tool_use.get("input", {}),
|
|
268
295
|
)
|
|
269
296
|
tool_calls.append(tool_call)
|
|
297
|
+
elif "reasoningContent" in content_block:
|
|
298
|
+
reasoning_content = content_block["reasoningContent"]
|
|
299
|
+
# If reasoningText is present, replace it with reasoning_text
|
|
300
|
+
if "reasoningText" in reasoning_content:
|
|
301
|
+
reasoning_content["reasoning_text"] = reasoning_content.pop("reasoningText")
|
|
302
|
+
if "redactedContent" in reasoning_content:
|
|
303
|
+
reasoning_content["redacted_content"] = reasoning_content.pop("redactedContent")
|
|
304
|
+
reasoning_contents.append({"reasoning_content": reasoning_content})
|
|
305
|
+
|
|
306
|
+
# If reasoning contents were found, add them to the base meta
|
|
307
|
+
base_meta.update({"reasoning_contents": reasoning_contents})
|
|
270
308
|
|
|
271
309
|
# Create a single ChatMessage with combined text and tool calls
|
|
272
310
|
replies.append(ChatMessage.from_assistant(" ".join(text_content), tool_calls=tool_calls, meta=base_meta))
|
|
@@ -274,7 +312,6 @@ def _parse_completion_response(response_body: Dict[str, Any], model: str) -> Lis
|
|
|
274
312
|
return replies
|
|
275
313
|
|
|
276
314
|
|
|
277
|
-
# Bedrock streaming to Haystack util methods
|
|
278
315
|
def _convert_event_to_streaming_chunk(
|
|
279
316
|
event: Dict[str, Any], model: str, component_info: ComponentInfo
|
|
280
317
|
) -> StreamingChunk:
|
|
@@ -367,6 +404,22 @@ def _convert_event_to_streaming_chunk(
|
|
|
367
404
|
"received_at": datetime.now(timezone.utc).isoformat(),
|
|
368
405
|
},
|
|
369
406
|
)
|
|
407
|
+
# This is for accumulating reasoning content deltas
|
|
408
|
+
elif "reasoningContent" in delta:
|
|
409
|
+
reasoning_content = delta["reasoningContent"]
|
|
410
|
+
if "redactedContent" in reasoning_content:
|
|
411
|
+
reasoning_content["redacted_content"] = reasoning_content.pop("redactedContent")
|
|
412
|
+
streaming_chunk = StreamingChunk(
|
|
413
|
+
content="",
|
|
414
|
+
meta={
|
|
415
|
+
"model": model,
|
|
416
|
+
"index": 0,
|
|
417
|
+
"tool_calls": None,
|
|
418
|
+
"finish_reason": None,
|
|
419
|
+
"received_at": datetime.now(timezone.utc).isoformat(),
|
|
420
|
+
"reasoning_contents": [{"index": block_idx, "reasoning_content": reasoning_content}],
|
|
421
|
+
},
|
|
422
|
+
)
|
|
370
423
|
|
|
371
424
|
elif "messageStop" in event:
|
|
372
425
|
finish_reason = event["messageStop"].get("stopReason")
|
|
@@ -406,6 +459,66 @@ def _convert_event_to_streaming_chunk(
|
|
|
406
459
|
return streaming_chunk
|
|
407
460
|
|
|
408
461
|
|
|
462
|
+
def _process_reasoning_contents(chunks: List[StreamingChunk]) -> List[Dict[str, Any]]:
|
|
463
|
+
"""
|
|
464
|
+
Process reasoning contents from a list of StreamingChunk objects into the Bedrock expected format.
|
|
465
|
+
|
|
466
|
+
:param chunks: List of StreamingChunk objects potentially containing reasoning contents.
|
|
467
|
+
|
|
468
|
+
:returns: List of Bedrock formatted reasoning content dictionaries
|
|
469
|
+
"""
|
|
470
|
+
formatted_reasoning_contents = []
|
|
471
|
+
current_index = None
|
|
472
|
+
reasoning_text = ""
|
|
473
|
+
reasoning_signature = None
|
|
474
|
+
redacted_content = None
|
|
475
|
+
for chunk in chunks:
|
|
476
|
+
reasoning_contents = chunk.meta.get("reasoning_contents", [])
|
|
477
|
+
|
|
478
|
+
for reasoning_content in reasoning_contents:
|
|
479
|
+
content_block_index = reasoning_content["index"]
|
|
480
|
+
|
|
481
|
+
# Start new group when index changes
|
|
482
|
+
if current_index is not None and content_block_index != current_index:
|
|
483
|
+
# Finalize current group
|
|
484
|
+
if reasoning_text:
|
|
485
|
+
formatted_reasoning_contents.append(
|
|
486
|
+
{
|
|
487
|
+
"reasoning_content": {
|
|
488
|
+
"reasoning_text": {"text": reasoning_text, "signature": reasoning_signature},
|
|
489
|
+
}
|
|
490
|
+
}
|
|
491
|
+
)
|
|
492
|
+
if redacted_content:
|
|
493
|
+
formatted_reasoning_contents.append({"reasoning_content": {"redacted_content": redacted_content}})
|
|
494
|
+
reasoning_text = ""
|
|
495
|
+
reasoning_signature = None
|
|
496
|
+
redacted_content = None
|
|
497
|
+
|
|
498
|
+
# Accumulate content for current index
|
|
499
|
+
current_index = content_block_index
|
|
500
|
+
reasoning_text += reasoning_content["reasoning_content"].get("text", "")
|
|
501
|
+
if "redacted_content" in reasoning_content["reasoning_content"]:
|
|
502
|
+
redacted_content = reasoning_content["reasoning_content"]["redacted_content"]
|
|
503
|
+
if "signature" in reasoning_content["reasoning_content"]:
|
|
504
|
+
reasoning_signature = reasoning_content["reasoning_content"]["signature"]
|
|
505
|
+
|
|
506
|
+
# Finalize the last group
|
|
507
|
+
if current_index is not None:
|
|
508
|
+
if reasoning_text:
|
|
509
|
+
formatted_reasoning_contents.append(
|
|
510
|
+
{
|
|
511
|
+
"reasoning_content": {
|
|
512
|
+
"reasoning_text": {"text": reasoning_text, "signature": reasoning_signature},
|
|
513
|
+
}
|
|
514
|
+
}
|
|
515
|
+
)
|
|
516
|
+
if redacted_content:
|
|
517
|
+
formatted_reasoning_contents.append({"reasoning_content": {"redacted_content": redacted_content}})
|
|
518
|
+
|
|
519
|
+
return formatted_reasoning_contents
|
|
520
|
+
|
|
521
|
+
|
|
409
522
|
def _convert_streaming_chunks_to_chat_message(chunks: List[StreamingChunk]) -> ChatMessage:
|
|
410
523
|
"""
|
|
411
524
|
Converts a list of streaming chunks into a ChatMessage object.
|
|
@@ -421,8 +534,12 @@ def _convert_streaming_chunks_to_chat_message(chunks: List[StreamingChunk]) -> C
|
|
|
421
534
|
A ChatMessage object constructed from the streaming chunks, containing the aggregated text, processed tool
|
|
422
535
|
calls, and metadata.
|
|
423
536
|
"""
|
|
537
|
+
# Join all text content from the chunks
|
|
424
538
|
text = "".join([chunk.content for chunk in chunks])
|
|
425
539
|
|
|
540
|
+
# If reasoning content is present in any chunk, accumulate it
|
|
541
|
+
reasoning_contents = _process_reasoning_contents(chunks=chunks)
|
|
542
|
+
|
|
426
543
|
# Process tool calls if present in any chunk
|
|
427
544
|
tool_calls = []
|
|
428
545
|
tool_call_data: Dict[int, Dict[str, str]] = {} # Track tool calls by index
|
|
@@ -474,6 +591,7 @@ def _convert_streaming_chunks_to_chat_message(chunks: List[StreamingChunk]) -> C
|
|
|
474
591
|
"finish_reason": finish_reason,
|
|
475
592
|
"completion_start_time": chunks[0].meta.get("received_at"), # first chunk received
|
|
476
593
|
"usage": usage,
|
|
594
|
+
"reasoning_contents": reasoning_contents,
|
|
477
595
|
}
|
|
478
596
|
|
|
479
597
|
return ChatMessage.from_assistant(text=text or None, tool_calls=tool_calls, meta=meta)
|
|
@@ -167,9 +167,9 @@ class AmazonBedrockGenerator:
|
|
|
167
167
|
aws_region_name=resolve_secret(aws_region_name),
|
|
168
168
|
aws_profile_name=resolve_secret(aws_profile_name),
|
|
169
169
|
)
|
|
170
|
-
config
|
|
171
|
-
|
|
172
|
-
|
|
170
|
+
config = Config(
|
|
171
|
+
user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
|
|
172
|
+
)
|
|
173
173
|
self.client = session.client("bedrock-runtime", config=config)
|
|
174
174
|
except Exception as exception:
|
|
175
175
|
msg = (
|
|
File without changes
|
|
File without changes
|