alma-memory 0.4.0__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- alma/__init__.py +88 -44
- alma/confidence/__init__.py +1 -1
- alma/confidence/engine.py +92 -58
- alma/confidence/types.py +34 -14
- alma/config/loader.py +3 -2
- alma/consolidation/__init__.py +23 -0
- alma/consolidation/engine.py +678 -0
- alma/consolidation/prompts.py +84 -0
- alma/core.py +15 -15
- alma/domains/__init__.py +6 -6
- alma/domains/factory.py +12 -9
- alma/domains/schemas.py +17 -3
- alma/domains/types.py +8 -4
- alma/events/__init__.py +75 -0
- alma/events/emitter.py +284 -0
- alma/events/storage_mixin.py +246 -0
- alma/events/types.py +126 -0
- alma/events/webhook.py +425 -0
- alma/exceptions.py +49 -0
- alma/extraction/__init__.py +31 -0
- alma/extraction/auto_learner.py +264 -0
- alma/extraction/extractor.py +420 -0
- alma/graph/__init__.py +81 -0
- alma/graph/backends/__init__.py +18 -0
- alma/graph/backends/memory.py +236 -0
- alma/graph/backends/neo4j.py +417 -0
- alma/graph/base.py +159 -0
- alma/graph/extraction.py +198 -0
- alma/graph/store.py +860 -0
- alma/harness/__init__.py +4 -4
- alma/harness/base.py +18 -9
- alma/harness/domains.py +27 -11
- alma/initializer/__init__.py +1 -1
- alma/initializer/initializer.py +51 -43
- alma/initializer/types.py +25 -17
- alma/integration/__init__.py +9 -9
- alma/integration/claude_agents.py +10 -10
- alma/integration/helena.py +32 -22
- alma/integration/victor.py +57 -33
- alma/learning/__init__.py +27 -27
- alma/learning/forgetting.py +198 -148
- alma/learning/heuristic_extractor.py +40 -24
- alma/learning/protocols.py +62 -14
- alma/learning/validation.py +7 -2
- alma/mcp/__init__.py +4 -4
- alma/mcp/__main__.py +2 -1
- alma/mcp/resources.py +17 -16
- alma/mcp/server.py +102 -44
- alma/mcp/tools.py +174 -37
- alma/progress/__init__.py +3 -3
- alma/progress/tracker.py +26 -20
- alma/progress/types.py +8 -12
- alma/py.typed +0 -0
- alma/retrieval/__init__.py +11 -11
- alma/retrieval/cache.py +20 -21
- alma/retrieval/embeddings.py +4 -4
- alma/retrieval/engine.py +114 -35
- alma/retrieval/scoring.py +73 -63
- alma/session/__init__.py +2 -2
- alma/session/manager.py +5 -5
- alma/session/types.py +5 -4
- alma/storage/__init__.py +41 -0
- alma/storage/azure_cosmos.py +101 -31
- alma/storage/base.py +157 -4
- alma/storage/chroma.py +1443 -0
- alma/storage/file_based.py +56 -20
- alma/storage/pinecone.py +1080 -0
- alma/storage/postgresql.py +1452 -0
- alma/storage/qdrant.py +1306 -0
- alma/storage/sqlite_local.py +376 -31
- alma/types.py +62 -14
- alma_memory-0.5.0.dist-info/METADATA +905 -0
- alma_memory-0.5.0.dist-info/RECORD +76 -0
- {alma_memory-0.4.0.dist-info → alma_memory-0.5.0.dist-info}/WHEEL +1 -1
- alma_memory-0.4.0.dist-info/METADATA +0 -488
- alma_memory-0.4.0.dist-info/RECORD +0 -52
- {alma_memory-0.4.0.dist-info → alma_memory-0.5.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1452 @@
|
|
|
1
|
+
"""
|
|
2
|
+
ALMA PostgreSQL Storage Backend.
|
|
3
|
+
|
|
4
|
+
Production-ready storage using PostgreSQL with pgvector extension for
|
|
5
|
+
native vector similarity search. Supports connection pooling.
|
|
6
|
+
|
|
7
|
+
Recommended for:
|
|
8
|
+
- Customer deployments (Azure PostgreSQL, AWS RDS, etc.)
|
|
9
|
+
- Self-hosted production environments
|
|
10
|
+
- High-availability requirements
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
import json
|
|
14
|
+
import logging
|
|
15
|
+
import os
|
|
16
|
+
from contextlib import contextmanager
|
|
17
|
+
from datetime import datetime, timezone
|
|
18
|
+
from typing import Any, Dict, List, Optional
|
|
19
|
+
|
|
20
|
+
# numpy is optional - only needed for fallback similarity when pgvector unavailable
|
|
21
|
+
try:
|
|
22
|
+
import numpy as np
|
|
23
|
+
|
|
24
|
+
NUMPY_AVAILABLE = True
|
|
25
|
+
except ImportError:
|
|
26
|
+
np = None # type: ignore
|
|
27
|
+
NUMPY_AVAILABLE = False
|
|
28
|
+
|
|
29
|
+
from alma.storage.base import StorageBackend
|
|
30
|
+
from alma.types import (
|
|
31
|
+
AntiPattern,
|
|
32
|
+
DomainKnowledge,
|
|
33
|
+
Heuristic,
|
|
34
|
+
Outcome,
|
|
35
|
+
UserPreference,
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
logger = logging.getLogger(__name__)
|
|
39
|
+
|
|
40
|
+
# Try to import psycopg (v3) with connection pooling
|
|
41
|
+
try:
|
|
42
|
+
from psycopg.rows import dict_row
|
|
43
|
+
from psycopg_pool import ConnectionPool
|
|
44
|
+
|
|
45
|
+
PSYCOPG_AVAILABLE = True
|
|
46
|
+
except ImportError:
|
|
47
|
+
PSYCOPG_AVAILABLE = False
|
|
48
|
+
logger.warning(
|
|
49
|
+
"psycopg not installed. Install with: pip install 'alma-memory[postgres]'"
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
class PostgreSQLStorage(StorageBackend):
|
|
54
|
+
"""
|
|
55
|
+
PostgreSQL storage backend with pgvector support.
|
|
56
|
+
|
|
57
|
+
Uses native PostgreSQL vector operations for efficient similarity search.
|
|
58
|
+
Falls back to application-level cosine similarity if pgvector is not installed.
|
|
59
|
+
|
|
60
|
+
Database schema:
|
|
61
|
+
- alma_heuristics: id, agent, project_id, condition, strategy, ...
|
|
62
|
+
- alma_outcomes: id, agent, project_id, task_type, ...
|
|
63
|
+
- alma_preferences: id, user_id, category, preference, ...
|
|
64
|
+
- alma_domain_knowledge: id, agent, project_id, domain, fact, ...
|
|
65
|
+
- alma_anti_patterns: id, agent, project_id, pattern, ...
|
|
66
|
+
|
|
67
|
+
Vector search:
|
|
68
|
+
- Uses pgvector extension if available
|
|
69
|
+
- Embeddings stored as VECTOR type with cosine distance operator (<=>)
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
def __init__(
|
|
73
|
+
self,
|
|
74
|
+
host: str,
|
|
75
|
+
port: int,
|
|
76
|
+
database: str,
|
|
77
|
+
user: str,
|
|
78
|
+
password: str,
|
|
79
|
+
embedding_dim: int = 384,
|
|
80
|
+
pool_size: int = 10,
|
|
81
|
+
schema: str = "public",
|
|
82
|
+
ssl_mode: str = "prefer",
|
|
83
|
+
):
|
|
84
|
+
"""
|
|
85
|
+
Initialize PostgreSQL storage.
|
|
86
|
+
|
|
87
|
+
Args:
|
|
88
|
+
host: Database host
|
|
89
|
+
port: Database port
|
|
90
|
+
database: Database name
|
|
91
|
+
user: Database user
|
|
92
|
+
password: Database password
|
|
93
|
+
embedding_dim: Dimension of embedding vectors
|
|
94
|
+
pool_size: Connection pool size
|
|
95
|
+
schema: Database schema (default: public)
|
|
96
|
+
ssl_mode: SSL mode (disable, allow, prefer, require, verify-ca, verify-full)
|
|
97
|
+
"""
|
|
98
|
+
if not PSYCOPG_AVAILABLE:
|
|
99
|
+
raise ImportError(
|
|
100
|
+
"psycopg not installed. Install with: pip install 'alma-memory[postgres]'"
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
self.embedding_dim = embedding_dim
|
|
104
|
+
self.schema = schema
|
|
105
|
+
self._pgvector_available = False
|
|
106
|
+
|
|
107
|
+
# Build connection string
|
|
108
|
+
conninfo = (
|
|
109
|
+
f"host={host} port={port} dbname={database} "
|
|
110
|
+
f"user={user} password={password} sslmode={ssl_mode}"
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
# Create connection pool
|
|
114
|
+
self._pool = ConnectionPool(
|
|
115
|
+
conninfo=conninfo,
|
|
116
|
+
min_size=1,
|
|
117
|
+
max_size=pool_size,
|
|
118
|
+
kwargs={"row_factory": dict_row},
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
# Initialize database
|
|
122
|
+
self._init_database()
|
|
123
|
+
|
|
124
|
+
@classmethod
|
|
125
|
+
def from_config(cls, config: Dict[str, Any]) -> "PostgreSQLStorage":
|
|
126
|
+
"""Create instance from configuration."""
|
|
127
|
+
pg_config = config.get("postgres", {})
|
|
128
|
+
|
|
129
|
+
# Support environment variable expansion
|
|
130
|
+
def get_value(key: str, default: Any = None) -> Any:
|
|
131
|
+
value = pg_config.get(key, default)
|
|
132
|
+
if (
|
|
133
|
+
isinstance(value, str)
|
|
134
|
+
and value.startswith("${")
|
|
135
|
+
and value.endswith("}")
|
|
136
|
+
):
|
|
137
|
+
env_var = value[2:-1]
|
|
138
|
+
return os.environ.get(env_var, default)
|
|
139
|
+
return value
|
|
140
|
+
|
|
141
|
+
return cls(
|
|
142
|
+
host=get_value("host", "localhost"),
|
|
143
|
+
port=int(get_value("port", 5432)),
|
|
144
|
+
database=get_value("database", "alma_memory"),
|
|
145
|
+
user=get_value("user", "postgres"),
|
|
146
|
+
password=get_value("password", ""),
|
|
147
|
+
embedding_dim=int(config.get("embedding_dim", 384)),
|
|
148
|
+
pool_size=int(get_value("pool_size", 10)),
|
|
149
|
+
schema=get_value("schema", "public"),
|
|
150
|
+
ssl_mode=get_value("ssl_mode", "prefer"),
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
@contextmanager
|
|
154
|
+
def _get_connection(self):
|
|
155
|
+
"""Get database connection from pool."""
|
|
156
|
+
with self._pool.connection() as conn:
|
|
157
|
+
yield conn
|
|
158
|
+
|
|
159
|
+
def _init_database(self):
|
|
160
|
+
"""Initialize database schema and pgvector extension."""
|
|
161
|
+
with self._get_connection() as conn:
|
|
162
|
+
# Try to enable pgvector extension
|
|
163
|
+
try:
|
|
164
|
+
conn.execute("CREATE EXTENSION IF NOT EXISTS vector")
|
|
165
|
+
conn.commit()
|
|
166
|
+
self._pgvector_available = True
|
|
167
|
+
logger.info("pgvector extension enabled")
|
|
168
|
+
except Exception as e:
|
|
169
|
+
conn.rollback() # Important: rollback to clear aborted transaction
|
|
170
|
+
logger.warning(f"pgvector not available: {e}. Using fallback search.")
|
|
171
|
+
self._pgvector_available = False
|
|
172
|
+
|
|
173
|
+
# Create tables
|
|
174
|
+
vector_type = (
|
|
175
|
+
f"VECTOR({self.embedding_dim})" if self._pgvector_available else "BYTEA"
|
|
176
|
+
)
|
|
177
|
+
|
|
178
|
+
# Heuristics table
|
|
179
|
+
conn.execute(f"""
|
|
180
|
+
CREATE TABLE IF NOT EXISTS {self.schema}.alma_heuristics (
|
|
181
|
+
id TEXT PRIMARY KEY,
|
|
182
|
+
agent TEXT NOT NULL,
|
|
183
|
+
project_id TEXT NOT NULL,
|
|
184
|
+
condition TEXT NOT NULL,
|
|
185
|
+
strategy TEXT NOT NULL,
|
|
186
|
+
confidence REAL DEFAULT 0.0,
|
|
187
|
+
occurrence_count INTEGER DEFAULT 0,
|
|
188
|
+
success_count INTEGER DEFAULT 0,
|
|
189
|
+
last_validated TIMESTAMPTZ,
|
|
190
|
+
created_at TIMESTAMPTZ DEFAULT NOW(),
|
|
191
|
+
metadata JSONB,
|
|
192
|
+
embedding {vector_type}
|
|
193
|
+
)
|
|
194
|
+
""")
|
|
195
|
+
conn.execute(f"""
|
|
196
|
+
CREATE INDEX IF NOT EXISTS idx_heuristics_project_agent
|
|
197
|
+
ON {self.schema}.alma_heuristics(project_id, agent)
|
|
198
|
+
""")
|
|
199
|
+
|
|
200
|
+
# Outcomes table
|
|
201
|
+
conn.execute(f"""
|
|
202
|
+
CREATE TABLE IF NOT EXISTS {self.schema}.alma_outcomes (
|
|
203
|
+
id TEXT PRIMARY KEY,
|
|
204
|
+
agent TEXT NOT NULL,
|
|
205
|
+
project_id TEXT NOT NULL,
|
|
206
|
+
task_type TEXT,
|
|
207
|
+
task_description TEXT NOT NULL,
|
|
208
|
+
success BOOLEAN DEFAULT FALSE,
|
|
209
|
+
strategy_used TEXT,
|
|
210
|
+
duration_ms INTEGER,
|
|
211
|
+
error_message TEXT,
|
|
212
|
+
user_feedback TEXT,
|
|
213
|
+
timestamp TIMESTAMPTZ DEFAULT NOW(),
|
|
214
|
+
metadata JSONB,
|
|
215
|
+
embedding {vector_type}
|
|
216
|
+
)
|
|
217
|
+
""")
|
|
218
|
+
conn.execute(f"""
|
|
219
|
+
CREATE INDEX IF NOT EXISTS idx_outcomes_project_agent
|
|
220
|
+
ON {self.schema}.alma_outcomes(project_id, agent)
|
|
221
|
+
""")
|
|
222
|
+
conn.execute(f"""
|
|
223
|
+
CREATE INDEX IF NOT EXISTS idx_outcomes_task_type
|
|
224
|
+
ON {self.schema}.alma_outcomes(project_id, agent, task_type)
|
|
225
|
+
""")
|
|
226
|
+
conn.execute(f"""
|
|
227
|
+
CREATE INDEX IF NOT EXISTS idx_outcomes_timestamp
|
|
228
|
+
ON {self.schema}.alma_outcomes(project_id, timestamp DESC)
|
|
229
|
+
""")
|
|
230
|
+
|
|
231
|
+
# User preferences table
|
|
232
|
+
conn.execute(f"""
|
|
233
|
+
CREATE TABLE IF NOT EXISTS {self.schema}.alma_preferences (
|
|
234
|
+
id TEXT PRIMARY KEY,
|
|
235
|
+
user_id TEXT NOT NULL,
|
|
236
|
+
category TEXT,
|
|
237
|
+
preference TEXT NOT NULL,
|
|
238
|
+
source TEXT,
|
|
239
|
+
confidence REAL DEFAULT 1.0,
|
|
240
|
+
timestamp TIMESTAMPTZ DEFAULT NOW(),
|
|
241
|
+
metadata JSONB
|
|
242
|
+
)
|
|
243
|
+
""")
|
|
244
|
+
conn.execute(f"""
|
|
245
|
+
CREATE INDEX IF NOT EXISTS idx_preferences_user
|
|
246
|
+
ON {self.schema}.alma_preferences(user_id)
|
|
247
|
+
""")
|
|
248
|
+
|
|
249
|
+
# Domain knowledge table
|
|
250
|
+
conn.execute(f"""
|
|
251
|
+
CREATE TABLE IF NOT EXISTS {self.schema}.alma_domain_knowledge (
|
|
252
|
+
id TEXT PRIMARY KEY,
|
|
253
|
+
agent TEXT NOT NULL,
|
|
254
|
+
project_id TEXT NOT NULL,
|
|
255
|
+
domain TEXT,
|
|
256
|
+
fact TEXT NOT NULL,
|
|
257
|
+
source TEXT,
|
|
258
|
+
confidence REAL DEFAULT 1.0,
|
|
259
|
+
last_verified TIMESTAMPTZ DEFAULT NOW(),
|
|
260
|
+
metadata JSONB,
|
|
261
|
+
embedding {vector_type}
|
|
262
|
+
)
|
|
263
|
+
""")
|
|
264
|
+
conn.execute(f"""
|
|
265
|
+
CREATE INDEX IF NOT EXISTS idx_domain_knowledge_project_agent
|
|
266
|
+
ON {self.schema}.alma_domain_knowledge(project_id, agent)
|
|
267
|
+
""")
|
|
268
|
+
|
|
269
|
+
# Anti-patterns table
|
|
270
|
+
conn.execute(f"""
|
|
271
|
+
CREATE TABLE IF NOT EXISTS {self.schema}.alma_anti_patterns (
|
|
272
|
+
id TEXT PRIMARY KEY,
|
|
273
|
+
agent TEXT NOT NULL,
|
|
274
|
+
project_id TEXT NOT NULL,
|
|
275
|
+
pattern TEXT NOT NULL,
|
|
276
|
+
why_bad TEXT,
|
|
277
|
+
better_alternative TEXT,
|
|
278
|
+
occurrence_count INTEGER DEFAULT 1,
|
|
279
|
+
last_seen TIMESTAMPTZ DEFAULT NOW(),
|
|
280
|
+
created_at TIMESTAMPTZ DEFAULT NOW(),
|
|
281
|
+
metadata JSONB,
|
|
282
|
+
embedding {vector_type}
|
|
283
|
+
)
|
|
284
|
+
""")
|
|
285
|
+
conn.execute(f"""
|
|
286
|
+
CREATE INDEX IF NOT EXISTS idx_anti_patterns_project_agent
|
|
287
|
+
ON {self.schema}.alma_anti_patterns(project_id, agent)
|
|
288
|
+
""")
|
|
289
|
+
|
|
290
|
+
# Create vector indexes if pgvector available
|
|
291
|
+
# Using HNSW instead of IVFFlat because HNSW can be built on empty tables
|
|
292
|
+
# IVFFlat requires existing data to build, which causes silent failures on fresh databases
|
|
293
|
+
if self._pgvector_available:
|
|
294
|
+
for table in [
|
|
295
|
+
"alma_heuristics",
|
|
296
|
+
"alma_outcomes",
|
|
297
|
+
"alma_domain_knowledge",
|
|
298
|
+
"alma_anti_patterns",
|
|
299
|
+
]:
|
|
300
|
+
try:
|
|
301
|
+
conn.execute(f"""
|
|
302
|
+
CREATE INDEX IF NOT EXISTS idx_{table}_embedding
|
|
303
|
+
ON {self.schema}.{table}
|
|
304
|
+
USING hnsw (embedding vector_cosine_ops)
|
|
305
|
+
WITH (m = 16, ef_construction = 64)
|
|
306
|
+
""")
|
|
307
|
+
except Exception as e:
|
|
308
|
+
logger.warning(f"Failed to create HNSW index for {table}: {e}")
|
|
309
|
+
|
|
310
|
+
conn.commit()
|
|
311
|
+
|
|
312
|
+
def _embedding_to_db(self, embedding: Optional[List[float]]) -> Any:
|
|
313
|
+
"""Convert embedding to database format."""
|
|
314
|
+
if embedding is None:
|
|
315
|
+
return None
|
|
316
|
+
if self._pgvector_available:
|
|
317
|
+
# pgvector expects string format: '[1.0, 2.0, 3.0]'
|
|
318
|
+
return f"[{','.join(str(x) for x in embedding)}]"
|
|
319
|
+
else:
|
|
320
|
+
# Store as bytes (requires numpy)
|
|
321
|
+
if not NUMPY_AVAILABLE:
|
|
322
|
+
raise ImportError("numpy required for non-pgvector embedding storage")
|
|
323
|
+
return np.array(embedding, dtype=np.float32).tobytes()
|
|
324
|
+
|
|
325
|
+
def _embedding_from_db(self, value: Any) -> Optional[List[float]]:
|
|
326
|
+
"""Convert embedding from database format."""
|
|
327
|
+
if value is None:
|
|
328
|
+
return None
|
|
329
|
+
if self._pgvector_available:
|
|
330
|
+
# pgvector returns as string or list
|
|
331
|
+
if isinstance(value, str):
|
|
332
|
+
value = value.strip("[]")
|
|
333
|
+
return [float(x) for x in value.split(",")]
|
|
334
|
+
return list(value)
|
|
335
|
+
else:
|
|
336
|
+
# Stored as bytes (requires numpy)
|
|
337
|
+
if not NUMPY_AVAILABLE or np is None:
|
|
338
|
+
return None
|
|
339
|
+
return np.frombuffer(value, dtype=np.float32).tolist()
|
|
340
|
+
|
|
341
|
+
def _cosine_similarity(self, a: List[float], b: List[float]) -> float:
|
|
342
|
+
"""Compute cosine similarity between two vectors."""
|
|
343
|
+
if not NUMPY_AVAILABLE or np is None:
|
|
344
|
+
# Fallback to pure Python
|
|
345
|
+
dot = sum(x * y for x, y in zip(a, b, strict=False))
|
|
346
|
+
norm_a = sum(x * x for x in a) ** 0.5
|
|
347
|
+
norm_b = sum(x * x for x in b) ** 0.5
|
|
348
|
+
return dot / (norm_a * norm_b) if norm_a and norm_b else 0.0
|
|
349
|
+
a_arr = np.array(a)
|
|
350
|
+
b_arr = np.array(b)
|
|
351
|
+
return float(
|
|
352
|
+
np.dot(a_arr, b_arr) / (np.linalg.norm(a_arr) * np.linalg.norm(b_arr))
|
|
353
|
+
)
|
|
354
|
+
|
|
355
|
+
# ==================== WRITE OPERATIONS ====================
|
|
356
|
+
|
|
357
|
+
def save_heuristic(self, heuristic: Heuristic) -> str:
|
|
358
|
+
"""Save a heuristic."""
|
|
359
|
+
with self._get_connection() as conn:
|
|
360
|
+
conn.execute(
|
|
361
|
+
f"""
|
|
362
|
+
INSERT INTO {self.schema}.alma_heuristics
|
|
363
|
+
(id, agent, project_id, condition, strategy, confidence,
|
|
364
|
+
occurrence_count, success_count, last_validated, created_at, metadata, embedding)
|
|
365
|
+
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
|
|
366
|
+
ON CONFLICT (id) DO UPDATE SET
|
|
367
|
+
condition = EXCLUDED.condition,
|
|
368
|
+
strategy = EXCLUDED.strategy,
|
|
369
|
+
confidence = EXCLUDED.confidence,
|
|
370
|
+
occurrence_count = EXCLUDED.occurrence_count,
|
|
371
|
+
success_count = EXCLUDED.success_count,
|
|
372
|
+
last_validated = EXCLUDED.last_validated,
|
|
373
|
+
metadata = EXCLUDED.metadata,
|
|
374
|
+
embedding = EXCLUDED.embedding
|
|
375
|
+
""",
|
|
376
|
+
(
|
|
377
|
+
heuristic.id,
|
|
378
|
+
heuristic.agent,
|
|
379
|
+
heuristic.project_id,
|
|
380
|
+
heuristic.condition,
|
|
381
|
+
heuristic.strategy,
|
|
382
|
+
heuristic.confidence,
|
|
383
|
+
heuristic.occurrence_count,
|
|
384
|
+
heuristic.success_count,
|
|
385
|
+
heuristic.last_validated,
|
|
386
|
+
heuristic.created_at,
|
|
387
|
+
json.dumps(heuristic.metadata) if heuristic.metadata else None,
|
|
388
|
+
self._embedding_to_db(heuristic.embedding),
|
|
389
|
+
),
|
|
390
|
+
)
|
|
391
|
+
conn.commit()
|
|
392
|
+
|
|
393
|
+
logger.debug(f"Saved heuristic: {heuristic.id}")
|
|
394
|
+
return heuristic.id
|
|
395
|
+
|
|
396
|
+
def save_outcome(self, outcome: Outcome) -> str:
|
|
397
|
+
"""Save an outcome."""
|
|
398
|
+
with self._get_connection() as conn:
|
|
399
|
+
conn.execute(
|
|
400
|
+
f"""
|
|
401
|
+
INSERT INTO {self.schema}.alma_outcomes
|
|
402
|
+
(id, agent, project_id, task_type, task_description, success,
|
|
403
|
+
strategy_used, duration_ms, error_message, user_feedback, timestamp, metadata, embedding)
|
|
404
|
+
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
|
|
405
|
+
ON CONFLICT (id) DO UPDATE SET
|
|
406
|
+
task_description = EXCLUDED.task_description,
|
|
407
|
+
success = EXCLUDED.success,
|
|
408
|
+
strategy_used = EXCLUDED.strategy_used,
|
|
409
|
+
duration_ms = EXCLUDED.duration_ms,
|
|
410
|
+
error_message = EXCLUDED.error_message,
|
|
411
|
+
user_feedback = EXCLUDED.user_feedback,
|
|
412
|
+
metadata = EXCLUDED.metadata,
|
|
413
|
+
embedding = EXCLUDED.embedding
|
|
414
|
+
""",
|
|
415
|
+
(
|
|
416
|
+
outcome.id,
|
|
417
|
+
outcome.agent,
|
|
418
|
+
outcome.project_id,
|
|
419
|
+
outcome.task_type,
|
|
420
|
+
outcome.task_description,
|
|
421
|
+
outcome.success,
|
|
422
|
+
outcome.strategy_used,
|
|
423
|
+
outcome.duration_ms,
|
|
424
|
+
outcome.error_message,
|
|
425
|
+
outcome.user_feedback,
|
|
426
|
+
outcome.timestamp,
|
|
427
|
+
json.dumps(outcome.metadata) if outcome.metadata else None,
|
|
428
|
+
self._embedding_to_db(outcome.embedding),
|
|
429
|
+
),
|
|
430
|
+
)
|
|
431
|
+
conn.commit()
|
|
432
|
+
|
|
433
|
+
logger.debug(f"Saved outcome: {outcome.id}")
|
|
434
|
+
return outcome.id
|
|
435
|
+
|
|
436
|
+
def save_user_preference(self, preference: UserPreference) -> str:
|
|
437
|
+
"""Save a user preference."""
|
|
438
|
+
with self._get_connection() as conn:
|
|
439
|
+
conn.execute(
|
|
440
|
+
f"""
|
|
441
|
+
INSERT INTO {self.schema}.alma_preferences
|
|
442
|
+
(id, user_id, category, preference, source, confidence, timestamp, metadata)
|
|
443
|
+
VALUES (%s, %s, %s, %s, %s, %s, %s, %s)
|
|
444
|
+
ON CONFLICT (id) DO UPDATE SET
|
|
445
|
+
preference = EXCLUDED.preference,
|
|
446
|
+
source = EXCLUDED.source,
|
|
447
|
+
confidence = EXCLUDED.confidence,
|
|
448
|
+
metadata = EXCLUDED.metadata
|
|
449
|
+
""",
|
|
450
|
+
(
|
|
451
|
+
preference.id,
|
|
452
|
+
preference.user_id,
|
|
453
|
+
preference.category,
|
|
454
|
+
preference.preference,
|
|
455
|
+
preference.source,
|
|
456
|
+
preference.confidence,
|
|
457
|
+
preference.timestamp,
|
|
458
|
+
json.dumps(preference.metadata) if preference.metadata else None,
|
|
459
|
+
),
|
|
460
|
+
)
|
|
461
|
+
conn.commit()
|
|
462
|
+
|
|
463
|
+
logger.debug(f"Saved preference: {preference.id}")
|
|
464
|
+
return preference.id
|
|
465
|
+
|
|
466
|
+
def save_domain_knowledge(self, knowledge: DomainKnowledge) -> str:
|
|
467
|
+
"""Save domain knowledge."""
|
|
468
|
+
with self._get_connection() as conn:
|
|
469
|
+
conn.execute(
|
|
470
|
+
f"""
|
|
471
|
+
INSERT INTO {self.schema}.alma_domain_knowledge
|
|
472
|
+
(id, agent, project_id, domain, fact, source, confidence, last_verified, metadata, embedding)
|
|
473
|
+
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
|
|
474
|
+
ON CONFLICT (id) DO UPDATE SET
|
|
475
|
+
fact = EXCLUDED.fact,
|
|
476
|
+
source = EXCLUDED.source,
|
|
477
|
+
confidence = EXCLUDED.confidence,
|
|
478
|
+
last_verified = EXCLUDED.last_verified,
|
|
479
|
+
metadata = EXCLUDED.metadata,
|
|
480
|
+
embedding = EXCLUDED.embedding
|
|
481
|
+
""",
|
|
482
|
+
(
|
|
483
|
+
knowledge.id,
|
|
484
|
+
knowledge.agent,
|
|
485
|
+
knowledge.project_id,
|
|
486
|
+
knowledge.domain,
|
|
487
|
+
knowledge.fact,
|
|
488
|
+
knowledge.source,
|
|
489
|
+
knowledge.confidence,
|
|
490
|
+
knowledge.last_verified,
|
|
491
|
+
json.dumps(knowledge.metadata) if knowledge.metadata else None,
|
|
492
|
+
self._embedding_to_db(knowledge.embedding),
|
|
493
|
+
),
|
|
494
|
+
)
|
|
495
|
+
conn.commit()
|
|
496
|
+
|
|
497
|
+
logger.debug(f"Saved domain knowledge: {knowledge.id}")
|
|
498
|
+
return knowledge.id
|
|
499
|
+
|
|
500
|
+
def save_anti_pattern(self, anti_pattern: AntiPattern) -> str:
|
|
501
|
+
"""Save an anti-pattern."""
|
|
502
|
+
with self._get_connection() as conn:
|
|
503
|
+
conn.execute(
|
|
504
|
+
f"""
|
|
505
|
+
INSERT INTO {self.schema}.alma_anti_patterns
|
|
506
|
+
(id, agent, project_id, pattern, why_bad, better_alternative,
|
|
507
|
+
occurrence_count, last_seen, created_at, metadata, embedding)
|
|
508
|
+
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
|
|
509
|
+
ON CONFLICT (id) DO UPDATE SET
|
|
510
|
+
pattern = EXCLUDED.pattern,
|
|
511
|
+
why_bad = EXCLUDED.why_bad,
|
|
512
|
+
better_alternative = EXCLUDED.better_alternative,
|
|
513
|
+
occurrence_count = EXCLUDED.occurrence_count,
|
|
514
|
+
last_seen = EXCLUDED.last_seen,
|
|
515
|
+
metadata = EXCLUDED.metadata,
|
|
516
|
+
embedding = EXCLUDED.embedding
|
|
517
|
+
""",
|
|
518
|
+
(
|
|
519
|
+
anti_pattern.id,
|
|
520
|
+
anti_pattern.agent,
|
|
521
|
+
anti_pattern.project_id,
|
|
522
|
+
anti_pattern.pattern,
|
|
523
|
+
anti_pattern.why_bad,
|
|
524
|
+
anti_pattern.better_alternative,
|
|
525
|
+
anti_pattern.occurrence_count,
|
|
526
|
+
anti_pattern.last_seen,
|
|
527
|
+
anti_pattern.created_at,
|
|
528
|
+
(
|
|
529
|
+
json.dumps(anti_pattern.metadata)
|
|
530
|
+
if anti_pattern.metadata
|
|
531
|
+
else None
|
|
532
|
+
),
|
|
533
|
+
self._embedding_to_db(anti_pattern.embedding),
|
|
534
|
+
),
|
|
535
|
+
)
|
|
536
|
+
conn.commit()
|
|
537
|
+
|
|
538
|
+
logger.debug(f"Saved anti-pattern: {anti_pattern.id}")
|
|
539
|
+
return anti_pattern.id
|
|
540
|
+
|
|
541
|
+
# ==================== BATCH WRITE OPERATIONS ====================
|
|
542
|
+
|
|
543
|
+
def save_heuristics(self, heuristics: List[Heuristic]) -> List[str]:
|
|
544
|
+
"""Save multiple heuristics in a batch using executemany."""
|
|
545
|
+
if not heuristics:
|
|
546
|
+
return []
|
|
547
|
+
|
|
548
|
+
with self._get_connection() as conn:
|
|
549
|
+
conn.executemany(
|
|
550
|
+
f"""
|
|
551
|
+
INSERT INTO {self.schema}.alma_heuristics
|
|
552
|
+
(id, agent, project_id, condition, strategy, confidence,
|
|
553
|
+
occurrence_count, success_count, last_validated, created_at, metadata, embedding)
|
|
554
|
+
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
|
|
555
|
+
ON CONFLICT (id) DO UPDATE SET
|
|
556
|
+
condition = EXCLUDED.condition,
|
|
557
|
+
strategy = EXCLUDED.strategy,
|
|
558
|
+
confidence = EXCLUDED.confidence,
|
|
559
|
+
occurrence_count = EXCLUDED.occurrence_count,
|
|
560
|
+
success_count = EXCLUDED.success_count,
|
|
561
|
+
last_validated = EXCLUDED.last_validated,
|
|
562
|
+
metadata = EXCLUDED.metadata,
|
|
563
|
+
embedding = EXCLUDED.embedding
|
|
564
|
+
""",
|
|
565
|
+
[
|
|
566
|
+
(
|
|
567
|
+
h.id,
|
|
568
|
+
h.agent,
|
|
569
|
+
h.project_id,
|
|
570
|
+
h.condition,
|
|
571
|
+
h.strategy,
|
|
572
|
+
h.confidence,
|
|
573
|
+
h.occurrence_count,
|
|
574
|
+
h.success_count,
|
|
575
|
+
h.last_validated,
|
|
576
|
+
h.created_at,
|
|
577
|
+
json.dumps(h.metadata) if h.metadata else None,
|
|
578
|
+
self._embedding_to_db(h.embedding),
|
|
579
|
+
)
|
|
580
|
+
for h in heuristics
|
|
581
|
+
],
|
|
582
|
+
)
|
|
583
|
+
conn.commit()
|
|
584
|
+
|
|
585
|
+
logger.debug(f"Batch saved {len(heuristics)} heuristics")
|
|
586
|
+
return [h.id for h in heuristics]
|
|
587
|
+
|
|
588
|
+
def save_outcomes(self, outcomes: List[Outcome]) -> List[str]:
|
|
589
|
+
"""Save multiple outcomes in a batch using executemany."""
|
|
590
|
+
if not outcomes:
|
|
591
|
+
return []
|
|
592
|
+
|
|
593
|
+
with self._get_connection() as conn:
|
|
594
|
+
conn.executemany(
|
|
595
|
+
f"""
|
|
596
|
+
INSERT INTO {self.schema}.alma_outcomes
|
|
597
|
+
(id, agent, project_id, task_type, task_description, success,
|
|
598
|
+
strategy_used, duration_ms, error_message, user_feedback, timestamp, metadata, embedding)
|
|
599
|
+
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
|
|
600
|
+
ON CONFLICT (id) DO UPDATE SET
|
|
601
|
+
task_description = EXCLUDED.task_description,
|
|
602
|
+
success = EXCLUDED.success,
|
|
603
|
+
strategy_used = EXCLUDED.strategy_used,
|
|
604
|
+
duration_ms = EXCLUDED.duration_ms,
|
|
605
|
+
error_message = EXCLUDED.error_message,
|
|
606
|
+
user_feedback = EXCLUDED.user_feedback,
|
|
607
|
+
metadata = EXCLUDED.metadata,
|
|
608
|
+
embedding = EXCLUDED.embedding
|
|
609
|
+
""",
|
|
610
|
+
[
|
|
611
|
+
(
|
|
612
|
+
o.id,
|
|
613
|
+
o.agent,
|
|
614
|
+
o.project_id,
|
|
615
|
+
o.task_type,
|
|
616
|
+
o.task_description,
|
|
617
|
+
o.success,
|
|
618
|
+
o.strategy_used,
|
|
619
|
+
o.duration_ms,
|
|
620
|
+
o.error_message,
|
|
621
|
+
o.user_feedback,
|
|
622
|
+
o.timestamp,
|
|
623
|
+
json.dumps(o.metadata) if o.metadata else None,
|
|
624
|
+
self._embedding_to_db(o.embedding),
|
|
625
|
+
)
|
|
626
|
+
for o in outcomes
|
|
627
|
+
],
|
|
628
|
+
)
|
|
629
|
+
conn.commit()
|
|
630
|
+
|
|
631
|
+
logger.debug(f"Batch saved {len(outcomes)} outcomes")
|
|
632
|
+
return [o.id for o in outcomes]
|
|
633
|
+
|
|
634
|
+
def save_domain_knowledge_batch(
|
|
635
|
+
self, knowledge_items: List[DomainKnowledge]
|
|
636
|
+
) -> List[str]:
|
|
637
|
+
"""Save multiple domain knowledge items in a batch using executemany."""
|
|
638
|
+
if not knowledge_items:
|
|
639
|
+
return []
|
|
640
|
+
|
|
641
|
+
with self._get_connection() as conn:
|
|
642
|
+
conn.executemany(
|
|
643
|
+
f"""
|
|
644
|
+
INSERT INTO {self.schema}.alma_domain_knowledge
|
|
645
|
+
(id, agent, project_id, domain, fact, source, confidence, last_verified, metadata, embedding)
|
|
646
|
+
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
|
|
647
|
+
ON CONFLICT (id) DO UPDATE SET
|
|
648
|
+
fact = EXCLUDED.fact,
|
|
649
|
+
source = EXCLUDED.source,
|
|
650
|
+
confidence = EXCLUDED.confidence,
|
|
651
|
+
last_verified = EXCLUDED.last_verified,
|
|
652
|
+
metadata = EXCLUDED.metadata,
|
|
653
|
+
embedding = EXCLUDED.embedding
|
|
654
|
+
""",
|
|
655
|
+
[
|
|
656
|
+
(
|
|
657
|
+
k.id,
|
|
658
|
+
k.agent,
|
|
659
|
+
k.project_id,
|
|
660
|
+
k.domain,
|
|
661
|
+
k.fact,
|
|
662
|
+
k.source,
|
|
663
|
+
k.confidence,
|
|
664
|
+
k.last_verified,
|
|
665
|
+
json.dumps(k.metadata) if k.metadata else None,
|
|
666
|
+
self._embedding_to_db(k.embedding),
|
|
667
|
+
)
|
|
668
|
+
for k in knowledge_items
|
|
669
|
+
],
|
|
670
|
+
)
|
|
671
|
+
conn.commit()
|
|
672
|
+
|
|
673
|
+
logger.debug(f"Batch saved {len(knowledge_items)} domain knowledge items")
|
|
674
|
+
return [k.id for k in knowledge_items]
|
|
675
|
+
|
|
676
|
+
# ==================== READ OPERATIONS ====================
|
|
677
|
+
|
|
678
|
+
def get_heuristics(
|
|
679
|
+
self,
|
|
680
|
+
project_id: str,
|
|
681
|
+
agent: Optional[str] = None,
|
|
682
|
+
embedding: Optional[List[float]] = None,
|
|
683
|
+
top_k: int = 5,
|
|
684
|
+
min_confidence: float = 0.0,
|
|
685
|
+
) -> List[Heuristic]:
|
|
686
|
+
"""Get heuristics with optional vector search."""
|
|
687
|
+
with self._get_connection() as conn:
|
|
688
|
+
if embedding and self._pgvector_available:
|
|
689
|
+
# Use pgvector similarity search
|
|
690
|
+
query = f"""
|
|
691
|
+
SELECT *, 1 - (embedding <=> %s::vector) as similarity
|
|
692
|
+
FROM {self.schema}.alma_heuristics
|
|
693
|
+
WHERE project_id = %s AND confidence >= %s
|
|
694
|
+
"""
|
|
695
|
+
params: List[Any] = [
|
|
696
|
+
self._embedding_to_db(embedding),
|
|
697
|
+
project_id,
|
|
698
|
+
min_confidence,
|
|
699
|
+
]
|
|
700
|
+
|
|
701
|
+
if agent:
|
|
702
|
+
query += " AND agent = %s"
|
|
703
|
+
params.append(agent)
|
|
704
|
+
|
|
705
|
+
query += " ORDER BY similarity DESC LIMIT %s"
|
|
706
|
+
params.append(top_k)
|
|
707
|
+
else:
|
|
708
|
+
# Standard query
|
|
709
|
+
query = f"""
|
|
710
|
+
SELECT *
|
|
711
|
+
FROM {self.schema}.alma_heuristics
|
|
712
|
+
WHERE project_id = %s AND confidence >= %s
|
|
713
|
+
"""
|
|
714
|
+
params = [project_id, min_confidence]
|
|
715
|
+
|
|
716
|
+
if agent:
|
|
717
|
+
query += " AND agent = %s"
|
|
718
|
+
params.append(agent)
|
|
719
|
+
|
|
720
|
+
query += " ORDER BY confidence DESC LIMIT %s"
|
|
721
|
+
params.append(top_k)
|
|
722
|
+
|
|
723
|
+
cursor = conn.execute(query, params)
|
|
724
|
+
rows = cursor.fetchall()
|
|
725
|
+
|
|
726
|
+
results = [self._row_to_heuristic(row) for row in rows]
|
|
727
|
+
|
|
728
|
+
# If embedding provided but pgvector not available, do app-level filtering
|
|
729
|
+
if embedding and not self._pgvector_available and results:
|
|
730
|
+
results = self._filter_by_similarity(results, embedding, top_k, "embedding")
|
|
731
|
+
|
|
732
|
+
return results
|
|
733
|
+
|
|
734
|
+
def get_outcomes(
|
|
735
|
+
self,
|
|
736
|
+
project_id: str,
|
|
737
|
+
agent: Optional[str] = None,
|
|
738
|
+
task_type: Optional[str] = None,
|
|
739
|
+
embedding: Optional[List[float]] = None,
|
|
740
|
+
top_k: int = 5,
|
|
741
|
+
success_only: bool = False,
|
|
742
|
+
) -> List[Outcome]:
|
|
743
|
+
"""Get outcomes with optional vector search."""
|
|
744
|
+
with self._get_connection() as conn:
|
|
745
|
+
if embedding and self._pgvector_available:
|
|
746
|
+
query = f"""
|
|
747
|
+
SELECT *, 1 - (embedding <=> %s::vector) as similarity
|
|
748
|
+
FROM {self.schema}.alma_outcomes
|
|
749
|
+
WHERE project_id = %s
|
|
750
|
+
"""
|
|
751
|
+
params: List[Any] = [self._embedding_to_db(embedding), project_id]
|
|
752
|
+
else:
|
|
753
|
+
query = f"""
|
|
754
|
+
SELECT *
|
|
755
|
+
FROM {self.schema}.alma_outcomes
|
|
756
|
+
WHERE project_id = %s
|
|
757
|
+
"""
|
|
758
|
+
params = [project_id]
|
|
759
|
+
|
|
760
|
+
if agent:
|
|
761
|
+
query += " AND agent = %s"
|
|
762
|
+
params.append(agent)
|
|
763
|
+
|
|
764
|
+
if task_type:
|
|
765
|
+
query += " AND task_type = %s"
|
|
766
|
+
params.append(task_type)
|
|
767
|
+
|
|
768
|
+
if success_only:
|
|
769
|
+
query += " AND success = TRUE"
|
|
770
|
+
|
|
771
|
+
if embedding and self._pgvector_available:
|
|
772
|
+
query += " ORDER BY similarity DESC LIMIT %s"
|
|
773
|
+
else:
|
|
774
|
+
query += " ORDER BY timestamp DESC LIMIT %s"
|
|
775
|
+
params.append(top_k)
|
|
776
|
+
|
|
777
|
+
cursor = conn.execute(query, params)
|
|
778
|
+
rows = cursor.fetchall()
|
|
779
|
+
|
|
780
|
+
results = [self._row_to_outcome(row) for row in rows]
|
|
781
|
+
|
|
782
|
+
if embedding and not self._pgvector_available and results:
|
|
783
|
+
results = self._filter_by_similarity(results, embedding, top_k, "embedding")
|
|
784
|
+
|
|
785
|
+
return results
|
|
786
|
+
|
|
787
|
+
def get_user_preferences(
|
|
788
|
+
self,
|
|
789
|
+
user_id: str,
|
|
790
|
+
category: Optional[str] = None,
|
|
791
|
+
) -> List[UserPreference]:
|
|
792
|
+
"""Get user preferences."""
|
|
793
|
+
with self._get_connection() as conn:
|
|
794
|
+
query = f"SELECT * FROM {self.schema}.alma_preferences WHERE user_id = %s"
|
|
795
|
+
params: List[Any] = [user_id]
|
|
796
|
+
|
|
797
|
+
if category:
|
|
798
|
+
query += " AND category = %s"
|
|
799
|
+
params.append(category)
|
|
800
|
+
|
|
801
|
+
cursor = conn.execute(query, params)
|
|
802
|
+
rows = cursor.fetchall()
|
|
803
|
+
|
|
804
|
+
return [self._row_to_preference(row) for row in rows]
|
|
805
|
+
|
|
806
|
+
def get_domain_knowledge(
|
|
807
|
+
self,
|
|
808
|
+
project_id: str,
|
|
809
|
+
agent: Optional[str] = None,
|
|
810
|
+
domain: Optional[str] = None,
|
|
811
|
+
embedding: Optional[List[float]] = None,
|
|
812
|
+
top_k: int = 5,
|
|
813
|
+
) -> List[DomainKnowledge]:
|
|
814
|
+
"""Get domain knowledge with optional vector search."""
|
|
815
|
+
with self._get_connection() as conn:
|
|
816
|
+
if embedding and self._pgvector_available:
|
|
817
|
+
query = f"""
|
|
818
|
+
SELECT *, 1 - (embedding <=> %s::vector) as similarity
|
|
819
|
+
FROM {self.schema}.alma_domain_knowledge
|
|
820
|
+
WHERE project_id = %s
|
|
821
|
+
"""
|
|
822
|
+
params: List[Any] = [self._embedding_to_db(embedding), project_id]
|
|
823
|
+
else:
|
|
824
|
+
query = f"""
|
|
825
|
+
SELECT *
|
|
826
|
+
FROM {self.schema}.alma_domain_knowledge
|
|
827
|
+
WHERE project_id = %s
|
|
828
|
+
"""
|
|
829
|
+
params = [project_id]
|
|
830
|
+
|
|
831
|
+
if agent:
|
|
832
|
+
query += " AND agent = %s"
|
|
833
|
+
params.append(agent)
|
|
834
|
+
|
|
835
|
+
if domain:
|
|
836
|
+
query += " AND domain = %s"
|
|
837
|
+
params.append(domain)
|
|
838
|
+
|
|
839
|
+
if embedding and self._pgvector_available:
|
|
840
|
+
query += " ORDER BY similarity DESC LIMIT %s"
|
|
841
|
+
else:
|
|
842
|
+
query += " ORDER BY confidence DESC LIMIT %s"
|
|
843
|
+
params.append(top_k)
|
|
844
|
+
|
|
845
|
+
cursor = conn.execute(query, params)
|
|
846
|
+
rows = cursor.fetchall()
|
|
847
|
+
|
|
848
|
+
results = [self._row_to_domain_knowledge(row) for row in rows]
|
|
849
|
+
|
|
850
|
+
if embedding and not self._pgvector_available and results:
|
|
851
|
+
results = self._filter_by_similarity(results, embedding, top_k, "embedding")
|
|
852
|
+
|
|
853
|
+
return results
|
|
854
|
+
|
|
855
|
+
def get_anti_patterns(
|
|
856
|
+
self,
|
|
857
|
+
project_id: str,
|
|
858
|
+
agent: Optional[str] = None,
|
|
859
|
+
embedding: Optional[List[float]] = None,
|
|
860
|
+
top_k: int = 5,
|
|
861
|
+
) -> List[AntiPattern]:
|
|
862
|
+
"""Get anti-patterns with optional vector search."""
|
|
863
|
+
with self._get_connection() as conn:
|
|
864
|
+
if embedding and self._pgvector_available:
|
|
865
|
+
query = f"""
|
|
866
|
+
SELECT *, 1 - (embedding <=> %s::vector) as similarity
|
|
867
|
+
FROM {self.schema}.alma_anti_patterns
|
|
868
|
+
WHERE project_id = %s
|
|
869
|
+
"""
|
|
870
|
+
params: List[Any] = [self._embedding_to_db(embedding), project_id]
|
|
871
|
+
else:
|
|
872
|
+
query = f"""
|
|
873
|
+
SELECT *
|
|
874
|
+
FROM {self.schema}.alma_anti_patterns
|
|
875
|
+
WHERE project_id = %s
|
|
876
|
+
"""
|
|
877
|
+
params = [project_id]
|
|
878
|
+
|
|
879
|
+
if agent:
|
|
880
|
+
query += " AND agent = %s"
|
|
881
|
+
params.append(agent)
|
|
882
|
+
|
|
883
|
+
if embedding and self._pgvector_available:
|
|
884
|
+
query += " ORDER BY similarity DESC LIMIT %s"
|
|
885
|
+
else:
|
|
886
|
+
query += " ORDER BY occurrence_count DESC LIMIT %s"
|
|
887
|
+
params.append(top_k)
|
|
888
|
+
|
|
889
|
+
cursor = conn.execute(query, params)
|
|
890
|
+
rows = cursor.fetchall()
|
|
891
|
+
|
|
892
|
+
results = [self._row_to_anti_pattern(row) for row in rows]
|
|
893
|
+
|
|
894
|
+
if embedding and not self._pgvector_available and results:
|
|
895
|
+
results = self._filter_by_similarity(results, embedding, top_k, "embedding")
|
|
896
|
+
|
|
897
|
+
return results
|
|
898
|
+
|
|
899
|
+
def _filter_by_similarity(
|
|
900
|
+
self,
|
|
901
|
+
items: List[Any],
|
|
902
|
+
query_embedding: List[float],
|
|
903
|
+
top_k: int,
|
|
904
|
+
embedding_attr: str,
|
|
905
|
+
) -> List[Any]:
|
|
906
|
+
"""Filter items by cosine similarity (fallback when pgvector unavailable)."""
|
|
907
|
+
scored = []
|
|
908
|
+
for item in items:
|
|
909
|
+
item_embedding = getattr(item, embedding_attr, None)
|
|
910
|
+
if item_embedding:
|
|
911
|
+
similarity = self._cosine_similarity(query_embedding, item_embedding)
|
|
912
|
+
scored.append((item, similarity))
|
|
913
|
+
else:
|
|
914
|
+
scored.append((item, 0.0))
|
|
915
|
+
|
|
916
|
+
scored.sort(key=lambda x: x[1], reverse=True)
|
|
917
|
+
return [item for item, _ in scored[:top_k]]
|
|
918
|
+
|
|
919
|
+
# ==================== MULTI-AGENT MEMORY SHARING ====================
|
|
920
|
+
|
|
921
|
+
def get_heuristics_for_agents(
|
|
922
|
+
self,
|
|
923
|
+
project_id: str,
|
|
924
|
+
agents: List[str],
|
|
925
|
+
embedding: Optional[List[float]] = None,
|
|
926
|
+
top_k: int = 5,
|
|
927
|
+
min_confidence: float = 0.0,
|
|
928
|
+
) -> List[Heuristic]:
|
|
929
|
+
"""Get heuristics from multiple agents using optimized ANY query."""
|
|
930
|
+
if not agents:
|
|
931
|
+
return []
|
|
932
|
+
|
|
933
|
+
with self._get_connection() as conn:
|
|
934
|
+
if embedding and self._pgvector_available:
|
|
935
|
+
query = f"""
|
|
936
|
+
SELECT *, 1 - (embedding <=> %s::vector) as similarity
|
|
937
|
+
FROM {self.schema}.alma_heuristics
|
|
938
|
+
WHERE project_id = %s AND confidence >= %s AND agent = ANY(%s)
|
|
939
|
+
ORDER BY similarity DESC LIMIT %s
|
|
940
|
+
"""
|
|
941
|
+
params: List[Any] = [
|
|
942
|
+
self._embedding_to_db(embedding),
|
|
943
|
+
project_id,
|
|
944
|
+
min_confidence,
|
|
945
|
+
agents,
|
|
946
|
+
top_k * len(agents),
|
|
947
|
+
]
|
|
948
|
+
else:
|
|
949
|
+
query = f"""
|
|
950
|
+
SELECT *
|
|
951
|
+
FROM {self.schema}.alma_heuristics
|
|
952
|
+
WHERE project_id = %s AND confidence >= %s AND agent = ANY(%s)
|
|
953
|
+
ORDER BY confidence DESC LIMIT %s
|
|
954
|
+
"""
|
|
955
|
+
params = [project_id, min_confidence, agents, top_k * len(agents)]
|
|
956
|
+
|
|
957
|
+
cursor = conn.execute(query, params)
|
|
958
|
+
rows = cursor.fetchall()
|
|
959
|
+
|
|
960
|
+
results = [self._row_to_heuristic(row) for row in rows]
|
|
961
|
+
|
|
962
|
+
if embedding and not self._pgvector_available and results:
|
|
963
|
+
results = self._filter_by_similarity(
|
|
964
|
+
results, embedding, top_k * len(agents), "embedding"
|
|
965
|
+
)
|
|
966
|
+
|
|
967
|
+
return results
|
|
968
|
+
|
|
969
|
+
def get_outcomes_for_agents(
|
|
970
|
+
self,
|
|
971
|
+
project_id: str,
|
|
972
|
+
agents: List[str],
|
|
973
|
+
task_type: Optional[str] = None,
|
|
974
|
+
embedding: Optional[List[float]] = None,
|
|
975
|
+
top_k: int = 5,
|
|
976
|
+
success_only: bool = False,
|
|
977
|
+
) -> List[Outcome]:
|
|
978
|
+
"""Get outcomes from multiple agents using optimized ANY query."""
|
|
979
|
+
if not agents:
|
|
980
|
+
return []
|
|
981
|
+
|
|
982
|
+
with self._get_connection() as conn:
|
|
983
|
+
if embedding and self._pgvector_available:
|
|
984
|
+
query = f"""
|
|
985
|
+
SELECT *, 1 - (embedding <=> %s::vector) as similarity
|
|
986
|
+
FROM {self.schema}.alma_outcomes
|
|
987
|
+
WHERE project_id = %s AND agent = ANY(%s)
|
|
988
|
+
"""
|
|
989
|
+
params: List[Any] = [
|
|
990
|
+
self._embedding_to_db(embedding),
|
|
991
|
+
project_id,
|
|
992
|
+
agents,
|
|
993
|
+
]
|
|
994
|
+
else:
|
|
995
|
+
query = f"""
|
|
996
|
+
SELECT *
|
|
997
|
+
FROM {self.schema}.alma_outcomes
|
|
998
|
+
WHERE project_id = %s AND agent = ANY(%s)
|
|
999
|
+
"""
|
|
1000
|
+
params = [project_id, agents]
|
|
1001
|
+
|
|
1002
|
+
if task_type:
|
|
1003
|
+
query += " AND task_type = %s"
|
|
1004
|
+
params.append(task_type)
|
|
1005
|
+
|
|
1006
|
+
if success_only:
|
|
1007
|
+
query += " AND success = TRUE"
|
|
1008
|
+
|
|
1009
|
+
if embedding and self._pgvector_available:
|
|
1010
|
+
query += " ORDER BY similarity DESC LIMIT %s"
|
|
1011
|
+
else:
|
|
1012
|
+
query += " ORDER BY timestamp DESC LIMIT %s"
|
|
1013
|
+
params.append(top_k * len(agents))
|
|
1014
|
+
|
|
1015
|
+
cursor = conn.execute(query, params)
|
|
1016
|
+
rows = cursor.fetchall()
|
|
1017
|
+
|
|
1018
|
+
results = [self._row_to_outcome(row) for row in rows]
|
|
1019
|
+
|
|
1020
|
+
if embedding and not self._pgvector_available and results:
|
|
1021
|
+
results = self._filter_by_similarity(
|
|
1022
|
+
results, embedding, top_k * len(agents), "embedding"
|
|
1023
|
+
)
|
|
1024
|
+
|
|
1025
|
+
return results
|
|
1026
|
+
|
|
1027
|
+
def get_domain_knowledge_for_agents(
|
|
1028
|
+
self,
|
|
1029
|
+
project_id: str,
|
|
1030
|
+
agents: List[str],
|
|
1031
|
+
domain: Optional[str] = None,
|
|
1032
|
+
embedding: Optional[List[float]] = None,
|
|
1033
|
+
top_k: int = 5,
|
|
1034
|
+
) -> List[DomainKnowledge]:
|
|
1035
|
+
"""Get domain knowledge from multiple agents using optimized ANY query."""
|
|
1036
|
+
if not agents:
|
|
1037
|
+
return []
|
|
1038
|
+
|
|
1039
|
+
with self._get_connection() as conn:
|
|
1040
|
+
if embedding and self._pgvector_available:
|
|
1041
|
+
query = f"""
|
|
1042
|
+
SELECT *, 1 - (embedding <=> %s::vector) as similarity
|
|
1043
|
+
FROM {self.schema}.alma_domain_knowledge
|
|
1044
|
+
WHERE project_id = %s AND agent = ANY(%s)
|
|
1045
|
+
"""
|
|
1046
|
+
params: List[Any] = [
|
|
1047
|
+
self._embedding_to_db(embedding),
|
|
1048
|
+
project_id,
|
|
1049
|
+
agents,
|
|
1050
|
+
]
|
|
1051
|
+
else:
|
|
1052
|
+
query = f"""
|
|
1053
|
+
SELECT *
|
|
1054
|
+
FROM {self.schema}.alma_domain_knowledge
|
|
1055
|
+
WHERE project_id = %s AND agent = ANY(%s)
|
|
1056
|
+
"""
|
|
1057
|
+
params = [project_id, agents]
|
|
1058
|
+
|
|
1059
|
+
if domain:
|
|
1060
|
+
query += " AND domain = %s"
|
|
1061
|
+
params.append(domain)
|
|
1062
|
+
|
|
1063
|
+
if embedding and self._pgvector_available:
|
|
1064
|
+
query += " ORDER BY similarity DESC LIMIT %s"
|
|
1065
|
+
else:
|
|
1066
|
+
query += " ORDER BY confidence DESC LIMIT %s"
|
|
1067
|
+
params.append(top_k * len(agents))
|
|
1068
|
+
|
|
1069
|
+
cursor = conn.execute(query, params)
|
|
1070
|
+
rows = cursor.fetchall()
|
|
1071
|
+
|
|
1072
|
+
results = [self._row_to_domain_knowledge(row) for row in rows]
|
|
1073
|
+
|
|
1074
|
+
if embedding and not self._pgvector_available and results:
|
|
1075
|
+
results = self._filter_by_similarity(
|
|
1076
|
+
results, embedding, top_k * len(agents), "embedding"
|
|
1077
|
+
)
|
|
1078
|
+
|
|
1079
|
+
return results
|
|
1080
|
+
|
|
1081
|
+
def get_anti_patterns_for_agents(
|
|
1082
|
+
self,
|
|
1083
|
+
project_id: str,
|
|
1084
|
+
agents: List[str],
|
|
1085
|
+
embedding: Optional[List[float]] = None,
|
|
1086
|
+
top_k: int = 5,
|
|
1087
|
+
) -> List[AntiPattern]:
|
|
1088
|
+
"""Get anti-patterns from multiple agents using optimized ANY query."""
|
|
1089
|
+
if not agents:
|
|
1090
|
+
return []
|
|
1091
|
+
|
|
1092
|
+
with self._get_connection() as conn:
|
|
1093
|
+
if embedding and self._pgvector_available:
|
|
1094
|
+
query = f"""
|
|
1095
|
+
SELECT *, 1 - (embedding <=> %s::vector) as similarity
|
|
1096
|
+
FROM {self.schema}.alma_anti_patterns
|
|
1097
|
+
WHERE project_id = %s AND agent = ANY(%s)
|
|
1098
|
+
"""
|
|
1099
|
+
params: List[Any] = [
|
|
1100
|
+
self._embedding_to_db(embedding),
|
|
1101
|
+
project_id,
|
|
1102
|
+
agents,
|
|
1103
|
+
]
|
|
1104
|
+
else:
|
|
1105
|
+
query = f"""
|
|
1106
|
+
SELECT *
|
|
1107
|
+
FROM {self.schema}.alma_anti_patterns
|
|
1108
|
+
WHERE project_id = %s AND agent = ANY(%s)
|
|
1109
|
+
"""
|
|
1110
|
+
params = [project_id, agents]
|
|
1111
|
+
|
|
1112
|
+
if embedding and self._pgvector_available:
|
|
1113
|
+
query += " ORDER BY similarity DESC LIMIT %s"
|
|
1114
|
+
else:
|
|
1115
|
+
query += " ORDER BY occurrence_count DESC LIMIT %s"
|
|
1116
|
+
params.append(top_k * len(agents))
|
|
1117
|
+
|
|
1118
|
+
cursor = conn.execute(query, params)
|
|
1119
|
+
rows = cursor.fetchall()
|
|
1120
|
+
|
|
1121
|
+
results = [self._row_to_anti_pattern(row) for row in rows]
|
|
1122
|
+
|
|
1123
|
+
if embedding and not self._pgvector_available and results:
|
|
1124
|
+
results = self._filter_by_similarity(
|
|
1125
|
+
results, embedding, top_k * len(agents), "embedding"
|
|
1126
|
+
)
|
|
1127
|
+
|
|
1128
|
+
return results
|
|
1129
|
+
|
|
1130
|
+
# ==================== UPDATE OPERATIONS ====================
|
|
1131
|
+
|
|
1132
|
+
def update_heuristic(
|
|
1133
|
+
self,
|
|
1134
|
+
heuristic_id: str,
|
|
1135
|
+
updates: Dict[str, Any],
|
|
1136
|
+
) -> bool:
|
|
1137
|
+
"""Update a heuristic's fields."""
|
|
1138
|
+
if not updates:
|
|
1139
|
+
return False
|
|
1140
|
+
|
|
1141
|
+
set_clauses = []
|
|
1142
|
+
params = []
|
|
1143
|
+
for key, value in updates.items():
|
|
1144
|
+
if key == "metadata" and value:
|
|
1145
|
+
value = json.dumps(value)
|
|
1146
|
+
set_clauses.append(f"{key} = %s")
|
|
1147
|
+
params.append(value)
|
|
1148
|
+
|
|
1149
|
+
params.append(heuristic_id)
|
|
1150
|
+
|
|
1151
|
+
with self._get_connection() as conn:
|
|
1152
|
+
cursor = conn.execute(
|
|
1153
|
+
f"UPDATE {self.schema}.alma_heuristics SET {', '.join(set_clauses)} WHERE id = %s",
|
|
1154
|
+
params,
|
|
1155
|
+
)
|
|
1156
|
+
conn.commit()
|
|
1157
|
+
return cursor.rowcount > 0
|
|
1158
|
+
|
|
1159
|
+
def increment_heuristic_occurrence(
|
|
1160
|
+
self,
|
|
1161
|
+
heuristic_id: str,
|
|
1162
|
+
success: bool,
|
|
1163
|
+
) -> bool:
|
|
1164
|
+
"""Increment heuristic occurrence count."""
|
|
1165
|
+
with self._get_connection() as conn:
|
|
1166
|
+
if success:
|
|
1167
|
+
cursor = conn.execute(
|
|
1168
|
+
f"""
|
|
1169
|
+
UPDATE {self.schema}.alma_heuristics
|
|
1170
|
+
SET occurrence_count = occurrence_count + 1,
|
|
1171
|
+
success_count = success_count + 1,
|
|
1172
|
+
last_validated = %s
|
|
1173
|
+
WHERE id = %s
|
|
1174
|
+
""",
|
|
1175
|
+
(datetime.now(timezone.utc), heuristic_id),
|
|
1176
|
+
)
|
|
1177
|
+
else:
|
|
1178
|
+
cursor = conn.execute(
|
|
1179
|
+
f"""
|
|
1180
|
+
UPDATE {self.schema}.alma_heuristics
|
|
1181
|
+
SET occurrence_count = occurrence_count + 1,
|
|
1182
|
+
last_validated = %s
|
|
1183
|
+
WHERE id = %s
|
|
1184
|
+
""",
|
|
1185
|
+
(datetime.now(timezone.utc), heuristic_id),
|
|
1186
|
+
)
|
|
1187
|
+
conn.commit()
|
|
1188
|
+
return cursor.rowcount > 0
|
|
1189
|
+
|
|
1190
|
+
def update_heuristic_confidence(
|
|
1191
|
+
self,
|
|
1192
|
+
heuristic_id: str,
|
|
1193
|
+
new_confidence: float,
|
|
1194
|
+
) -> bool:
|
|
1195
|
+
"""Update confidence score for a heuristic."""
|
|
1196
|
+
with self._get_connection() as conn:
|
|
1197
|
+
cursor = conn.execute(
|
|
1198
|
+
f"UPDATE {self.schema}.alma_heuristics SET confidence = %s WHERE id = %s",
|
|
1199
|
+
(new_confidence, heuristic_id),
|
|
1200
|
+
)
|
|
1201
|
+
conn.commit()
|
|
1202
|
+
return cursor.rowcount > 0
|
|
1203
|
+
|
|
1204
|
+
def update_knowledge_confidence(
|
|
1205
|
+
self,
|
|
1206
|
+
knowledge_id: str,
|
|
1207
|
+
new_confidence: float,
|
|
1208
|
+
) -> bool:
|
|
1209
|
+
"""Update confidence score for domain knowledge."""
|
|
1210
|
+
with self._get_connection() as conn:
|
|
1211
|
+
cursor = conn.execute(
|
|
1212
|
+
f"UPDATE {self.schema}.alma_domain_knowledge SET confidence = %s WHERE id = %s",
|
|
1213
|
+
(new_confidence, knowledge_id),
|
|
1214
|
+
)
|
|
1215
|
+
conn.commit()
|
|
1216
|
+
return cursor.rowcount > 0
|
|
1217
|
+
|
|
1218
|
+
# ==================== DELETE OPERATIONS ====================
|
|
1219
|
+
|
|
1220
|
+
def delete_heuristic(self, heuristic_id: str) -> bool:
|
|
1221
|
+
"""Delete a heuristic by ID."""
|
|
1222
|
+
with self._get_connection() as conn:
|
|
1223
|
+
cursor = conn.execute(
|
|
1224
|
+
f"DELETE FROM {self.schema}.alma_heuristics WHERE id = %s",
|
|
1225
|
+
(heuristic_id,),
|
|
1226
|
+
)
|
|
1227
|
+
conn.commit()
|
|
1228
|
+
return cursor.rowcount > 0
|
|
1229
|
+
|
|
1230
|
+
def delete_outcome(self, outcome_id: str) -> bool:
|
|
1231
|
+
"""Delete an outcome by ID."""
|
|
1232
|
+
with self._get_connection() as conn:
|
|
1233
|
+
cursor = conn.execute(
|
|
1234
|
+
f"DELETE FROM {self.schema}.alma_outcomes WHERE id = %s",
|
|
1235
|
+
(outcome_id,),
|
|
1236
|
+
)
|
|
1237
|
+
conn.commit()
|
|
1238
|
+
return cursor.rowcount > 0
|
|
1239
|
+
|
|
1240
|
+
def delete_domain_knowledge(self, knowledge_id: str) -> bool:
|
|
1241
|
+
"""Delete domain knowledge by ID."""
|
|
1242
|
+
with self._get_connection() as conn:
|
|
1243
|
+
cursor = conn.execute(
|
|
1244
|
+
f"DELETE FROM {self.schema}.alma_domain_knowledge WHERE id = %s",
|
|
1245
|
+
(knowledge_id,),
|
|
1246
|
+
)
|
|
1247
|
+
conn.commit()
|
|
1248
|
+
return cursor.rowcount > 0
|
|
1249
|
+
|
|
1250
|
+
def delete_anti_pattern(self, anti_pattern_id: str) -> bool:
|
|
1251
|
+
"""Delete an anti-pattern by ID."""
|
|
1252
|
+
with self._get_connection() as conn:
|
|
1253
|
+
cursor = conn.execute(
|
|
1254
|
+
f"DELETE FROM {self.schema}.alma_anti_patterns WHERE id = %s",
|
|
1255
|
+
(anti_pattern_id,),
|
|
1256
|
+
)
|
|
1257
|
+
conn.commit()
|
|
1258
|
+
return cursor.rowcount > 0
|
|
1259
|
+
|
|
1260
|
+
def delete_outcomes_older_than(
|
|
1261
|
+
self,
|
|
1262
|
+
project_id: str,
|
|
1263
|
+
older_than: datetime,
|
|
1264
|
+
agent: Optional[str] = None,
|
|
1265
|
+
) -> int:
|
|
1266
|
+
"""Delete old outcomes."""
|
|
1267
|
+
with self._get_connection() as conn:
|
|
1268
|
+
query = f"DELETE FROM {self.schema}.alma_outcomes WHERE project_id = %s AND timestamp < %s"
|
|
1269
|
+
params: List[Any] = [project_id, older_than]
|
|
1270
|
+
|
|
1271
|
+
if agent:
|
|
1272
|
+
query += " AND agent = %s"
|
|
1273
|
+
params.append(agent)
|
|
1274
|
+
|
|
1275
|
+
cursor = conn.execute(query, params)
|
|
1276
|
+
conn.commit()
|
|
1277
|
+
deleted = cursor.rowcount
|
|
1278
|
+
|
|
1279
|
+
logger.info(f"Deleted {deleted} old outcomes")
|
|
1280
|
+
return deleted
|
|
1281
|
+
|
|
1282
|
+
def delete_low_confidence_heuristics(
|
|
1283
|
+
self,
|
|
1284
|
+
project_id: str,
|
|
1285
|
+
below_confidence: float,
|
|
1286
|
+
agent: Optional[str] = None,
|
|
1287
|
+
) -> int:
|
|
1288
|
+
"""Delete low-confidence heuristics."""
|
|
1289
|
+
with self._get_connection() as conn:
|
|
1290
|
+
query = f"DELETE FROM {self.schema}.alma_heuristics WHERE project_id = %s AND confidence < %s"
|
|
1291
|
+
params: List[Any] = [project_id, below_confidence]
|
|
1292
|
+
|
|
1293
|
+
if agent:
|
|
1294
|
+
query += " AND agent = %s"
|
|
1295
|
+
params.append(agent)
|
|
1296
|
+
|
|
1297
|
+
cursor = conn.execute(query, params)
|
|
1298
|
+
conn.commit()
|
|
1299
|
+
deleted = cursor.rowcount
|
|
1300
|
+
|
|
1301
|
+
logger.info(f"Deleted {deleted} low-confidence heuristics")
|
|
1302
|
+
return deleted
|
|
1303
|
+
|
|
1304
|
+
# ==================== STATS ====================
|
|
1305
|
+
|
|
1306
|
+
def get_stats(
|
|
1307
|
+
self,
|
|
1308
|
+
project_id: str,
|
|
1309
|
+
agent: Optional[str] = None,
|
|
1310
|
+
) -> Dict[str, Any]:
|
|
1311
|
+
"""Get memory statistics."""
|
|
1312
|
+
stats = {
|
|
1313
|
+
"project_id": project_id,
|
|
1314
|
+
"agent": agent,
|
|
1315
|
+
"storage_type": "postgresql",
|
|
1316
|
+
"pgvector_available": self._pgvector_available,
|
|
1317
|
+
}
|
|
1318
|
+
|
|
1319
|
+
with self._get_connection() as conn:
|
|
1320
|
+
tables = [
|
|
1321
|
+
("heuristics", "alma_heuristics"),
|
|
1322
|
+
("outcomes", "alma_outcomes"),
|
|
1323
|
+
("domain_knowledge", "alma_domain_knowledge"),
|
|
1324
|
+
("anti_patterns", "alma_anti_patterns"),
|
|
1325
|
+
]
|
|
1326
|
+
|
|
1327
|
+
for stat_name, table in tables:
|
|
1328
|
+
query = f"SELECT COUNT(*) as count FROM {self.schema}.{table} WHERE project_id = %s"
|
|
1329
|
+
params: List[Any] = [project_id]
|
|
1330
|
+
if agent:
|
|
1331
|
+
query += " AND agent = %s"
|
|
1332
|
+
params.append(agent)
|
|
1333
|
+
cursor = conn.execute(query, params)
|
|
1334
|
+
row = cursor.fetchone()
|
|
1335
|
+
stats[f"{stat_name}_count"] = row["count"] if row else 0
|
|
1336
|
+
|
|
1337
|
+
# Preferences don't have project_id
|
|
1338
|
+
cursor = conn.execute(
|
|
1339
|
+
f"SELECT COUNT(*) as count FROM {self.schema}.alma_preferences"
|
|
1340
|
+
)
|
|
1341
|
+
row = cursor.fetchone()
|
|
1342
|
+
stats["preferences_count"] = row["count"] if row else 0
|
|
1343
|
+
|
|
1344
|
+
stats["total_count"] = sum(
|
|
1345
|
+
stats.get(k, 0) for k in stats if k.endswith("_count")
|
|
1346
|
+
)
|
|
1347
|
+
|
|
1348
|
+
return stats
|
|
1349
|
+
|
|
1350
|
+
# ==================== HELPERS ====================
|
|
1351
|
+
|
|
1352
|
+
def _parse_datetime(self, value: Any) -> Optional[datetime]:
|
|
1353
|
+
"""Parse datetime from database value."""
|
|
1354
|
+
if value is None:
|
|
1355
|
+
return None
|
|
1356
|
+
if isinstance(value, datetime):
|
|
1357
|
+
return value
|
|
1358
|
+
try:
|
|
1359
|
+
return datetime.fromisoformat(str(value).replace("Z", "+00:00"))
|
|
1360
|
+
except (ValueError, AttributeError):
|
|
1361
|
+
return None
|
|
1362
|
+
|
|
1363
|
+
def _row_to_heuristic(self, row: Dict[str, Any]) -> Heuristic:
|
|
1364
|
+
"""Convert database row to Heuristic."""
|
|
1365
|
+
return Heuristic(
|
|
1366
|
+
id=row["id"],
|
|
1367
|
+
agent=row["agent"],
|
|
1368
|
+
project_id=row["project_id"],
|
|
1369
|
+
condition=row["condition"],
|
|
1370
|
+
strategy=row["strategy"],
|
|
1371
|
+
confidence=row["confidence"] or 0.0,
|
|
1372
|
+
occurrence_count=row["occurrence_count"] or 0,
|
|
1373
|
+
success_count=row["success_count"] or 0,
|
|
1374
|
+
last_validated=self._parse_datetime(row["last_validated"])
|
|
1375
|
+
or datetime.now(timezone.utc),
|
|
1376
|
+
created_at=self._parse_datetime(row["created_at"])
|
|
1377
|
+
or datetime.now(timezone.utc),
|
|
1378
|
+
embedding=self._embedding_from_db(row.get("embedding")),
|
|
1379
|
+
metadata=row["metadata"] if row["metadata"] else {},
|
|
1380
|
+
)
|
|
1381
|
+
|
|
1382
|
+
def _row_to_outcome(self, row: Dict[str, Any]) -> Outcome:
|
|
1383
|
+
"""Convert database row to Outcome."""
|
|
1384
|
+
return Outcome(
|
|
1385
|
+
id=row["id"],
|
|
1386
|
+
agent=row["agent"],
|
|
1387
|
+
project_id=row["project_id"],
|
|
1388
|
+
task_type=row["task_type"] or "general",
|
|
1389
|
+
task_description=row["task_description"],
|
|
1390
|
+
success=bool(row["success"]),
|
|
1391
|
+
strategy_used=row["strategy_used"] or "",
|
|
1392
|
+
duration_ms=row["duration_ms"],
|
|
1393
|
+
error_message=row["error_message"],
|
|
1394
|
+
user_feedback=row["user_feedback"],
|
|
1395
|
+
timestamp=self._parse_datetime(row["timestamp"])
|
|
1396
|
+
or datetime.now(timezone.utc),
|
|
1397
|
+
embedding=self._embedding_from_db(row.get("embedding")),
|
|
1398
|
+
metadata=row["metadata"] if row["metadata"] else {},
|
|
1399
|
+
)
|
|
1400
|
+
|
|
1401
|
+
def _row_to_preference(self, row: Dict[str, Any]) -> UserPreference:
|
|
1402
|
+
"""Convert database row to UserPreference."""
|
|
1403
|
+
return UserPreference(
|
|
1404
|
+
id=row["id"],
|
|
1405
|
+
user_id=row["user_id"],
|
|
1406
|
+
category=row["category"] or "general",
|
|
1407
|
+
preference=row["preference"],
|
|
1408
|
+
source=row["source"] or "unknown",
|
|
1409
|
+
confidence=row["confidence"] or 1.0,
|
|
1410
|
+
timestamp=self._parse_datetime(row["timestamp"])
|
|
1411
|
+
or datetime.now(timezone.utc),
|
|
1412
|
+
metadata=row["metadata"] if row["metadata"] else {},
|
|
1413
|
+
)
|
|
1414
|
+
|
|
1415
|
+
def _row_to_domain_knowledge(self, row: Dict[str, Any]) -> DomainKnowledge:
|
|
1416
|
+
"""Convert database row to DomainKnowledge."""
|
|
1417
|
+
return DomainKnowledge(
|
|
1418
|
+
id=row["id"],
|
|
1419
|
+
agent=row["agent"],
|
|
1420
|
+
project_id=row["project_id"],
|
|
1421
|
+
domain=row["domain"] or "general",
|
|
1422
|
+
fact=row["fact"],
|
|
1423
|
+
source=row["source"] or "unknown",
|
|
1424
|
+
confidence=row["confidence"] or 1.0,
|
|
1425
|
+
last_verified=self._parse_datetime(row["last_verified"])
|
|
1426
|
+
or datetime.now(timezone.utc),
|
|
1427
|
+
embedding=self._embedding_from_db(row.get("embedding")),
|
|
1428
|
+
metadata=row["metadata"] if row["metadata"] else {},
|
|
1429
|
+
)
|
|
1430
|
+
|
|
1431
|
+
def _row_to_anti_pattern(self, row: Dict[str, Any]) -> AntiPattern:
|
|
1432
|
+
"""Convert database row to AntiPattern."""
|
|
1433
|
+
return AntiPattern(
|
|
1434
|
+
id=row["id"],
|
|
1435
|
+
agent=row["agent"],
|
|
1436
|
+
project_id=row["project_id"],
|
|
1437
|
+
pattern=row["pattern"],
|
|
1438
|
+
why_bad=row["why_bad"] or "",
|
|
1439
|
+
better_alternative=row["better_alternative"] or "",
|
|
1440
|
+
occurrence_count=row["occurrence_count"] or 1,
|
|
1441
|
+
last_seen=self._parse_datetime(row["last_seen"])
|
|
1442
|
+
or datetime.now(timezone.utc),
|
|
1443
|
+
created_at=self._parse_datetime(row["created_at"])
|
|
1444
|
+
or datetime.now(timezone.utc),
|
|
1445
|
+
embedding=self._embedding_from_db(row.get("embedding")),
|
|
1446
|
+
metadata=row["metadata"] if row["metadata"] else {},
|
|
1447
|
+
)
|
|
1448
|
+
|
|
1449
|
+
def close(self):
|
|
1450
|
+
"""Close connection pool."""
|
|
1451
|
+
if self._pool:
|
|
1452
|
+
self._pool.close()
|