amazon-bedrock-haystack 3.10.0__py3-none-any.whl → 3.11.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: amazon-bedrock-haystack
3
- Version: 3.10.0
3
+ Version: 3.11.0
4
4
  Summary: An integration of Amazon Bedrock as an AmazonBedrockGenerator component.
5
5
  Project-URL: Documentation, https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/amazon_bedrock#readme
6
6
  Project-URL: Issues, https://github.com/deepset-ai/haystack-core-integrations/issues
@@ -29,43 +29,19 @@ Description-Content-Type: text/markdown
29
29
  [![PyPI - Version](https://img.shields.io/pypi/v/amazon-bedrock-haystack.svg)](https://pypi.org/project/amazon-bedrock-haystack)
30
30
  [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/amazon-bedrock-haystack.svg)](https://pypi.org/project/amazon-bedrock-haystack)
31
31
 
32
+ - [Integration page](https://haystack.deepset.ai/integrations/amazon-bedrock)
33
+ - [Changelog](https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/amazon_bedrock/CHANGELOG.md)
32
34
  -----
33
35
 
34
- **Table of Contents**
35
-
36
- - [Installation](#installation)
37
- - [Contributing](#contributing)
38
- - [License](#license)
39
-
40
- ## Installation
41
-
42
- ```console
43
- pip install amazon-bedrock-haystack
44
- ```
45
-
46
36
  ## Contributing
47
37
 
48
- `hatch` is the best way to interact with this project, to install it:
49
- ```sh
50
- pip install hatch
51
- ```
52
-
53
- With `hatch` installed, to run all the tests:
54
- ```
55
- hatch run test:all
56
- ```
38
+ Refer to the general [Contribution Guidelines](https://github.com/deepset-ai/haystack-core-integrations/blob/main/CONTRIBUTING.md).
57
39
 
58
- To format your code and perform linting using Ruff (with automatic fixes), run:
40
+ To run integration tests locally, you need to authenticate with AWS.
41
+ For example, you can do that by exporting the following environment variables:
59
42
  ```
60
- hatch run fmt
43
+ export AWS_ACCESS_KEY_ID=...
44
+ export AWS_SECRET_ACCESS_KEY=...
45
+ export AWS_SESSION_TOKEN=...
46
+ export AWS_DEFAULT_REGION=...
61
47
  ```
62
-
63
- To check for static type errors, run:
64
-
65
- ```console
66
- $ hatch run test:types
67
- ```
68
-
69
- ## License
70
-
71
- `amazon-bedrock-haystack` is distributed under the terms of the [Apache-2.0](https://spdx.org/licenses/Apache-2.0.html) license.
@@ -3,20 +3,21 @@ haystack_integrations/common/amazon_bedrock/__init__.py,sha256=6GZ8Y3Lw0rLOsOAqi
3
3
  haystack_integrations/common/amazon_bedrock/errors.py,sha256=ReheDbY7L3EJkWcUoih6lWHjbPHg2TlUs9SnXIKK7Gg,744
4
4
  haystack_integrations/common/amazon_bedrock/utils.py,sha256=ASAwEhInF9F6rhL4CbXFQUFU1pSdscWvG6jcrXkEUhc,2735
5
5
  haystack_integrations/components/embedders/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- haystack_integrations/components/embedders/amazon_bedrock/__init__.py,sha256=CFqYmAVq2aavlMkZHYScKHOTwwETdRzRZITMqGhJ9Kw,298
7
- haystack_integrations/components/embedders/amazon_bedrock/document_embedder.py,sha256=YBVlFIo9t2qzVkNWaFKc-FNRo7R_pKfHmqNRkoMZ9K0,12952
8
- haystack_integrations/components/embedders/amazon_bedrock/text_embedder.py,sha256=KNvsUP-YZD17_zVBwMs42v0S2uuTE_ajMaj9bjt1XlE,9036
6
+ haystack_integrations/components/embedders/amazon_bedrock/__init__.py,sha256=7GlhHJ4jFHCxq5QN5losGuGtrGNjvEx2dSQvEYD2yG0,408
7
+ haystack_integrations/components/embedders/amazon_bedrock/document_embedder.py,sha256=DD34-HAGwGwTU7KWGqKXXlFdwIs21JavBRDHrBqC-m4,13060
8
+ haystack_integrations/components/embedders/amazon_bedrock/document_image_embedder.py,sha256=CHNH0Dt7JQqYNbZi1lKsGvarnEhJn3UNGdghF0IhqWw,16163
9
+ haystack_integrations/components/embedders/amazon_bedrock/text_embedder.py,sha256=3eSqt3XpH2thblTeOPf-ej1V2UbdG2z50d3jInq1bYc,9144
9
10
  haystack_integrations/components/generators/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
11
  haystack_integrations/components/generators/amazon_bedrock/__init__.py,sha256=lv4NouIVm78YavUssWQrHHP_81u-7j21qW8v1kZMJPQ,284
11
12
  haystack_integrations/components/generators/amazon_bedrock/adapters.py,sha256=yBC-3YwV6qAwSXMtdZiLSYh2lUpPQIDy7Efl7w-Cu-k,19640
12
- haystack_integrations/components/generators/amazon_bedrock/generator.py,sha256=c_saV5zxFYQVJT0Hzo80lKty46itL0Dp31VuDueYa3M,14716
13
+ haystack_integrations/components/generators/amazon_bedrock/generator.py,sha256=Brzw0XvtPJhz2kR2I3liAqWHRmDR6p5HzJerEAPhoJU,14743
13
14
  haystack_integrations/components/generators/amazon_bedrock/chat/__init__.py,sha256=6GZ8Y3Lw0rLOsOAqi6Tu5mZC977UzQvgDxKpOWr8IQw,110
14
- haystack_integrations/components/generators/amazon_bedrock/chat/chat_generator.py,sha256=iIaMsOOX9eYvR1GNgpxNKxaOli91ShrCv3MuBBK1NSs,24743
15
+ haystack_integrations/components/generators/amazon_bedrock/chat/chat_generator.py,sha256=_0dpBoZGY9kgK9zQOTskcjElcTifwhyBAixXDliK-vY,24918
15
16
  haystack_integrations/components/generators/amazon_bedrock/chat/utils.py,sha256=g2SZV8LdLobaCZpwWCreBJn1BtS1V3-wQkpisStJrcY,29015
16
17
  haystack_integrations/components/rankers/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
18
  haystack_integrations/components/rankers/amazon_bedrock/__init__.py,sha256=Zrc3BSVkEaXYpliEi6hKG9bqW4J7DNk93p50SuoyT1Q,107
18
19
  haystack_integrations/components/rankers/amazon_bedrock/ranker.py,sha256=enAjf2QyDwfpidKkFCdLz954cx-Tjh9emrOS3vINJDg,12344
19
- amazon_bedrock_haystack-3.10.0.dist-info/METADATA,sha256=DZDchQY_Nsi4GsU4fZKTVkHxFcnn4cYuXNMjZ1VxlQg,2288
20
- amazon_bedrock_haystack-3.10.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
21
- amazon_bedrock_haystack-3.10.0.dist-info/licenses/LICENSE.txt,sha256=B05uMshqTA74s-0ltyHKI6yoPfJ3zYgQbvcXfDVGFf8,10280
22
- amazon_bedrock_haystack-3.10.0.dist-info/RECORD,,
20
+ amazon_bedrock_haystack-3.11.0.dist-info/METADATA,sha256=5nA_v2Ze5xk1p-RQxbshQ0XGa3LYFljVGvNi2VvKU7o,2225
21
+ amazon_bedrock_haystack-3.11.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
22
+ amazon_bedrock_haystack-3.11.0.dist-info/licenses/LICENSE.txt,sha256=B05uMshqTA74s-0ltyHKI6yoPfJ3zYgQbvcXfDVGFf8,10280
23
+ amazon_bedrock_haystack-3.11.0.dist-info/RECORD,,
@@ -2,6 +2,7 @@
2
2
  #
3
3
  # SPDX-License-Identifier: Apache-2.0
4
4
  from .document_embedder import AmazonBedrockDocumentEmbedder
5
+ from .document_image_embedder import AmazonBedrockDocumentImageEmbedder
5
6
  from .text_embedder import AmazonBedrockTextEmbedder
6
7
 
7
- __all__ = ["AmazonBedrockDocumentEmbedder", "AmazonBedrockTextEmbedder"]
8
+ __all__ = ["AmazonBedrockDocumentEmbedder", "AmazonBedrockDocumentImageEmbedder", "AmazonBedrockTextEmbedder"]
@@ -21,6 +21,7 @@ SUPPORTED_EMBEDDING_MODELS = [
21
21
  "cohere.embed-english-v3",
22
22
  "cohere.embed-multilingual-v3",
23
23
  "amazon.titan-embed-text-v2:0",
24
+ "amazon.titan-embed-image-v1",
24
25
  ]
25
26
 
26
27
 
@@ -38,7 +39,7 @@ class AmazonBedrockDocumentEmbedder:
38
39
 
39
40
  os.environ["AWS_ACCESS_KEY_ID"] = "..."
40
41
  os.environ["AWS_SECRET_ACCESS_KEY_ID"] = "..."
41
- os.environ["AWS_REGION_NAME"] = "..."
42
+ os.environ["AWS_DEFAULT_REGION"] = "..."
42
43
 
43
44
  embedder = AmazonBedrockDocumentEmbedder(
44
45
  model="cohere.embed-english-v3",
@@ -61,6 +62,7 @@ class AmazonBedrockDocumentEmbedder:
61
62
  "cohere.embed-english-v3",
62
63
  "cohere.embed-multilingual-v3",
63
64
  "amazon.titan-embed-text-v2:0",
65
+ "amazon.titan-embed-image-v1",
64
66
  ],
65
67
  aws_access_key_id: Optional[Secret] = Secret.from_env_var("AWS_ACCESS_KEY_ID", strict=False), # noqa: B008
66
68
  aws_secret_access_key: Optional[Secret] = Secret.from_env_var( # noqa: B008
@@ -136,9 +138,9 @@ class AmazonBedrockDocumentEmbedder:
136
138
  aws_region_name=resolve_secret(aws_region_name),
137
139
  aws_profile_name=resolve_secret(aws_profile_name),
138
140
  )
139
- config: Optional[Config] = None
140
- if self.boto3_config:
141
- config = Config(**self.boto3_config)
141
+ config = Config(
142
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
143
+ )
142
144
  self._client = session.client("bedrock-runtime", config=config)
143
145
  except Exception as exception:
144
146
  msg = (
@@ -0,0 +1,365 @@
1
+ # SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
2
+ #
3
+ # SPDX-License-Identifier: Apache-2.0
4
+
5
+ import json
6
+ from dataclasses import replace
7
+ from typing import Any, Dict, List, Literal, Optional, Tuple
8
+
9
+ from botocore.config import Config
10
+ from botocore.exceptions import ClientError
11
+ from haystack import Document, component, default_from_dict, default_to_dict, logging
12
+ from haystack.components.converters.image.image_utils import (
13
+ _batch_convert_pdf_pages_to_images,
14
+ _encode_image_to_base64,
15
+ _extract_image_sources_info,
16
+ _PDFPageInfo,
17
+ )
18
+ from haystack.dataclasses import ByteStream
19
+ from haystack.utils.auth import Secret, deserialize_secrets_inplace
20
+ from tqdm import tqdm
21
+
22
+ from haystack_integrations.common.amazon_bedrock.errors import (
23
+ AmazonBedrockConfigurationError,
24
+ AmazonBedrockInferenceError,
25
+ )
26
+ from haystack_integrations.common.amazon_bedrock.utils import get_aws_session
27
+
28
+ logger = logging.getLogger(__name__)
29
+
30
+ SUPPORTED_EMBEDDING_MODELS = ["amazon.titan-embed-image-v1", "cohere.embed-english-v3", "cohere.embed-multilingual-v3"]
31
+
32
+
33
+ @component
34
+ class AmazonBedrockDocumentImageEmbedder:
35
+ """
36
+ A component for computing Document embeddings based on images using Amazon Bedrock models.
37
+
38
+ The embedding of each Document is stored in the `embedding` field of the Document.
39
+
40
+ ### Usage example
41
+ ```python
42
+ from haystack import Document
43
+ rom haystack_integrations.components.embedders.amazon_bedrock import AmazonBedrockDocumentImageEmbedder
44
+
45
+ os.environ["AWS_ACCESS_KEY_ID"] = "..."
46
+ os.environ["AWS_SECRET_ACCESS_KEY_ID"] = "..."
47
+ os.environ["AWS_DEFAULT_REGION"] = "..."
48
+
49
+ embedder = AmazonBedrockDocumentImageEmbedder(model="amazon.titan-embed-image-v1")
50
+
51
+ documents = [
52
+ Document(content="A photo of a cat", meta={"file_path": "cat.jpg"}),
53
+ Document(content="A photo of a dog", meta={"file_path": "dog.jpg"}),
54
+ ]
55
+
56
+ result = embedder.run(documents=documents)
57
+ documents_with_embeddings = result["documents"]
58
+ print(documents_with_embeddings)
59
+
60
+ # [Document(id=...,
61
+ # content='A photo of a cat',
62
+ # meta={'file_path': 'cat.jpg',
63
+ # 'embedding_source': {'type': 'image', 'file_path_meta_field': 'file_path'}},
64
+ # embedding=vector of size 512),
65
+ # ...]
66
+ ```
67
+ """
68
+
69
+ def __init__(
70
+ self,
71
+ *,
72
+ model: Literal["amazon.titan-embed-image-v1", "cohere.embed-english-v3", "cohere.embed-multilingual-v3"],
73
+ aws_access_key_id: Optional[Secret] = Secret.from_env_var("AWS_ACCESS_KEY_ID", strict=False), # noqa: B008
74
+ aws_secret_access_key: Optional[Secret] = Secret.from_env_var( # noqa: B008
75
+ "AWS_SECRET_ACCESS_KEY", strict=False
76
+ ),
77
+ aws_session_token: Optional[Secret] = Secret.from_env_var("AWS_SESSION_TOKEN", strict=False), # noqa: B008
78
+ aws_region_name: Optional[Secret] = Secret.from_env_var("AWS_DEFAULT_REGION", strict=False), # noqa: B008
79
+ aws_profile_name: Optional[Secret] = Secret.from_env_var("AWS_PROFILE", strict=False), # noqa: B008
80
+ file_path_meta_field: str = "file_path",
81
+ root_path: Optional[str] = None,
82
+ image_size: Optional[Tuple[int, int]] = None,
83
+ progress_bar: bool = True,
84
+ boto3_config: Optional[Dict[str, Any]] = None,
85
+ **kwargs: Any,
86
+ ) -> None:
87
+ """
88
+ Creates a AmazonBedrockDocumentImageEmbedder component.
89
+
90
+ :param model:
91
+ The Bedrock model to use for calculating embeddings. Pass a valid model ID.
92
+ Supported models:
93
+ - "amazon.titan-embed-image-v1"
94
+ - "cohere.embed-english-v3"
95
+ - "cohere.embed-multilingual-v3"
96
+ :param aws_access_key_id: AWS access key ID.
97
+ :param aws_secret_access_key: AWS secret access key.
98
+ :param aws_session_token: AWS session token.
99
+ :param aws_region_name: AWS region name.
100
+ :param aws_profile_name: AWS profile name.
101
+ :param file_path_meta_field: The metadata field in the Document that contains the file path to the image or PDF.
102
+ :param root_path: The root directory path where document files are located. If provided, file paths in
103
+ document metadata will be resolved relative to this path. If None, file paths are treated as absolute paths.
104
+ :param image_size:
105
+ If provided, resizes the image to fit within the specified dimensions (width, height) while
106
+ maintaining aspect ratio. This reduces file size, memory usage, and processing time, which is beneficial
107
+ when working with models that have resolution constraints or when transmitting images to remote services.
108
+ :param progress_bar:
109
+ If `True`, shows a progress bar when embedding documents.
110
+ :param boto3_config: The configuration for the boto3 client.
111
+ :param kwargs: Additional parameters to pass for model inference.
112
+ For example, `embeddingConfig` for Amazon Titan models and
113
+ `embedding_types` for Cohere models.
114
+ :raises ValueError: If the model is not supported.
115
+ :raises AmazonBedrockConfigurationError: If the AWS environment is not configured correctly.
116
+ """
117
+ if not model or model not in SUPPORTED_EMBEDDING_MODELS:
118
+ msg = "Please provide a valid model from the list of supported models: " + ", ".join(
119
+ SUPPORTED_EMBEDDING_MODELS
120
+ )
121
+ raise ValueError(msg)
122
+
123
+ self.file_path_meta_field = file_path_meta_field
124
+ self.root_path = root_path or ""
125
+ self.model = model
126
+ self.boto3_config = boto3_config
127
+
128
+ self.aws_access_key_id = aws_access_key_id
129
+ self.aws_secret_access_key = aws_secret_access_key
130
+ self.aws_session_token = aws_session_token
131
+ self.aws_region_name = aws_region_name
132
+ self.aws_profile_name = aws_profile_name
133
+ self.image_size = image_size
134
+ self.progress_bar = progress_bar
135
+ self.kwargs = kwargs
136
+ self.embedding_types = None
137
+
138
+ if emmbedding_types := self.kwargs.get("embedding_types"):
139
+ if len(emmbedding_types) > 1:
140
+ msg = (
141
+ "You have provided multiple embedding_types for Cohere model. "
142
+ "AmazonBedrockDocumentImageEmbedder only supports one embedding_type at a time."
143
+ )
144
+ raise ValueError(msg)
145
+ self.embedding_types = emmbedding_types
146
+
147
+ def resolve_secret(secret: Optional[Secret]) -> Optional[str]:
148
+ return secret.resolve_value() if secret else None
149
+
150
+ try:
151
+ session = get_aws_session(
152
+ aws_access_key_id=resolve_secret(aws_access_key_id),
153
+ aws_secret_access_key=resolve_secret(aws_secret_access_key),
154
+ aws_session_token=resolve_secret(aws_session_token),
155
+ aws_region_name=resolve_secret(aws_region_name),
156
+ aws_profile_name=resolve_secret(aws_profile_name),
157
+ )
158
+ config = Config(
159
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
160
+ )
161
+ self._client = session.client("bedrock-runtime", config=config)
162
+ except Exception as exception:
163
+ msg = (
164
+ "Could not connect to Amazon Bedrock. Make sure the AWS environment is configured correctly. "
165
+ "See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration"
166
+ )
167
+ raise AmazonBedrockConfigurationError(msg) from exception
168
+
169
+ def to_dict(self) -> dict[str, Any]:
170
+ """
171
+ Serializes the component to a dictionary.
172
+
173
+ :returns:
174
+ Dictionary with serialized data.
175
+ """
176
+ serialization_dict = default_to_dict(
177
+ self,
178
+ file_path_meta_field=self.file_path_meta_field,
179
+ root_path=self.root_path,
180
+ model=self.model,
181
+ aws_access_key_id=self.aws_access_key_id.to_dict() if self.aws_access_key_id else None,
182
+ aws_secret_access_key=self.aws_secret_access_key.to_dict() if self.aws_secret_access_key else None,
183
+ aws_session_token=self.aws_session_token.to_dict() if self.aws_session_token else None,
184
+ aws_region_name=self.aws_region_name.to_dict() if self.aws_region_name else None,
185
+ aws_profile_name=self.aws_profile_name.to_dict() if self.aws_profile_name else None,
186
+ progress_bar=self.progress_bar,
187
+ boto3_config=self.boto3_config,
188
+ image_size=self.image_size,
189
+ **self.kwargs,
190
+ )
191
+ return serialization_dict
192
+
193
+ @classmethod
194
+ def from_dict(cls, data: dict[str, Any]) -> "AmazonBedrockDocumentImageEmbedder":
195
+ """
196
+ Deserializes the component from a dictionary.
197
+
198
+ :param data:
199
+ Dictionary to deserialize from.
200
+ :returns:
201
+ Deserialized component.
202
+ """
203
+ init_params = data["init_parameters"]
204
+ deserialize_secrets_inplace(
205
+ init_params,
206
+ keys=[
207
+ "aws_access_key_id",
208
+ "aws_secret_access_key",
209
+ "aws_session_token",
210
+ "aws_region_name",
211
+ "aws_profile_name",
212
+ ],
213
+ )
214
+ return default_from_dict(cls, data)
215
+
216
+ @component.output_types(documents=list[Document])
217
+ def run(self, documents: list[Document]) -> dict[str, list[Document]]:
218
+ """
219
+ Embed a list of images.
220
+
221
+ :param documents:
222
+ Documents to embed.
223
+
224
+ :returns:
225
+ A dictionary with the following keys:
226
+ - `documents`: Documents with embeddings.
227
+ """
228
+ if not isinstance(documents, list) or (documents and not isinstance(documents[0], Document)):
229
+ msg = (
230
+ "AmazonBedrockDocumentImageEmbedder expects a list of Documents as input. "
231
+ "In case you want to embed a string, please use the AmazonBedrockTextEmbedder."
232
+ )
233
+ raise TypeError(msg)
234
+ images_source_info = _extract_image_sources_info(
235
+ documents=documents, file_path_meta_field=self.file_path_meta_field, root_path=self.root_path
236
+ )
237
+
238
+ images_to_embed: list = [None] * len(documents)
239
+ pdf_page_infos: list[_PDFPageInfo] = []
240
+
241
+ for doc_idx, image_source_info in enumerate(images_source_info):
242
+ if image_source_info["mime_type"] == "application/pdf":
243
+ # Store PDF documents for later processing
244
+ page_number = image_source_info.get("page_number")
245
+
246
+ pdf_page_info: _PDFPageInfo = {
247
+ "doc_idx": doc_idx,
248
+ "path": image_source_info["path"],
249
+ # page_number is added but mypy doesn't know that
250
+ "page_number": page_number, # type: ignore[typeddict-item]
251
+ }
252
+ pdf_page_infos.append(pdf_page_info)
253
+ else:
254
+ # Process images directly
255
+ image_byte_stream = ByteStream.from_file_path(
256
+ filepath=image_source_info["path"], mime_type=image_source_info["mime_type"]
257
+ )
258
+ mime_type, base64_image = _encode_image_to_base64(bytestream=image_byte_stream, size=self.image_size)
259
+ if "cohere" in self.model:
260
+ images_to_embed[doc_idx] = f"data:{mime_type};base64,{base64_image}"
261
+ else:
262
+ images_to_embed[doc_idx] = base64_image
263
+
264
+ pdf_images_by_doc_idx = _batch_convert_pdf_pages_to_images(
265
+ pdf_page_infos=pdf_page_infos, return_base64=True, size=self.image_size
266
+ )
267
+
268
+ # the pdf_images_by_doc_idx has base64 images but mypy cant detect that
269
+ for doc_idx, base64_image in pdf_images_by_doc_idx.items(): # type: ignore[assignment]
270
+ pdf_image_uri = f"data:application/pdf;base64,{base64_image}" if "cohere" in self.model else base64_image
271
+ images_to_embed[doc_idx] = pdf_image_uri
272
+
273
+ none_images_doc_ids = [documents[doc_idx].id for doc_idx, image in enumerate(images_to_embed) if image is None]
274
+ if none_images_doc_ids:
275
+ msg = f"Conversion failed for some documents. Document IDs: {none_images_doc_ids}."
276
+ raise RuntimeError(msg)
277
+
278
+ if "cohere" in self.model:
279
+ embeddings = self._embed_cohere(image_uris=images_to_embed)
280
+ elif "titan" in self.model:
281
+ embeddings = self._embed_titan(images=images_to_embed)
282
+ else:
283
+ msg = f"Model {self.model} is not supported. Supported models are: {', '.join(SUPPORTED_EMBEDDING_MODELS)}."
284
+ raise ValueError(msg)
285
+
286
+ docs_with_embeddings = []
287
+
288
+ for doc, emb in zip(documents, embeddings):
289
+ # we store this information for later inspection
290
+ new_meta = {
291
+ **doc.meta,
292
+ "embedding_source": {"type": "image", "file_path_meta_field": self.file_path_meta_field},
293
+ }
294
+ new_doc = replace(doc, meta=new_meta, embedding=emb)
295
+ docs_with_embeddings.append(new_doc)
296
+
297
+ return {"documents": docs_with_embeddings}
298
+
299
+ def _embed_titan(self, images: List[str]) -> List[List[float]]:
300
+ """
301
+ Internal method to embed base64 images using Amazon Titan models.
302
+
303
+ :param images: List of base64 images.
304
+ :return: List of embeddings.
305
+ """
306
+
307
+ titan_body = {}
308
+ if embedding_config := self.kwargs.get("embeddingConfig"):
309
+ titan_body["embeddingConfig"] = embedding_config # optional parameter for Amazon Titan models
310
+
311
+ all_embeddings = []
312
+
313
+ for image in tqdm(images, disable=not self.progress_bar, desc="Creating embeddings"):
314
+ body = {"inputImage": image, **titan_body}
315
+ try:
316
+ response = self._client.invoke_model(
317
+ body=json.dumps(body), modelId=self.model, accept="*/*", contentType="application/json"
318
+ )
319
+ except ClientError as exception:
320
+ msg = f"Could not perform inference for Amazon Bedrock model {self.model} due to:\n{exception}"
321
+ raise AmazonBedrockInferenceError(msg) from exception
322
+
323
+ response_body = json.loads(response.get("body").read())
324
+ embedding = response_body["embedding"]
325
+ all_embeddings.append(embedding)
326
+
327
+ return all_embeddings
328
+
329
+ def _embed_cohere(self, image_uris: List[str]) -> List[List[float]]:
330
+ """
331
+ Internal method to embed base64 images using Cohere models.
332
+
333
+ :param image_uris: List of image uris containing the base64 image and the mime type.
334
+ :return: List of embeddings.
335
+ """
336
+
337
+ cohere_body = {"input_type": "image"}
338
+ if self.embedding_types:
339
+ cohere_body["embedding_types"] = self.embedding_types
340
+
341
+ all_embeddings = []
342
+
343
+ for image in tqdm(image_uris, disable=not self.progress_bar, desc="Creating embeddings"):
344
+ body = {"images": [image], **cohere_body}
345
+ try:
346
+ response = self._client.invoke_model(
347
+ body=json.dumps(body), modelId=self.model, accept="*/*", contentType="application/json"
348
+ )
349
+ except ClientError as exception:
350
+ msg = f"Could not perform inference for Amazon Bedrock model {self.model} due to:\n{exception}"
351
+ raise AmazonBedrockInferenceError(msg) from exception
352
+
353
+ response_body = json.loads(response.get("body").read())
354
+ embeddings = response_body["embeddings"]
355
+
356
+ # if embedding_types is specified, cohere returns a dict with the embedding types as keys
357
+ if isinstance(embeddings, dict):
358
+ for embedding in embeddings.values():
359
+ all_embeddings.append(embedding[0])
360
+ else:
361
+ # if embedding_types is not specified, cohere returns
362
+ # a nested list of float embeddings
363
+ all_embeddings.append(embeddings[0])
364
+
365
+ return all_embeddings
@@ -19,6 +19,7 @@ SUPPORTED_EMBEDDING_MODELS = [
19
19
  "cohere.embed-english-v3",
20
20
  "cohere.embed-multilingual-v3",
21
21
  "amazon.titan-embed-text-v2:0",
22
+ "amazon.titan-embed-image-v1",
22
23
  ]
23
24
 
24
25
 
@@ -34,7 +35,7 @@ class AmazonBedrockTextEmbedder:
34
35
 
35
36
  os.environ["AWS_ACCESS_KEY_ID"] = "..."
36
37
  os.environ["AWS_SECRET_ACCESS_KEY_ID"] = "..."
37
- os.environ["AWS_REGION_NAME"] = "..."
38
+ os.environ["AWS_DEFAULT_REGION"] = "..."
38
39
 
39
40
  embedder = AmazonBedrockTextEmbedder(
40
41
  model="cohere.embed-english-v3",
@@ -54,6 +55,7 @@ class AmazonBedrockTextEmbedder:
54
55
  "cohere.embed-english-v3",
55
56
  "cohere.embed-multilingual-v3",
56
57
  "amazon.titan-embed-text-v2:0",
58
+ "amazon.titan-embed-image-v1",
57
59
  ],
58
60
  aws_access_key_id: Optional[Secret] = Secret.from_env_var("AWS_ACCESS_KEY_ID", strict=False), # noqa: B008
59
61
  aws_secret_access_key: Optional[Secret] = Secret.from_env_var( # noqa: B008
@@ -114,9 +116,9 @@ class AmazonBedrockTextEmbedder:
114
116
  aws_region_name=resolve_secret(aws_region_name),
115
117
  aws_profile_name=resolve_secret(aws_profile_name),
116
118
  )
117
- config: Optional[Config] = None
118
- if self.boto3_config:
119
- config = Config(**self.boto3_config)
119
+ config = Config(
120
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
121
+ )
120
122
  self._client = session.client("bedrock-runtime", config=config)
121
123
  except Exception as exception:
122
124
  msg = (
@@ -213,9 +213,9 @@ class AmazonBedrockChatGenerator:
213
213
  def resolve_secret(secret: Optional[Secret]) -> Optional[str]:
214
214
  return secret.resolve_value() if secret else None
215
215
 
216
- config: Optional[Config] = None
217
- if self.boto3_config:
218
- config = Config(**self.boto3_config)
216
+ config = Config(
217
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
218
+ )
219
219
 
220
220
  try:
221
221
  # sync session
@@ -226,6 +226,7 @@ class AmazonBedrockChatGenerator:
226
226
  aws_region_name=resolve_secret(aws_region_name),
227
227
  aws_profile_name=resolve_secret(aws_profile_name),
228
228
  )
229
+
229
230
  self.client = session.client("bedrock-runtime", config=config)
230
231
 
231
232
  except Exception as exception:
@@ -498,7 +499,10 @@ class AmazonBedrockChatGenerator:
498
499
  session = self._get_async_session()
499
500
  # Note: https://aioboto3.readthedocs.io/en/latest/usage.html
500
501
  # we need to create a new client for each request
501
- async with session.client("bedrock-runtime", config=self.boto3_config) as async_client:
502
+ config = Config(
503
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
504
+ )
505
+ async with session.client("bedrock-runtime", config=config) as async_client:
502
506
  if callback:
503
507
  response = await async_client.converse_stream(**params)
504
508
  response_stream: EventStream = response.get("stream")
@@ -167,9 +167,9 @@ class AmazonBedrockGenerator:
167
167
  aws_region_name=resolve_secret(aws_region_name),
168
168
  aws_profile_name=resolve_secret(aws_profile_name),
169
169
  )
170
- config: Optional[Config] = None
171
- if self.boto3_config:
172
- config = Config(**self.boto3_config)
170
+ config = Config(
171
+ user_agent_extra="x-client-framework:haystack", **(self.boto3_config if self.boto3_config else {})
172
+ )
173
173
  self.client = session.client("bedrock-runtime", config=config)
174
174
  except Exception as exception:
175
175
  msg = (