amazon-bedrock-haystack 3.10.0__py3-none-any.whl → 4.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: amazon-bedrock-haystack
3
- Version: 3.10.0
3
+ Version: 4.0.0
4
4
  Summary: An integration of Amazon Bedrock as an AmazonBedrockGenerator component.
5
5
  Project-URL: Documentation, https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/amazon_bedrock#readme
6
6
  Project-URL: Issues, https://github.com/deepset-ai/haystack-core-integrations/issues
@@ -21,7 +21,7 @@ Classifier: Programming Language :: Python :: Implementation :: PyPy
21
21
  Requires-Python: >=3.9
22
22
  Requires-Dist: aioboto3>=14.0.0
23
23
  Requires-Dist: boto3>=1.28.57
24
- Requires-Dist: haystack-ai>=2.16.0
24
+ Requires-Dist: haystack-ai>=2.17.1
25
25
  Description-Content-Type: text/markdown
26
26
 
27
27
  # amazon-bedrock-haystack
@@ -29,43 +29,19 @@ Description-Content-Type: text/markdown
29
29
  [![PyPI - Version](https://img.shields.io/pypi/v/amazon-bedrock-haystack.svg)](https://pypi.org/project/amazon-bedrock-haystack)
30
30
  [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/amazon-bedrock-haystack.svg)](https://pypi.org/project/amazon-bedrock-haystack)
31
31
 
32
- -----
33
-
34
- **Table of Contents**
35
-
36
- - [Installation](#installation)
37
- - [Contributing](#contributing)
38
- - [License](#license)
39
-
40
- ## Installation
41
-
42
- ```console
43
- pip install amazon-bedrock-haystack
44
- ```
32
+ - [Integration page](https://haystack.deepset.ai/integrations/amazon-bedrock)
33
+ - [Changelog](https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/amazon_bedrock/CHANGELOG.md)
34
+ ---
45
35
 
46
36
  ## Contributing
47
37
 
48
- `hatch` is the best way to interact with this project, to install it:
49
- ```sh
50
- pip install hatch
51
- ```
52
-
53
- With `hatch` installed, to run all the tests:
54
- ```
55
- hatch run test:all
56
- ```
38
+ Refer to the general [Contribution Guidelines](https://github.com/deepset-ai/haystack-core-integrations/blob/main/CONTRIBUTING.md).
57
39
 
58
- To format your code and perform linting using Ruff (with automatic fixes), run:
40
+ To run integration tests locally, you need to authenticate with AWS.
41
+ For example, you can do that by exporting the following environment variables:
59
42
  ```
60
- hatch run fmt
43
+ export AWS_ACCESS_KEY_ID=...
44
+ export AWS_SECRET_ACCESS_KEY=...
45
+ export AWS_SESSION_TOKEN=...
46
+ export AWS_DEFAULT_REGION=...
61
47
  ```
62
-
63
- To check for static type errors, run:
64
-
65
- ```console
66
- $ hatch run test:types
67
- ```
68
-
69
- ## License
70
-
71
- `amazon-bedrock-haystack` is distributed under the terms of the [Apache-2.0](https://spdx.org/licenses/Apache-2.0.html) license.
@@ -3,20 +3,21 @@ haystack_integrations/common/amazon_bedrock/__init__.py,sha256=6GZ8Y3Lw0rLOsOAqi
3
3
  haystack_integrations/common/amazon_bedrock/errors.py,sha256=ReheDbY7L3EJkWcUoih6lWHjbPHg2TlUs9SnXIKK7Gg,744
4
4
  haystack_integrations/common/amazon_bedrock/utils.py,sha256=ASAwEhInF9F6rhL4CbXFQUFU1pSdscWvG6jcrXkEUhc,2735
5
5
  haystack_integrations/components/embedders/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- haystack_integrations/components/embedders/amazon_bedrock/__init__.py,sha256=CFqYmAVq2aavlMkZHYScKHOTwwETdRzRZITMqGhJ9Kw,298
7
- haystack_integrations/components/embedders/amazon_bedrock/document_embedder.py,sha256=YBVlFIo9t2qzVkNWaFKc-FNRo7R_pKfHmqNRkoMZ9K0,12952
8
- haystack_integrations/components/embedders/amazon_bedrock/text_embedder.py,sha256=KNvsUP-YZD17_zVBwMs42v0S2uuTE_ajMaj9bjt1XlE,9036
6
+ haystack_integrations/components/embedders/amazon_bedrock/__init__.py,sha256=7GlhHJ4jFHCxq5QN5losGuGtrGNjvEx2dSQvEYD2yG0,408
7
+ haystack_integrations/components/embedders/amazon_bedrock/document_embedder.py,sha256=DD34-HAGwGwTU7KWGqKXXlFdwIs21JavBRDHrBqC-m4,13060
8
+ haystack_integrations/components/embedders/amazon_bedrock/document_image_embedder.py,sha256=CHNH0Dt7JQqYNbZi1lKsGvarnEhJn3UNGdghF0IhqWw,16163
9
+ haystack_integrations/components/embedders/amazon_bedrock/text_embedder.py,sha256=3eSqt3XpH2thblTeOPf-ej1V2UbdG2z50d3jInq1bYc,9144
9
10
  haystack_integrations/components/generators/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
11
  haystack_integrations/components/generators/amazon_bedrock/__init__.py,sha256=lv4NouIVm78YavUssWQrHHP_81u-7j21qW8v1kZMJPQ,284
11
12
  haystack_integrations/components/generators/amazon_bedrock/adapters.py,sha256=yBC-3YwV6qAwSXMtdZiLSYh2lUpPQIDy7Efl7w-Cu-k,19640
12
- haystack_integrations/components/generators/amazon_bedrock/generator.py,sha256=c_saV5zxFYQVJT0Hzo80lKty46itL0Dp31VuDueYa3M,14716
13
+ haystack_integrations/components/generators/amazon_bedrock/generator.py,sha256=Brzw0XvtPJhz2kR2I3liAqWHRmDR6p5HzJerEAPhoJU,14743
13
14
  haystack_integrations/components/generators/amazon_bedrock/chat/__init__.py,sha256=6GZ8Y3Lw0rLOsOAqi6Tu5mZC977UzQvgDxKpOWr8IQw,110
14
- haystack_integrations/components/generators/amazon_bedrock/chat/chat_generator.py,sha256=iIaMsOOX9eYvR1GNgpxNKxaOli91ShrCv3MuBBK1NSs,24743
15
- haystack_integrations/components/generators/amazon_bedrock/chat/utils.py,sha256=g2SZV8LdLobaCZpwWCreBJn1BtS1V3-wQkpisStJrcY,29015
15
+ haystack_integrations/components/generators/amazon_bedrock/chat/chat_generator.py,sha256=_0dpBoZGY9kgK9zQOTskcjElcTifwhyBAixXDliK-vY,24918
16
+ haystack_integrations/components/generators/amazon_bedrock/chat/utils.py,sha256=eF2wldu1IppL64f01N3PIa9_-BZEolQzEz9NjXvEFTQ,25810
16
17
  haystack_integrations/components/rankers/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
18
  haystack_integrations/components/rankers/amazon_bedrock/__init__.py,sha256=Zrc3BSVkEaXYpliEi6hKG9bqW4J7DNk93p50SuoyT1Q,107
18
19
  haystack_integrations/components/rankers/amazon_bedrock/ranker.py,sha256=enAjf2QyDwfpidKkFCdLz954cx-Tjh9emrOS3vINJDg,12344
19
- amazon_bedrock_haystack-3.10.0.dist-info/METADATA,sha256=DZDchQY_Nsi4GsU4fZKTVkHxFcnn4cYuXNMjZ1VxlQg,2288
20
- amazon_bedrock_haystack-3.10.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
21
- amazon_bedrock_haystack-3.10.0.dist-info/licenses/LICENSE.txt,sha256=B05uMshqTA74s-0ltyHKI6yoPfJ3zYgQbvcXfDVGFf8,10280
22
- amazon_bedrock_haystack-3.10.0.dist-info/RECORD,,
20
+ amazon_bedrock_haystack-4.0.0.dist-info/METADATA,sha256=8iHYVwqO_nLLbLOh59yoqxwnskmfBiDupxxSTWiCvcc,2222
21
+ amazon_bedrock_haystack-4.0.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
22
+ amazon_bedrock_haystack-4.0.0.dist-info/licenses/LICENSE.txt,sha256=B05uMshqTA74s-0ltyHKI6yoPfJ3zYgQbvcXfDVGFf8,10280
23
+ amazon_bedrock_haystack-4.0.0.dist-info/RECORD,,
@@ -2,6 +2,7 @@
2
2
  #
3
3
  # SPDX-License-Identifier: Apache-2.0
4
4
  from .document_embedder import AmazonBedrockDocumentEmbedder
5
+ from .document_image_embedder import AmazonBedrockDocumentImageEmbedder
5
6
  from .text_embedder import AmazonBedrockTextEmbedder
6
7
 
7
- __all__ = ["AmazonBedrockDocumentEmbedder", "AmazonBedrockTextEmbedder"]
8
+ __all__ = ["AmazonBedrockDocumentEmbedder", "AmazonBedrockDocumentImageEmbedder", "AmazonBedrockTextEmbedder"]
@@ -21,6 +21,7 @@ SUPPORTED_EMBEDDING_MODELS = [
21
21
  "cohere.embed-english-v3",
22
22
  "cohere.embed-multilingual-v3",
23
23
  "amazon.titan-embed-text-v2:0",
24
+ "amazon.titan-embed-image-v1",
24
25
  ]
25
26
 
26
27
 
@@ -38,7 +39,7 @@ class AmazonBedrockDocumentEmbedder:
38
39
 
39
40
  os.environ["AWS_ACCESS_KEY_ID"] = "..."
40
41
  os.environ["AWS_SECRET_ACCESS_KEY_ID"] = "..."
41
- os.environ["AWS_REGION_NAME"] = "..."
42
+ os.environ["AWS_DEFAULT_REGION"] = "..."
42
43
 
43
44
  embedder = AmazonBedrockDocumentEmbedder(
44
45
  model="cohere.embed-english-v3",
@@ -61,6 +62,7 @@ class AmazonBedrockDocumentEmbedder:
61
62
  "cohere.embed-english-v3",
62
63
  "cohere.embed-multilingual-v3",
63
64
  "amazon.titan-embed-text-v2:0",
65
+ "amazon.titan-embed-image-v1",
64
66
  ],
65
67
  aws_access_key_id: Optional[Secret] = Secret.from_env_var("AWS_ACCESS_KEY_ID", strict=False), # noqa: B008
66
68
  aws_secret_access_key: Optional[Secret] = Secret.from_env_var( # noqa: B008
@@ -136,9 +138,9 @@ class AmazonBedrockDocumentEmbedder:
136
138
  aws_region_name=resolve_secret(aws_region_name),
137
139
  aws_profile_name=resolve_secret(aws_profile_name),
138
140
  )
139
- config: Optional[Config] = None
140
- if self.boto3_config:
141
- config = Config(**self.boto3_config)
141
+ config = Config(
142
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
143
+ )
142
144
  self._client = session.client("bedrock-runtime", config=config)
143
145
  except Exception as exception:
144
146
  msg = (
@@ -0,0 +1,365 @@
1
+ # SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
2
+ #
3
+ # SPDX-License-Identifier: Apache-2.0
4
+
5
+ import json
6
+ from dataclasses import replace
7
+ from typing import Any, Dict, List, Literal, Optional, Tuple
8
+
9
+ from botocore.config import Config
10
+ from botocore.exceptions import ClientError
11
+ from haystack import Document, component, default_from_dict, default_to_dict, logging
12
+ from haystack.components.converters.image.image_utils import (
13
+ _batch_convert_pdf_pages_to_images,
14
+ _encode_image_to_base64,
15
+ _extract_image_sources_info,
16
+ _PDFPageInfo,
17
+ )
18
+ from haystack.dataclasses import ByteStream
19
+ from haystack.utils.auth import Secret, deserialize_secrets_inplace
20
+ from tqdm import tqdm
21
+
22
+ from haystack_integrations.common.amazon_bedrock.errors import (
23
+ AmazonBedrockConfigurationError,
24
+ AmazonBedrockInferenceError,
25
+ )
26
+ from haystack_integrations.common.amazon_bedrock.utils import get_aws_session
27
+
28
+ logger = logging.getLogger(__name__)
29
+
30
+ SUPPORTED_EMBEDDING_MODELS = ["amazon.titan-embed-image-v1", "cohere.embed-english-v3", "cohere.embed-multilingual-v3"]
31
+
32
+
33
+ @component
34
+ class AmazonBedrockDocumentImageEmbedder:
35
+ """
36
+ A component for computing Document embeddings based on images using Amazon Bedrock models.
37
+
38
+ The embedding of each Document is stored in the `embedding` field of the Document.
39
+
40
+ ### Usage example
41
+ ```python
42
+ from haystack import Document
43
+ rom haystack_integrations.components.embedders.amazon_bedrock import AmazonBedrockDocumentImageEmbedder
44
+
45
+ os.environ["AWS_ACCESS_KEY_ID"] = "..."
46
+ os.environ["AWS_SECRET_ACCESS_KEY_ID"] = "..."
47
+ os.environ["AWS_DEFAULT_REGION"] = "..."
48
+
49
+ embedder = AmazonBedrockDocumentImageEmbedder(model="amazon.titan-embed-image-v1")
50
+
51
+ documents = [
52
+ Document(content="A photo of a cat", meta={"file_path": "cat.jpg"}),
53
+ Document(content="A photo of a dog", meta={"file_path": "dog.jpg"}),
54
+ ]
55
+
56
+ result = embedder.run(documents=documents)
57
+ documents_with_embeddings = result["documents"]
58
+ print(documents_with_embeddings)
59
+
60
+ # [Document(id=...,
61
+ # content='A photo of a cat',
62
+ # meta={'file_path': 'cat.jpg',
63
+ # 'embedding_source': {'type': 'image', 'file_path_meta_field': 'file_path'}},
64
+ # embedding=vector of size 512),
65
+ # ...]
66
+ ```
67
+ """
68
+
69
+ def __init__(
70
+ self,
71
+ *,
72
+ model: Literal["amazon.titan-embed-image-v1", "cohere.embed-english-v3", "cohere.embed-multilingual-v3"],
73
+ aws_access_key_id: Optional[Secret] = Secret.from_env_var("AWS_ACCESS_KEY_ID", strict=False), # noqa: B008
74
+ aws_secret_access_key: Optional[Secret] = Secret.from_env_var( # noqa: B008
75
+ "AWS_SECRET_ACCESS_KEY", strict=False
76
+ ),
77
+ aws_session_token: Optional[Secret] = Secret.from_env_var("AWS_SESSION_TOKEN", strict=False), # noqa: B008
78
+ aws_region_name: Optional[Secret] = Secret.from_env_var("AWS_DEFAULT_REGION", strict=False), # noqa: B008
79
+ aws_profile_name: Optional[Secret] = Secret.from_env_var("AWS_PROFILE", strict=False), # noqa: B008
80
+ file_path_meta_field: str = "file_path",
81
+ root_path: Optional[str] = None,
82
+ image_size: Optional[Tuple[int, int]] = None,
83
+ progress_bar: bool = True,
84
+ boto3_config: Optional[Dict[str, Any]] = None,
85
+ **kwargs: Any,
86
+ ) -> None:
87
+ """
88
+ Creates a AmazonBedrockDocumentImageEmbedder component.
89
+
90
+ :param model:
91
+ The Bedrock model to use for calculating embeddings. Pass a valid model ID.
92
+ Supported models:
93
+ - "amazon.titan-embed-image-v1"
94
+ - "cohere.embed-english-v3"
95
+ - "cohere.embed-multilingual-v3"
96
+ :param aws_access_key_id: AWS access key ID.
97
+ :param aws_secret_access_key: AWS secret access key.
98
+ :param aws_session_token: AWS session token.
99
+ :param aws_region_name: AWS region name.
100
+ :param aws_profile_name: AWS profile name.
101
+ :param file_path_meta_field: The metadata field in the Document that contains the file path to the image or PDF.
102
+ :param root_path: The root directory path where document files are located. If provided, file paths in
103
+ document metadata will be resolved relative to this path. If None, file paths are treated as absolute paths.
104
+ :param image_size:
105
+ If provided, resizes the image to fit within the specified dimensions (width, height) while
106
+ maintaining aspect ratio. This reduces file size, memory usage, and processing time, which is beneficial
107
+ when working with models that have resolution constraints or when transmitting images to remote services.
108
+ :param progress_bar:
109
+ If `True`, shows a progress bar when embedding documents.
110
+ :param boto3_config: The configuration for the boto3 client.
111
+ :param kwargs: Additional parameters to pass for model inference.
112
+ For example, `embeddingConfig` for Amazon Titan models and
113
+ `embedding_types` for Cohere models.
114
+ :raises ValueError: If the model is not supported.
115
+ :raises AmazonBedrockConfigurationError: If the AWS environment is not configured correctly.
116
+ """
117
+ if not model or model not in SUPPORTED_EMBEDDING_MODELS:
118
+ msg = "Please provide a valid model from the list of supported models: " + ", ".join(
119
+ SUPPORTED_EMBEDDING_MODELS
120
+ )
121
+ raise ValueError(msg)
122
+
123
+ self.file_path_meta_field = file_path_meta_field
124
+ self.root_path = root_path or ""
125
+ self.model = model
126
+ self.boto3_config = boto3_config
127
+
128
+ self.aws_access_key_id = aws_access_key_id
129
+ self.aws_secret_access_key = aws_secret_access_key
130
+ self.aws_session_token = aws_session_token
131
+ self.aws_region_name = aws_region_name
132
+ self.aws_profile_name = aws_profile_name
133
+ self.image_size = image_size
134
+ self.progress_bar = progress_bar
135
+ self.kwargs = kwargs
136
+ self.embedding_types = None
137
+
138
+ if emmbedding_types := self.kwargs.get("embedding_types"):
139
+ if len(emmbedding_types) > 1:
140
+ msg = (
141
+ "You have provided multiple embedding_types for Cohere model. "
142
+ "AmazonBedrockDocumentImageEmbedder only supports one embedding_type at a time."
143
+ )
144
+ raise ValueError(msg)
145
+ self.embedding_types = emmbedding_types
146
+
147
+ def resolve_secret(secret: Optional[Secret]) -> Optional[str]:
148
+ return secret.resolve_value() if secret else None
149
+
150
+ try:
151
+ session = get_aws_session(
152
+ aws_access_key_id=resolve_secret(aws_access_key_id),
153
+ aws_secret_access_key=resolve_secret(aws_secret_access_key),
154
+ aws_session_token=resolve_secret(aws_session_token),
155
+ aws_region_name=resolve_secret(aws_region_name),
156
+ aws_profile_name=resolve_secret(aws_profile_name),
157
+ )
158
+ config = Config(
159
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
160
+ )
161
+ self._client = session.client("bedrock-runtime", config=config)
162
+ except Exception as exception:
163
+ msg = (
164
+ "Could not connect to Amazon Bedrock. Make sure the AWS environment is configured correctly. "
165
+ "See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration"
166
+ )
167
+ raise AmazonBedrockConfigurationError(msg) from exception
168
+
169
+ def to_dict(self) -> dict[str, Any]:
170
+ """
171
+ Serializes the component to a dictionary.
172
+
173
+ :returns:
174
+ Dictionary with serialized data.
175
+ """
176
+ serialization_dict = default_to_dict(
177
+ self,
178
+ file_path_meta_field=self.file_path_meta_field,
179
+ root_path=self.root_path,
180
+ model=self.model,
181
+ aws_access_key_id=self.aws_access_key_id.to_dict() if self.aws_access_key_id else None,
182
+ aws_secret_access_key=self.aws_secret_access_key.to_dict() if self.aws_secret_access_key else None,
183
+ aws_session_token=self.aws_session_token.to_dict() if self.aws_session_token else None,
184
+ aws_region_name=self.aws_region_name.to_dict() if self.aws_region_name else None,
185
+ aws_profile_name=self.aws_profile_name.to_dict() if self.aws_profile_name else None,
186
+ progress_bar=self.progress_bar,
187
+ boto3_config=self.boto3_config,
188
+ image_size=self.image_size,
189
+ **self.kwargs,
190
+ )
191
+ return serialization_dict
192
+
193
+ @classmethod
194
+ def from_dict(cls, data: dict[str, Any]) -> "AmazonBedrockDocumentImageEmbedder":
195
+ """
196
+ Deserializes the component from a dictionary.
197
+
198
+ :param data:
199
+ Dictionary to deserialize from.
200
+ :returns:
201
+ Deserialized component.
202
+ """
203
+ init_params = data["init_parameters"]
204
+ deserialize_secrets_inplace(
205
+ init_params,
206
+ keys=[
207
+ "aws_access_key_id",
208
+ "aws_secret_access_key",
209
+ "aws_session_token",
210
+ "aws_region_name",
211
+ "aws_profile_name",
212
+ ],
213
+ )
214
+ return default_from_dict(cls, data)
215
+
216
+ @component.output_types(documents=list[Document])
217
+ def run(self, documents: list[Document]) -> dict[str, list[Document]]:
218
+ """
219
+ Embed a list of images.
220
+
221
+ :param documents:
222
+ Documents to embed.
223
+
224
+ :returns:
225
+ A dictionary with the following keys:
226
+ - `documents`: Documents with embeddings.
227
+ """
228
+ if not isinstance(documents, list) or (documents and not isinstance(documents[0], Document)):
229
+ msg = (
230
+ "AmazonBedrockDocumentImageEmbedder expects a list of Documents as input. "
231
+ "In case you want to embed a string, please use the AmazonBedrockTextEmbedder."
232
+ )
233
+ raise TypeError(msg)
234
+ images_source_info = _extract_image_sources_info(
235
+ documents=documents, file_path_meta_field=self.file_path_meta_field, root_path=self.root_path
236
+ )
237
+
238
+ images_to_embed: list = [None] * len(documents)
239
+ pdf_page_infos: list[_PDFPageInfo] = []
240
+
241
+ for doc_idx, image_source_info in enumerate(images_source_info):
242
+ if image_source_info["mime_type"] == "application/pdf":
243
+ # Store PDF documents for later processing
244
+ page_number = image_source_info.get("page_number")
245
+
246
+ pdf_page_info: _PDFPageInfo = {
247
+ "doc_idx": doc_idx,
248
+ "path": image_source_info["path"],
249
+ # page_number is added but mypy doesn't know that
250
+ "page_number": page_number, # type: ignore[typeddict-item]
251
+ }
252
+ pdf_page_infos.append(pdf_page_info)
253
+ else:
254
+ # Process images directly
255
+ image_byte_stream = ByteStream.from_file_path(
256
+ filepath=image_source_info["path"], mime_type=image_source_info["mime_type"]
257
+ )
258
+ mime_type, base64_image = _encode_image_to_base64(bytestream=image_byte_stream, size=self.image_size)
259
+ if "cohere" in self.model:
260
+ images_to_embed[doc_idx] = f"data:{mime_type};base64,{base64_image}"
261
+ else:
262
+ images_to_embed[doc_idx] = base64_image
263
+
264
+ pdf_images_by_doc_idx = _batch_convert_pdf_pages_to_images(
265
+ pdf_page_infos=pdf_page_infos, return_base64=True, size=self.image_size
266
+ )
267
+
268
+ # the pdf_images_by_doc_idx has base64 images but mypy cant detect that
269
+ for doc_idx, base64_image in pdf_images_by_doc_idx.items(): # type: ignore[assignment]
270
+ pdf_image_uri = f"data:application/pdf;base64,{base64_image}" if "cohere" in self.model else base64_image
271
+ images_to_embed[doc_idx] = pdf_image_uri
272
+
273
+ none_images_doc_ids = [documents[doc_idx].id for doc_idx, image in enumerate(images_to_embed) if image is None]
274
+ if none_images_doc_ids:
275
+ msg = f"Conversion failed for some documents. Document IDs: {none_images_doc_ids}."
276
+ raise RuntimeError(msg)
277
+
278
+ if "cohere" in self.model:
279
+ embeddings = self._embed_cohere(image_uris=images_to_embed)
280
+ elif "titan" in self.model:
281
+ embeddings = self._embed_titan(images=images_to_embed)
282
+ else:
283
+ msg = f"Model {self.model} is not supported. Supported models are: {', '.join(SUPPORTED_EMBEDDING_MODELS)}."
284
+ raise ValueError(msg)
285
+
286
+ docs_with_embeddings = []
287
+
288
+ for doc, emb in zip(documents, embeddings):
289
+ # we store this information for later inspection
290
+ new_meta = {
291
+ **doc.meta,
292
+ "embedding_source": {"type": "image", "file_path_meta_field": self.file_path_meta_field},
293
+ }
294
+ new_doc = replace(doc, meta=new_meta, embedding=emb)
295
+ docs_with_embeddings.append(new_doc)
296
+
297
+ return {"documents": docs_with_embeddings}
298
+
299
+ def _embed_titan(self, images: List[str]) -> List[List[float]]:
300
+ """
301
+ Internal method to embed base64 images using Amazon Titan models.
302
+
303
+ :param images: List of base64 images.
304
+ :return: List of embeddings.
305
+ """
306
+
307
+ titan_body = {}
308
+ if embedding_config := self.kwargs.get("embeddingConfig"):
309
+ titan_body["embeddingConfig"] = embedding_config # optional parameter for Amazon Titan models
310
+
311
+ all_embeddings = []
312
+
313
+ for image in tqdm(images, disable=not self.progress_bar, desc="Creating embeddings"):
314
+ body = {"inputImage": image, **titan_body}
315
+ try:
316
+ response = self._client.invoke_model(
317
+ body=json.dumps(body), modelId=self.model, accept="*/*", contentType="application/json"
318
+ )
319
+ except ClientError as exception:
320
+ msg = f"Could not perform inference for Amazon Bedrock model {self.model} due to:\n{exception}"
321
+ raise AmazonBedrockInferenceError(msg) from exception
322
+
323
+ response_body = json.loads(response.get("body").read())
324
+ embedding = response_body["embedding"]
325
+ all_embeddings.append(embedding)
326
+
327
+ return all_embeddings
328
+
329
+ def _embed_cohere(self, image_uris: List[str]) -> List[List[float]]:
330
+ """
331
+ Internal method to embed base64 images using Cohere models.
332
+
333
+ :param image_uris: List of image uris containing the base64 image and the mime type.
334
+ :return: List of embeddings.
335
+ """
336
+
337
+ cohere_body = {"input_type": "image"}
338
+ if self.embedding_types:
339
+ cohere_body["embedding_types"] = self.embedding_types
340
+
341
+ all_embeddings = []
342
+
343
+ for image in tqdm(image_uris, disable=not self.progress_bar, desc="Creating embeddings"):
344
+ body = {"images": [image], **cohere_body}
345
+ try:
346
+ response = self._client.invoke_model(
347
+ body=json.dumps(body), modelId=self.model, accept="*/*", contentType="application/json"
348
+ )
349
+ except ClientError as exception:
350
+ msg = f"Could not perform inference for Amazon Bedrock model {self.model} due to:\n{exception}"
351
+ raise AmazonBedrockInferenceError(msg) from exception
352
+
353
+ response_body = json.loads(response.get("body").read())
354
+ embeddings = response_body["embeddings"]
355
+
356
+ # if embedding_types is specified, cohere returns a dict with the embedding types as keys
357
+ if isinstance(embeddings, dict):
358
+ for embedding in embeddings.values():
359
+ all_embeddings.append(embedding[0])
360
+ else:
361
+ # if embedding_types is not specified, cohere returns
362
+ # a nested list of float embeddings
363
+ all_embeddings.append(embeddings[0])
364
+
365
+ return all_embeddings
@@ -19,6 +19,7 @@ SUPPORTED_EMBEDDING_MODELS = [
19
19
  "cohere.embed-english-v3",
20
20
  "cohere.embed-multilingual-v3",
21
21
  "amazon.titan-embed-text-v2:0",
22
+ "amazon.titan-embed-image-v1",
22
23
  ]
23
24
 
24
25
 
@@ -34,7 +35,7 @@ class AmazonBedrockTextEmbedder:
34
35
 
35
36
  os.environ["AWS_ACCESS_KEY_ID"] = "..."
36
37
  os.environ["AWS_SECRET_ACCESS_KEY_ID"] = "..."
37
- os.environ["AWS_REGION_NAME"] = "..."
38
+ os.environ["AWS_DEFAULT_REGION"] = "..."
38
39
 
39
40
  embedder = AmazonBedrockTextEmbedder(
40
41
  model="cohere.embed-english-v3",
@@ -54,6 +55,7 @@ class AmazonBedrockTextEmbedder:
54
55
  "cohere.embed-english-v3",
55
56
  "cohere.embed-multilingual-v3",
56
57
  "amazon.titan-embed-text-v2:0",
58
+ "amazon.titan-embed-image-v1",
57
59
  ],
58
60
  aws_access_key_id: Optional[Secret] = Secret.from_env_var("AWS_ACCESS_KEY_ID", strict=False), # noqa: B008
59
61
  aws_secret_access_key: Optional[Secret] = Secret.from_env_var( # noqa: B008
@@ -114,9 +116,9 @@ class AmazonBedrockTextEmbedder:
114
116
  aws_region_name=resolve_secret(aws_region_name),
115
117
  aws_profile_name=resolve_secret(aws_profile_name),
116
118
  )
117
- config: Optional[Config] = None
118
- if self.boto3_config:
119
- config = Config(**self.boto3_config)
119
+ config = Config(
120
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
121
+ )
120
122
  self._client = session.client("bedrock-runtime", config=config)
121
123
  except Exception as exception:
122
124
  msg = (
@@ -213,9 +213,9 @@ class AmazonBedrockChatGenerator:
213
213
  def resolve_secret(secret: Optional[Secret]) -> Optional[str]:
214
214
  return secret.resolve_value() if secret else None
215
215
 
216
- config: Optional[Config] = None
217
- if self.boto3_config:
218
- config = Config(**self.boto3_config)
216
+ config = Config(
217
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
218
+ )
219
219
 
220
220
  try:
221
221
  # sync session
@@ -226,6 +226,7 @@ class AmazonBedrockChatGenerator:
226
226
  aws_region_name=resolve_secret(aws_region_name),
227
227
  aws_profile_name=resolve_secret(aws_profile_name),
228
228
  )
229
+
229
230
  self.client = session.client("bedrock-runtime", config=config)
230
231
 
231
232
  except Exception as exception:
@@ -498,7 +499,10 @@ class AmazonBedrockChatGenerator:
498
499
  session = self._get_async_session()
499
500
  # Note: https://aioboto3.readthedocs.io/en/latest/usage.html
500
501
  # we need to create a new client for each request
501
- async with session.client("bedrock-runtime", config=self.boto3_config) as async_client:
502
+ config = Config(
503
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
504
+ )
505
+ async with session.client("bedrock-runtime", config=config) as async_client:
502
506
  if callback:
503
507
  response = await async_client.converse_stream(**params)
504
508
  response_stream: EventStream = response.get("stream")
@@ -5,16 +5,20 @@ from typing import Any, Dict, List, Optional, Tuple
5
5
 
6
6
  from botocore.eventstream import EventStream
7
7
  from haystack import logging
8
+ from haystack.components.generators.utils import _convert_streaming_chunks_to_chat_message
8
9
  from haystack.dataclasses import (
9
10
  AsyncStreamingCallbackT,
10
11
  ChatMessage,
11
12
  ChatRole,
12
13
  ComponentInfo,
14
+ FinishReason,
13
15
  ImageContent,
16
+ ReasoningContent,
14
17
  StreamingChunk,
15
18
  SyncStreamingCallbackT,
16
19
  TextContent,
17
20
  ToolCall,
21
+ ToolCallDelta,
18
22
  )
19
23
  from haystack.tools import Tool
20
24
 
@@ -24,6 +28,16 @@ logger = logging.getLogger(__name__)
24
28
  # see https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ImageBlock.html for supported formats
25
29
  IMAGE_SUPPORTED_FORMATS = ["png", "jpeg", "gif", "webp"]
26
30
 
31
+ # see https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_MessageStopEvent.html
32
+ FINISH_REASON_MAPPING: Dict[str, FinishReason] = {
33
+ "end_turn": "stop",
34
+ "stop_sequence": "stop",
35
+ "max_tokens": "length",
36
+ "guardrail_intervened": "content_filter",
37
+ "content_filtered": "content_filter",
38
+ "tool_use": "tool_calls",
39
+ }
40
+
27
41
 
28
42
  # Haystack to Bedrock util methods
29
43
  def _format_tools(tools: Optional[List[Tool]] = None) -> Optional[Dict[str, Any]]:
@@ -57,8 +71,8 @@ def _format_tool_call_message(tool_call_message: ChatMessage) -> Dict[str, Any]:
57
71
  content: List[Dict[str, Any]] = []
58
72
 
59
73
  # tool call messages can contain reasoning content
60
- if reasoning_contents := tool_call_message.meta.get("reasoning_contents"):
61
- content.extend(_format_reasoning_contents(reasoning_contents=reasoning_contents))
74
+ if reasoning_content := tool_call_message.reasoning:
75
+ content.extend(_format_reasoning_content(reasoning_content=reasoning_content))
62
76
 
63
77
  # Tool call message can contain text
64
78
  if tool_call_message.text:
@@ -162,16 +176,16 @@ def _repair_tool_result_messages(bedrock_formatted_messages: List[Dict[str, Any]
162
176
  return [msg for _, msg in repaired_bedrock_formatted_messages]
163
177
 
164
178
 
165
- def _format_reasoning_contents(reasoning_contents: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
179
+ def _format_reasoning_content(reasoning_content: ReasoningContent) -> List[Dict[str, Any]]:
166
180
  """
167
- Format reasoning contents to match Bedrock's expected structure.
181
+ Format ReasoningContent to match Bedrock's expected structure.
168
182
 
169
- :param reasoning_contents: List of reasoning content dictionaries from Haystack ChatMessage metadata.
183
+ :param reasoning_content: ReasoningContent object containing reasoning contents to format.
170
184
  :returns: List of formatted reasoning content dictionaries for Bedrock.
171
185
  """
172
186
  formatted_contents = []
173
- for reasoning_content in reasoning_contents:
174
- formatted_content = {"reasoningContent": reasoning_content["reasoning_content"]}
187
+ for content in reasoning_content.extra.get("reasoning_contents", []):
188
+ formatted_content = {"reasoningContent": content["reasoning_content"]}
175
189
  if reasoning_text := formatted_content["reasoningContent"].pop("reasoning_text", None):
176
190
  formatted_content["reasoningContent"]["reasoningText"] = reasoning_text
177
191
  if redacted_content := formatted_content["reasoningContent"].pop("redacted_content", None):
@@ -192,8 +206,8 @@ def _format_text_image_message(message: ChatMessage) -> Dict[str, Any]:
192
206
 
193
207
  bedrock_content_blocks: List[Dict[str, Any]] = []
194
208
  # Add reasoning content if available as the first content block
195
- if message.meta.get("reasoning_contents"):
196
- bedrock_content_blocks.extend(_format_reasoning_contents(reasoning_contents=message.meta["reasoning_contents"]))
209
+ if message.reasoning:
210
+ bedrock_content_blocks.extend(_format_reasoning_content(reasoning_content=message.reasoning))
197
211
 
198
212
  for part in content_parts:
199
213
  if isinstance(part, TextContent):
@@ -269,7 +283,7 @@ def _parse_completion_response(response_body: Dict[str, Any], model: str) -> Lis
269
283
  base_meta = {
270
284
  "model": model,
271
285
  "index": 0,
272
- "finish_reason": response_body.get("stopReason"),
286
+ "finish_reason": FINISH_REASON_MAPPING.get(response_body.get("stopReason", "")),
273
287
  "usage": {
274
288
  # OpenAI's format for usage for cross ChatGenerator compatibility
275
289
  "prompt_tokens": response_body.get("usage", {}).get("inputTokens", 0),
@@ -303,11 +317,26 @@ def _parse_completion_response(response_body: Dict[str, Any], model: str) -> Lis
303
317
  reasoning_content["redacted_content"] = reasoning_content.pop("redactedContent")
304
318
  reasoning_contents.append({"reasoning_content": reasoning_content})
305
319
 
306
- # If reasoning contents were found, add them to the base meta
307
- base_meta.update({"reasoning_contents": reasoning_contents})
320
+ reasoning_text = ""
321
+ for content in reasoning_contents:
322
+ if "reasoning_text" in content["reasoning_content"]:
323
+ reasoning_text += content["reasoning_content"]["reasoning_text"]["text"]
324
+ elif "redacted_content" in content["reasoning_content"]:
325
+ reasoning_text += "[REDACTED]"
308
326
 
309
327
  # Create a single ChatMessage with combined text and tool calls
310
- replies.append(ChatMessage.from_assistant(" ".join(text_content), tool_calls=tool_calls, meta=base_meta))
328
+ replies.append(
329
+ ChatMessage.from_assistant(
330
+ " ".join(text_content),
331
+ tool_calls=tool_calls,
332
+ meta=base_meta,
333
+ reasoning=ReasoningContent(
334
+ reasoning_text=reasoning_text, extra={"reasoning_contents": reasoning_contents}
335
+ )
336
+ if reasoning_contents
337
+ else None,
338
+ )
339
+ )
311
340
 
312
341
  return replies
313
342
 
@@ -328,9 +357,8 @@ def _convert_event_to_streaming_chunk(
328
357
  """
329
358
  # Initialize an empty StreamingChunk to return if no relevant event is found
330
359
  # (e.g. for messageStart and contentBlockStop)
331
- streaming_chunk = StreamingChunk(
332
- content="", meta={"model": model, "received_at": datetime.now(timezone.utc).isoformat()}
333
- )
360
+ base_meta = {"model": model, "received_at": datetime.now(timezone.utc).isoformat()}
361
+ streaming_chunk = StreamingChunk(content="", meta=base_meta)
334
362
 
335
363
  if "contentBlockStart" in event:
336
364
  # contentBlockStart always has the key "contentBlockIndex"
@@ -340,26 +368,15 @@ def _convert_event_to_streaming_chunk(
340
368
  tool_start = block_start["start"]["toolUse"]
341
369
  streaming_chunk = StreamingChunk(
342
370
  content="",
343
- meta={
344
- "model": model,
345
- # This is always 0 b/c it represents the choice index
346
- "index": 0,
347
- # We follow the same format used in the OpenAIChatGenerator
348
- "tool_calls": [ # Optional[List[ChoiceDeltaToolCall]]
349
- {
350
- "index": block_idx, # int
351
- "id": tool_start["toolUseId"], # Optional[str]
352
- "function": { # Optional[ChoiceDeltaToolCallFunction]
353
- # Will accumulate deltas as string
354
- "arguments": "", # Optional[str]
355
- "name": tool_start["name"], # Optional[str]
356
- },
357
- "type": "function", # Optional[Literal["function"]]
358
- }
359
- ],
360
- "finish_reason": None,
361
- "received_at": datetime.now(timezone.utc).isoformat(),
362
- },
371
+ index=block_idx,
372
+ tool_calls=[
373
+ ToolCallDelta(
374
+ index=block_idx,
375
+ id=tool_start["toolUseId"],
376
+ tool_name=tool_start["name"],
377
+ )
378
+ ],
379
+ meta=base_meta,
363
380
  )
364
381
 
365
382
  elif "contentBlockDelta" in event:
@@ -370,39 +387,22 @@ def _convert_event_to_streaming_chunk(
370
387
  if "text" in delta:
371
388
  streaming_chunk = StreamingChunk(
372
389
  content=delta["text"],
373
- meta={
374
- "model": model,
375
- # This is always 0 b/c it represents the choice index
376
- "index": 0,
377
- "tool_calls": None,
378
- "finish_reason": None,
379
- "received_at": datetime.now(timezone.utc).isoformat(),
380
- },
390
+ index=block_idx,
391
+ meta=base_meta,
381
392
  )
382
393
  # This only occurs when accumulating the arguments for a toolUse
383
394
  # The content_block for this tool should already exist at this point
384
395
  elif "toolUse" in delta:
385
396
  streaming_chunk = StreamingChunk(
386
397
  content="",
387
- meta={
388
- "model": model,
389
- # This is always 0 b/c it represents the choice index
390
- "index": 0,
391
- "tool_calls": [ # Optional[List[ChoiceDeltaToolCall]]
392
- {
393
- "index": block_idx, # int
394
- "id": None, # Optional[str]
395
- "function": { # Optional[ChoiceDeltaToolCallFunction]
396
- # Will accumulate deltas as string
397
- "arguments": delta["toolUse"].get("input", ""), # Optional[str]
398
- "name": None, # Optional[str]
399
- },
400
- "type": "function", # Optional[Literal["function"]]
401
- }
402
- ],
403
- "finish_reason": None,
404
- "received_at": datetime.now(timezone.utc).isoformat(),
405
- },
398
+ index=block_idx,
399
+ tool_calls=[
400
+ ToolCallDelta(
401
+ index=block_idx,
402
+ arguments=delta["toolUse"].get("input", ""),
403
+ )
404
+ ],
405
+ meta=base_meta,
406
406
  )
407
407
  # This is for accumulating reasoning content deltas
408
408
  elif "reasoningContent" in delta:
@@ -411,28 +411,19 @@ def _convert_event_to_streaming_chunk(
411
411
  reasoning_content["redacted_content"] = reasoning_content.pop("redactedContent")
412
412
  streaming_chunk = StreamingChunk(
413
413
  content="",
414
+ index=block_idx,
414
415
  meta={
415
- "model": model,
416
- "index": 0,
417
- "tool_calls": None,
418
- "finish_reason": None,
419
- "received_at": datetime.now(timezone.utc).isoformat(),
416
+ **base_meta,
420
417
  "reasoning_contents": [{"index": block_idx, "reasoning_content": reasoning_content}],
421
418
  },
422
419
  )
423
420
 
424
421
  elif "messageStop" in event:
425
- finish_reason = event["messageStop"].get("stopReason")
422
+ finish_reason = FINISH_REASON_MAPPING.get(event["messageStop"].get("stopReason"))
426
423
  streaming_chunk = StreamingChunk(
427
424
  content="",
428
- meta={
429
- "model": model,
430
- # This is always 0 b/c it represents the choice index
431
- "index": 0,
432
- "tool_calls": None,
433
- "finish_reason": finish_reason,
434
- "received_at": datetime.now(timezone.utc).isoformat(),
435
- },
425
+ finish_reason=finish_reason,
426
+ meta=base_meta,
436
427
  )
437
428
 
438
429
  elif "metadata" in event and "usage" in event["metadata"]:
@@ -440,12 +431,7 @@ def _convert_event_to_streaming_chunk(
440
431
  streaming_chunk = StreamingChunk(
441
432
  content="",
442
433
  meta={
443
- "model": model,
444
- # This is always 0 b/c it represents the choice index
445
- "index": 0,
446
- "tool_calls": None,
447
- "finish_reason": None,
448
- "received_at": datetime.now(timezone.utc).isoformat(),
434
+ **base_meta,
449
435
  "usage": {
450
436
  "prompt_tokens": metadata["usage"].get("inputTokens", 0),
451
437
  "completion_tokens": metadata["usage"].get("outputTokens", 0),
@@ -459,7 +445,7 @@ def _convert_event_to_streaming_chunk(
459
445
  return streaming_chunk
460
446
 
461
447
 
462
- def _process_reasoning_contents(chunks: List[StreamingChunk]) -> List[Dict[str, Any]]:
448
+ def _process_reasoning_contents(chunks: List[StreamingChunk]) -> Optional[ReasoningContent]:
463
449
  """
464
450
  Process reasoning contents from a list of StreamingChunk objects into the Bedrock expected format.
465
451
 
@@ -491,6 +477,8 @@ def _process_reasoning_contents(chunks: List[StreamingChunk]) -> List[Dict[str,
491
477
  )
492
478
  if redacted_content:
493
479
  formatted_reasoning_contents.append({"reasoning_content": {"redacted_content": redacted_content}})
480
+
481
+ # Reset accumulators for new group
494
482
  reasoning_text = ""
495
483
  reasoning_signature = None
496
484
  redacted_content = None
@@ -516,85 +504,22 @@ def _process_reasoning_contents(chunks: List[StreamingChunk]) -> List[Dict[str,
516
504
  if redacted_content:
517
505
  formatted_reasoning_contents.append({"reasoning_content": {"redacted_content": redacted_content}})
518
506
 
519
- return formatted_reasoning_contents
520
-
521
-
522
- def _convert_streaming_chunks_to_chat_message(chunks: List[StreamingChunk]) -> ChatMessage:
523
- """
524
- Converts a list of streaming chunks into a ChatMessage object.
525
-
526
- The function processes streaming chunks to build a ChatMessage object, including extracting and constructing
527
- tool calls, managing metadata such as model type, finish reason, and usage information.
528
- The tool call processing handles accumulating data across the chunks and attempts to parse JSON-formatted
529
- arguments for tool calls.
530
-
531
- :param chunks: A list of StreamingChunk objects representing parts of the assistant's response.
532
-
533
- :returns:
534
- A ChatMessage object constructed from the streaming chunks, containing the aggregated text, processed tool
535
- calls, and metadata.
536
- """
537
- # Join all text content from the chunks
538
- text = "".join([chunk.content for chunk in chunks])
539
-
540
- # If reasoning content is present in any chunk, accumulate it
541
- reasoning_contents = _process_reasoning_contents(chunks=chunks)
542
-
543
- # Process tool calls if present in any chunk
544
- tool_calls = []
545
- tool_call_data: Dict[int, Dict[str, str]] = {} # Track tool calls by index
546
- for chunk_payload in chunks:
547
- tool_calls_meta = chunk_payload.meta.get("tool_calls")
548
- if tool_calls_meta is not None:
549
- for delta in tool_calls_meta:
550
- # We use the index of the tool call to track it across chunks since the ID is not always provided
551
- if delta["index"] not in tool_call_data:
552
- tool_call_data[delta["index"]] = {"id": "", "name": "", "arguments": ""}
553
-
554
- # Save the ID if present
555
- if delta.get("id"):
556
- tool_call_data[delta["index"]]["id"] = delta["id"]
557
-
558
- if delta.get("function"):
559
- if delta["function"].get("name"):
560
- tool_call_data[delta["index"]]["name"] += delta["function"]["name"]
561
- if delta["function"].get("arguments"):
562
- tool_call_data[delta["index"]]["arguments"] += delta["function"]["arguments"]
563
-
564
- # Convert accumulated tool call data into ToolCall objects
565
- for call_data in tool_call_data.values():
566
- try:
567
- arguments = json.loads(call_data.get("arguments", "{}")) if call_data.get("arguments") else {}
568
- tool_calls.append(ToolCall(id=call_data["id"], tool_name=call_data["name"], arguments=arguments))
569
- except json.JSONDecodeError:
570
- logger.warning(
571
- "Amazon Bedrock returned a malformed JSON string for tool call arguments. This tool call will be "
572
- "skipped. Tool call ID: {tool_id}, Tool name: {tool_name}, Arguments: {tool_arguments}",
573
- tool_id=call_data["id"],
574
- tool_name=call_data["name"],
575
- tool_arguments=call_data["arguments"],
576
- )
577
-
578
- # finish_reason can appear in different places so we look for the last one
579
- finish_reasons = [
580
- chunk.meta.get("finish_reason") for chunk in chunks if chunk.meta.get("finish_reason") is not None
581
- ]
582
- finish_reason = finish_reasons[-1] if finish_reasons else None
583
-
584
- # usage is usually last but we look for it as well
585
- usages = [chunk.meta.get("usage") for chunk in chunks if chunk.meta.get("usage") is not None]
586
- usage = usages[-1] if usages else None
587
-
588
- meta = {
589
- "model": chunks[-1].meta["model"],
590
- "index": 0,
591
- "finish_reason": finish_reason,
592
- "completion_start_time": chunks[0].meta.get("received_at"), # first chunk received
593
- "usage": usage,
594
- "reasoning_contents": reasoning_contents,
595
- }
596
-
597
- return ChatMessage.from_assistant(text=text or None, tool_calls=tool_calls, meta=meta)
507
+ # Combine all reasoning texts into a single string for the main reasoning_text field
508
+ final_reasoning_text = ""
509
+ for content in formatted_reasoning_contents:
510
+ if "reasoning_text" in content["reasoning_content"]:
511
+ # mypy somehow thinks that content["reasoning_content"]["reasoning_text"]["text"] can be of type None
512
+ final_reasoning_text += content["reasoning_content"]["reasoning_text"]["text"] # type: ignore[operator]
513
+ elif "redacted_content" in content["reasoning_content"]:
514
+ final_reasoning_text += "[REDACTED]"
515
+
516
+ return (
517
+ ReasoningContent(
518
+ reasoning_text=final_reasoning_text, extra={"reasoning_contents": formatted_reasoning_contents}
519
+ )
520
+ if formatted_reasoning_contents
521
+ else None
522
+ )
598
523
 
599
524
 
600
525
  def _parse_streaming_response(
@@ -612,13 +537,26 @@ def _parse_streaming_response(
612
537
  :param component_info: ComponentInfo object
613
538
  :return: List of ChatMessage objects
614
539
  """
540
+ content_block_idxs = set()
615
541
  chunks: List[StreamingChunk] = []
616
542
  for event in response_stream:
617
543
  streaming_chunk = _convert_event_to_streaming_chunk(event=event, model=model, component_info=component_info)
544
+ content_block_idx = streaming_chunk.index
545
+ if content_block_idx is not None and content_block_idx not in content_block_idxs:
546
+ streaming_chunk.start = True
547
+ content_block_idxs.add(content_block_idx)
618
548
  streaming_callback(streaming_chunk)
619
549
  chunks.append(streaming_chunk)
620
- replies = [_convert_streaming_chunks_to_chat_message(chunks=chunks)]
621
- return replies
550
+ reply = _convert_streaming_chunks_to_chat_message(chunks=chunks)
551
+ reasoning_content = _process_reasoning_contents(chunks=chunks)
552
+ reply = ChatMessage.from_assistant(
553
+ text=reply.text,
554
+ meta=reply.meta,
555
+ name=reply.name,
556
+ tool_calls=reply.tool_calls,
557
+ reasoning=reasoning_content,
558
+ )
559
+ return [reply]
622
560
 
623
561
 
624
562
  async def _parse_streaming_response_async(
@@ -636,10 +574,23 @@ async def _parse_streaming_response_async(
636
574
  :param component_info: ComponentInfo object
637
575
  :return: List of ChatMessage objects
638
576
  """
577
+ content_block_idxs = set()
639
578
  chunks: List[StreamingChunk] = []
640
579
  async for event in response_stream:
641
580
  streaming_chunk = _convert_event_to_streaming_chunk(event=event, model=model, component_info=component_info)
581
+ content_block_idx = streaming_chunk.index
582
+ if content_block_idx is not None and content_block_idx not in content_block_idxs:
583
+ streaming_chunk.start = True
584
+ content_block_idxs.add(content_block_idx)
642
585
  await streaming_callback(streaming_chunk)
643
586
  chunks.append(streaming_chunk)
644
- replies = [_convert_streaming_chunks_to_chat_message(chunks=chunks)]
645
- return replies
587
+ reply = _convert_streaming_chunks_to_chat_message(chunks=chunks)
588
+ reasoning_content = _process_reasoning_contents(chunks=chunks)
589
+ reply = ChatMessage.from_assistant(
590
+ text=reply.text,
591
+ meta=reply.meta,
592
+ name=reply.name,
593
+ tool_calls=reply.tool_calls,
594
+ reasoning=reasoning_content,
595
+ )
596
+ return [reply]
@@ -167,9 +167,9 @@ class AmazonBedrockGenerator:
167
167
  aws_region_name=resolve_secret(aws_region_name),
168
168
  aws_profile_name=resolve_secret(aws_profile_name),
169
169
  )
170
- config: Optional[Config] = None
171
- if self.boto3_config:
172
- config = Config(**self.boto3_config)
170
+ config = Config(
171
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
172
+ )
173
173
  self.client = session.client("bedrock-runtime", config=config)
174
174
  except Exception as exception:
175
175
  msg = (