alma-memory 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
alma/types.py ADDED
@@ -0,0 +1,216 @@
1
+ """
2
+ ALMA Memory Types
3
+
4
+ Defines the core data structures for all memory types.
5
+ """
6
+
7
+ from dataclasses import dataclass, field
8
+ from datetime import datetime
9
+ from typing import Optional, List, Dict, Any
10
+ from enum import Enum
11
+
12
+
13
+ class MemoryType(Enum):
14
+ """Categories of memory that agents can store and retrieve."""
15
+ HEURISTIC = "heuristic"
16
+ OUTCOME = "outcome"
17
+ USER_PREFERENCE = "user_preference"
18
+ DOMAIN_KNOWLEDGE = "domain_knowledge"
19
+ ANTI_PATTERN = "anti_pattern"
20
+
21
+
22
+ @dataclass
23
+ class MemoryScope:
24
+ """
25
+ Defines what an agent is allowed to learn.
26
+
27
+ Prevents scope creep by explicitly listing allowed and forbidden domains.
28
+ """
29
+ agent_name: str
30
+ can_learn: List[str]
31
+ cannot_learn: List[str]
32
+ min_occurrences_for_heuristic: int = 3
33
+
34
+ def is_allowed(self, domain: str) -> bool:
35
+ """Check if learning in this domain is permitted."""
36
+ if domain in self.cannot_learn:
37
+ return False
38
+ if not self.can_learn: # Empty means all allowed (except cannot_learn)
39
+ return True
40
+ return domain in self.can_learn
41
+
42
+
43
+ @dataclass
44
+ class Heuristic:
45
+ """
46
+ A learned rule: "When condition X, strategy Y works N% of the time."
47
+
48
+ Heuristics are only created after min_occurrences validations.
49
+ """
50
+ id: str
51
+ agent: str
52
+ project_id: str
53
+ condition: str # "form with multiple required fields"
54
+ strategy: str # "test happy path first, then individual validation"
55
+ confidence: float # 0.0 to 1.0
56
+ occurrence_count: int
57
+ success_count: int
58
+ last_validated: datetime
59
+ created_at: datetime
60
+ embedding: Optional[List[float]] = None
61
+ metadata: Dict[str, Any] = field(default_factory=dict)
62
+
63
+ @property
64
+ def success_rate(self) -> float:
65
+ """Calculate success rate from occurrences."""
66
+ if self.occurrence_count == 0:
67
+ return 0.0
68
+ return self.success_count / self.occurrence_count
69
+
70
+
71
+ @dataclass
72
+ class Outcome:
73
+ """
74
+ Record of a task execution - success or failure with context.
75
+
76
+ Outcomes are raw data that can be consolidated into heuristics.
77
+ """
78
+ id: str
79
+ agent: str
80
+ project_id: str
81
+ task_type: str # "api_validation", "form_testing", etc.
82
+ task_description: str
83
+ success: bool
84
+ strategy_used: str
85
+ duration_ms: Optional[int] = None
86
+ error_message: Optional[str] = None
87
+ user_feedback: Optional[str] = None
88
+ timestamp: datetime = field(default_factory=datetime.utcnow)
89
+ embedding: Optional[List[float]] = None
90
+ metadata: Dict[str, Any] = field(default_factory=dict)
91
+
92
+
93
+ @dataclass
94
+ class UserPreference:
95
+ """
96
+ A remembered user constraint or communication preference.
97
+
98
+ Persists across sessions so users don't repeat themselves.
99
+ """
100
+ id: str
101
+ user_id: str
102
+ category: str # "communication", "code_style", "workflow"
103
+ preference: str # "No emojis in documentation"
104
+ source: str # "explicit_instruction", "inferred_from_correction"
105
+ confidence: float = 1.0 # Lower for inferred preferences
106
+ timestamp: datetime = field(default_factory=datetime.utcnow)
107
+ metadata: Dict[str, Any] = field(default_factory=dict)
108
+
109
+
110
+ @dataclass
111
+ class DomainKnowledge:
112
+ """
113
+ Accumulated domain-specific facts within agent's scope.
114
+
115
+ Different from heuristics - these are facts, not strategies.
116
+ """
117
+ id: str
118
+ agent: str
119
+ project_id: str
120
+ domain: str # "authentication", "database_schema", etc.
121
+ fact: str # "Login endpoint uses JWT with 24h expiry"
122
+ source: str # "code_analysis", "documentation", "user_stated"
123
+ confidence: float = 1.0
124
+ last_verified: datetime = field(default_factory=datetime.utcnow)
125
+ embedding: Optional[List[float]] = None
126
+ metadata: Dict[str, Any] = field(default_factory=dict)
127
+
128
+
129
+ @dataclass
130
+ class AntiPattern:
131
+ """
132
+ What NOT to do - learned from validated failures.
133
+
134
+ Helps agents avoid repeating mistakes.
135
+ """
136
+ id: str
137
+ agent: str
138
+ project_id: str
139
+ pattern: str # "Using fixed sleep() for async waits"
140
+ why_bad: str # "Causes flaky tests, doesn't adapt to load"
141
+ better_alternative: str # "Use explicit waits with conditions"
142
+ occurrence_count: int
143
+ last_seen: datetime
144
+ created_at: datetime = field(default_factory=datetime.utcnow)
145
+ embedding: Optional[List[float]] = None
146
+ metadata: Dict[str, Any] = field(default_factory=dict)
147
+
148
+
149
+ @dataclass
150
+ class MemorySlice:
151
+ """
152
+ A compact, relevant subset of memories for injection into context.
153
+
154
+ This is what gets injected per-call - must stay under token budget.
155
+ """
156
+ heuristics: List[Heuristic] = field(default_factory=list)
157
+ outcomes: List[Outcome] = field(default_factory=list)
158
+ preferences: List[UserPreference] = field(default_factory=list)
159
+ domain_knowledge: List[DomainKnowledge] = field(default_factory=list)
160
+ anti_patterns: List[AntiPattern] = field(default_factory=list)
161
+
162
+ # Retrieval metadata
163
+ query: Optional[str] = None
164
+ agent: Optional[str] = None
165
+ retrieval_time_ms: Optional[int] = None
166
+
167
+ def to_prompt(self, max_tokens: int = 2000) -> str:
168
+ """
169
+ Format memories for injection into agent context.
170
+
171
+ Respects token budget by prioritizing high-confidence items.
172
+ """
173
+ sections = []
174
+
175
+ if self.heuristics:
176
+ h_text = "## Relevant Strategies\n"
177
+ for h in sorted(self.heuristics, key=lambda x: -x.confidence)[:5]:
178
+ h_text += f"- When: {h.condition}\n Do: {h.strategy} (confidence: {h.confidence:.0%})\n"
179
+ sections.append(h_text)
180
+
181
+ if self.anti_patterns:
182
+ ap_text = "## Avoid These Patterns\n"
183
+ for ap in self.anti_patterns[:3]:
184
+ ap_text += f"- Don't: {ap.pattern}\n Why: {ap.why_bad}\n Instead: {ap.better_alternative}\n"
185
+ sections.append(ap_text)
186
+
187
+ if self.preferences:
188
+ p_text = "## User Preferences\n"
189
+ for p in self.preferences[:5]:
190
+ p_text += f"- {p.preference}\n"
191
+ sections.append(p_text)
192
+
193
+ if self.domain_knowledge:
194
+ dk_text = "## Domain Context\n"
195
+ for dk in self.domain_knowledge[:5]:
196
+ dk_text += f"- {dk.fact}\n"
197
+ sections.append(dk_text)
198
+
199
+ result = "\n".join(sections)
200
+
201
+ # Basic token estimation (rough: 1 token ~ 4 chars)
202
+ if len(result) > max_tokens * 4:
203
+ result = result[:max_tokens * 4] + "\n[truncated]"
204
+
205
+ return result
206
+
207
+ @property
208
+ def total_items(self) -> int:
209
+ """Total number of memory items in this slice."""
210
+ return (
211
+ len(self.heuristics) +
212
+ len(self.outcomes) +
213
+ len(self.preferences) +
214
+ len(self.domain_knowledge) +
215
+ len(self.anti_patterns)
216
+ )
@@ -0,0 +1,327 @@
1
+ Metadata-Version: 2.4
2
+ Name: alma-memory
3
+ Version: 0.2.0
4
+ Summary: Agent Learning Memory Architecture - Persistent memory for AI agents
5
+ Author-email: RBKunnela <aiagentsprompt@gmail.com>
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/RBKunnela/ALMA-memory
8
+ Project-URL: Documentation, https://github.com/RBKunnela/ALMA-memory/tree/main/docs
9
+ Project-URL: Repository, https://github.com/RBKunnela/ALMA-memory
10
+ Project-URL: Issues, https://github.com/RBKunnela/ALMA-memory/issues
11
+ Keywords: ai,agents,memory,learning,llm,azure,claude
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: License :: OSI Approved :: MIT License
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.10
17
+ Classifier: Programming Language :: Python :: 3.11
18
+ Classifier: Programming Language :: Python :: 3.12
19
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
20
+ Requires-Python: >=3.10
21
+ Description-Content-Type: text/markdown
22
+ Requires-Dist: pyyaml>=6.0
23
+ Requires-Dist: python-dotenv>=1.0.0
24
+ Provides-Extra: local
25
+ Requires-Dist: sentence-transformers>=2.2.0; extra == "local"
26
+ Requires-Dist: faiss-cpu>=1.7.4; extra == "local"
27
+ Provides-Extra: azure
28
+ Requires-Dist: azure-cosmos>=4.5.0; extra == "azure"
29
+ Requires-Dist: azure-identity>=1.15.0; extra == "azure"
30
+ Requires-Dist: azure-keyvault-secrets>=4.7.0; extra == "azure"
31
+ Requires-Dist: openai>=1.0.0; extra == "azure"
32
+ Provides-Extra: mcp
33
+ Requires-Dist: pydantic>=2.0.0; extra == "mcp"
34
+ Requires-Dist: aiohttp>=3.9.0; extra == "mcp"
35
+ Provides-Extra: dev
36
+ Requires-Dist: pytest>=7.0.0; extra == "dev"
37
+ Requires-Dist: pytest-asyncio>=0.21.0; extra == "dev"
38
+ Requires-Dist: pytest-cov>=4.0.0; extra == "dev"
39
+ Requires-Dist: pytest-benchmark>=4.0.0; extra == "dev"
40
+ Requires-Dist: mypy>=1.0.0; extra == "dev"
41
+ Requires-Dist: ruff>=0.1.0; extra == "dev"
42
+ Provides-Extra: all
43
+ Requires-Dist: alma-memory[azure,dev,local,mcp]; extra == "all"
44
+
45
+ # ALMA - Agent Learning Memory Architecture
46
+
47
+ > A reusable harness pattern for creating AI agents that learn and improve over time through structured memory - without model weight updates.
48
+
49
+ ## The Harness Pattern
50
+
51
+ ALMA isn't just agent memory - it's a **generalized framework** for any tool-using workflow:
52
+
53
+ ```
54
+ ┌─────────────────────────────────────────────────────────────────┐
55
+ │ 1. SETTING Fixed environment: tools, constraints │
56
+ ├─────────────────────────────────────────────────────────────────┤
57
+ │ 2. CONTEXT Ephemeral per-run inputs: task, user │
58
+ ├─────────────────────────────────────────────────────────────────┤
59
+ │ 3. AGENT The executor with scoped intelligence │
60
+ ├─────────────────────────────────────────────────────────────────┤
61
+ │ 4. MEMORY SCHEMA Domain-specific learning structure │
62
+ └─────────────────────────────────────────────────────────────────┘
63
+ ```
64
+
65
+ **The Flow:**
66
+ 1. **Pre-run**: Inject relevant memory slices ("Past successes in similar tasks")
67
+ 2. **Run**: Agent acts using tools, logs reflections
68
+ 3. **Post-run**: Update memory schema
69
+ 4. **Repeat**: Agent appears to "learn" without weight changes
70
+
71
+ ## Why This Matters
72
+
73
+ ```
74
+ Code exists ≠ Knowledge retained
75
+ Knowledge retained ≠ Knowledge scoped
76
+ Knowledge scoped ≠ Knowledge retrieved efficiently
77
+ ```
78
+
79
+ ALMA solves all three through **scoped memory injection**. Agents get smarter via better-informed prompts, not model changes.
80
+
81
+ ## Supported Domains
82
+
83
+ ALMA works for ANY tool-using workflow:
84
+
85
+ | Domain | Agents | Use Case |
86
+ |--------|--------|----------|
87
+ | **Coding** | Helena, Victor | Testing, API development |
88
+ | **Research** | Researcher | Market analysis, competitive intelligence |
89
+ | **Content** | Copywriter, Documenter | Marketing, documentation |
90
+ | **Operations** | Support | Customer service, automation |
91
+
92
+ ## Quick Start
93
+
94
+ ### Installation
95
+
96
+ ```bash
97
+ pip install alma-memory
98
+ # or from source
99
+ pip install git+https://github.com/RBKunnela/ALMA-memory.git
100
+ ```
101
+
102
+ ### Using the Harness Pattern
103
+
104
+ ```python
105
+ from alma import ALMA, create_harness, Context
106
+
107
+ # Initialize ALMA
108
+ alma = ALMA.from_config(".alma/config.yaml")
109
+
110
+ # Create a domain-specific harness
111
+ harness = create_harness("coding", "helena", alma)
112
+
113
+ # Define task context
114
+ context = Context(
115
+ task="Test the login form validation",
116
+ project_id="my-app",
117
+ user_id="developer-1",
118
+ inputs={"component": "LoginForm", "priority": "high"}
119
+ )
120
+
121
+ # Run with memory injection
122
+ result = harness.run(context)
123
+
124
+ # The harness automatically:
125
+ # 1. Retrieved relevant memories (testing strategies, past outcomes)
126
+ # 2. Built the prompt with injected knowledge
127
+ # 3. Will log the outcome for future learning
128
+ ```
129
+
130
+ ### Creating Custom Agents
131
+
132
+ ```python
133
+ from alma import (
134
+ ALMA, Harness, Setting, Agent, MemorySchema, Tool, ToolType
135
+ )
136
+
137
+ # Define the environment
138
+ setting = Setting(
139
+ name="Bio Research Environment",
140
+ description="Tools for biological data analysis",
141
+ tools=[
142
+ Tool(
143
+ name="sequence_search",
144
+ description="Search genomic databases",
145
+ tool_type=ToolType.SEARCH,
146
+ ),
147
+ Tool(
148
+ name="structure_analysis",
149
+ description="Analyze protein structures",
150
+ tool_type=ToolType.ANALYSIS,
151
+ ),
152
+ ],
153
+ global_constraints=[
154
+ "Cite all data sources",
155
+ "Note confidence levels",
156
+ ],
157
+ )
158
+
159
+ # Define what this agent can learn
160
+ schema = MemorySchema(
161
+ domain="bioinformatics",
162
+ description="Patterns for biological data analysis",
163
+ learnable_categories=[
164
+ "search_refinements",
165
+ "analysis_patterns",
166
+ "data_interpretation",
167
+ ],
168
+ forbidden_categories=[
169
+ "medical_diagnosis", # Out of scope
170
+ ],
171
+ min_occurrences=5,
172
+ )
173
+
174
+ # Create the agent
175
+ agent = Agent(
176
+ name="bio_researcher",
177
+ role="Bioinformatics Analyst",
178
+ description="Expert in genomic analysis and protein structure prediction",
179
+ memory_schema=schema,
180
+ )
181
+
182
+ # Assemble the harness
183
+ alma = ALMA.from_config(".alma/config.yaml")
184
+ harness = Harness(setting=setting, agent=agent, alma=alma)
185
+ ```
186
+
187
+ ### Basic Memory Operations
188
+
189
+ ```python
190
+ from alma import ALMA
191
+
192
+ alma = ALMA.from_config(".alma/config.yaml")
193
+
194
+ # Retrieve relevant memories
195
+ memories = alma.retrieve(
196
+ task="Test the login form validation",
197
+ agent="helena",
198
+ top_k=5
199
+ )
200
+
201
+ # Inject into prompt
202
+ prompt = f"""
203
+ ## Your Task
204
+ Test the login form validation
205
+
206
+ ## Relevant Knowledge (from past runs)
207
+ {memories.to_prompt()}
208
+ """
209
+
210
+ # After task completion, learn from the outcome
211
+ alma.learn(
212
+ agent="helena",
213
+ task="Test login form",
214
+ outcome="success",
215
+ strategy_used="Tested empty fields, invalid email, valid submission",
216
+ feedback="User confirmed tests were thorough"
217
+ )
218
+ ```
219
+
220
+ ## Memory Types
221
+
222
+ | Type | What It Stores | Example |
223
+ |------|----------------|---------|
224
+ | **Heuristic** | Learned strategies | "For forms with >5 fields, test validation incrementally" |
225
+ | **Outcome** | Task results | "Login test succeeded using JWT token strategy" |
226
+ | **Preference** | User constraints | "User prefers verbose test output" |
227
+ | **Domain Knowledge** | Accumulated facts | "Login uses OAuth 2.0 with 24h token expiry" |
228
+ | **Anti-pattern** | What NOT to do | "Don't use sleep() for async waits - causes flaky tests" |
229
+
230
+ ## Configuration
231
+
232
+ Create `.alma/config.yaml`:
233
+
234
+ ```yaml
235
+ alma:
236
+ project_id: "my-project"
237
+ storage: sqlite # or "azure" for production
238
+
239
+ domains:
240
+ coding:
241
+ enabled: true
242
+ agents: [helena, victor]
243
+ research:
244
+ enabled: true
245
+ agents: [researcher]
246
+
247
+ agents:
248
+ helena:
249
+ domain: coding
250
+ can_learn:
251
+ - testing_strategies
252
+ - selector_patterns
253
+ cannot_learn:
254
+ - backend_logic
255
+ min_occurrences_for_heuristic: 3
256
+
257
+ researcher:
258
+ domain: research
259
+ can_learn:
260
+ - trend_patterns
261
+ - source_reliability
262
+ cannot_learn:
263
+ - code_implementation
264
+ min_occurrences_for_heuristic: 5
265
+ ```
266
+
267
+ ## Storage Backends
268
+
269
+ | Backend | Use Case | Vector Search |
270
+ |---------|----------|---------------|
271
+ | `azure` | Production | Cosmos DB with vector search |
272
+ | `sqlite` | Local dev | SQLite + FAISS |
273
+ | `file` | Testing | JSON files (no vector search) |
274
+
275
+ ## Architecture
276
+
277
+ ```
278
+ ┌─────────────────────────────────────────────────────────────────┐
279
+ │ HARNESS PATTERN │
280
+ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────────┐ │
281
+ │ │ Setting │ │ Context │ │ Agent │ │MemorySchema │ │
282
+ │ │ (tools) │ │ (task) │ │(executor)│ │ (learning) │ │
283
+ │ └──────────┘ └──────────┘ └──────────┘ └──────────────┘ │
284
+ └─────────────────────────────────────────────────────────────────┘
285
+
286
+ ┌─────────────────────────────────────────────────────────────────┐
287
+ │ ALMA CORE │
288
+ │ ┌────────────┐ ┌────────────┐ ┌────────────────────────┐ │
289
+ │ │ Retrieval │ │ Learning │ │ Storage │ │
290
+ │ │ Engine │ │ Protocol │ │ (Azure/SQLite/File) │ │
291
+ │ └────────────┘ └────────────┘ └────────────────────────┘ │
292
+ └─────────────────────────────────────────────────────────────────┘
293
+
294
+ ┌─────────────────────────────────────────────────────────────────┐
295
+ │ MEMORY TYPES │
296
+ │ ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌──────────┐ │
297
+ │ │ Heuristics │ │ Outcomes │ │Preferences │ │Anti-patt.│ │
298
+ │ └────────────┘ └────────────┘ └────────────┘ └──────────┘ │
299
+ └─────────────────────────────────────────────────────────────────┘
300
+ ```
301
+
302
+ ## Documentation
303
+
304
+ - [PRD](docs/architecture/PRD.md) - Full product requirements
305
+ - [Harness Pattern](docs/guides/harness-pattern.md) - Deep dive on the pattern
306
+ - [API Reference](docs/api/) - Coming soon
307
+
308
+ ## Status
309
+
310
+ | Phase | Description | Status |
311
+ |-------|-------------|--------|
312
+ | 1 | Core Abstractions | Done |
313
+ | 2 | Local Storage (SQLite + FAISS) | Done |
314
+ | 3 | Retrieval Engine | In Progress |
315
+ | 4 | Learning Protocols | Todo |
316
+ | 5 | Agent Integration (Helena + Victor) | Todo |
317
+ | 6 | Azure Cosmos DB | Todo |
318
+ | 7 | Cache Layer | Todo |
319
+ | 8 | Forgetting Mechanism | Todo |
320
+
321
+ ## License
322
+
323
+ MIT
324
+
325
+ ## Contributing
326
+
327
+ Contributions welcome! See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.
@@ -0,0 +1,36 @@
1
+ alma/__init__.py,sha256=QGUJuT7StZvjzNAwInBgXasEEuoEOMmwMQ9fRtTImQk,1504
2
+ alma/core.py,sha256=-lAYOdnNYDz0ziVQFybLNF_2cDbM8-lIw5xvLuiXZKY,9638
3
+ alma/types.py,sha256=hdBP1dwvYquS7Zej4xb6DM4Bfyx6C2OIFi3vFYo9DMk,6769
4
+ alma/config/__init__.py,sha256=MQ7zjiIFlUnjeI_Nxn4ig0HAmYeUuS7_FVNjYi8Ik3A,99
5
+ alma/config/loader.py,sha256=OJPXTSKrBunl6LMvyb-avSOyH1Pr0IpUZIK9UOmB-LE,4884
6
+ alma/harness/__init__.py,sha256=T25gbnat63HA6QeHY5BiaYxM3BODgQmkcR85DIVjsMc,684
7
+ alma/harness/base.py,sha256=rvgLHVVKo0INDDQTzqYIzEpoNkSiJ0DG5qE_-K4Cc5A,11223
8
+ alma/harness/domains.py,sha256=ur6BqClFd7JgH62DQsC5RBJV-IpEbL9uaEHZzZRtyxI,25720
9
+ alma/integration/__init__.py,sha256=bQZKgA4zhUD3AK4lxh4I7PGukUogKFodIDn3Jurlcws,1276
10
+ alma/integration/claude_agents.py,sha256=HdAZVVIOr7W-_oAuDL4J7ZanvvpOjCP_Lfw-N1TMekI,13318
11
+ alma/integration/helena.py,sha256=rDCYy8Y7_f3xeCzahahio_0OIUury-dMhU7Z_EjWc5w,11885
12
+ alma/integration/victor.py,sha256=Z3FBso38eYs4X6He2qvl_O3Lu9_o5X1dWHvf3PnI0kw,13073
13
+ alma/learning/__init__.py,sha256=GU33u8KUyDgnUASXfAXZ5rMF3sjkdWMzqR5aWAwjWPU,1870
14
+ alma/learning/forgetting.py,sha256=_7BVezNjoEk2AGVARVPr255af3O51vtKR6LW8dMrSwU,45513
15
+ alma/learning/heuristic_extractor.py,sha256=lKM2hGihFjeTolOl58GImfPkaSQOsEqCCjuYPhskJf0,11881
16
+ alma/learning/protocols.py,sha256=yr5JpHQB5ktYtkmSaas6AUp0iWPyoN7ZU39nEdRwUko,10328
17
+ alma/learning/validation.py,sha256=cv4mMTr3hRlC3AxWHG7-w-k_b-dNkowRh-idC18hN6Y,11028
18
+ alma/mcp/__init__.py,sha256=USCtSVAKaW1eFKgdqm50krlufPeccfGw5yDZ4BC2KwE,947
19
+ alma/mcp/__main__.py,sha256=OKNXBY3GBJJKhAjIpGeKYcK02dX_83eOwUXkUXpV54A,3946
20
+ alma/mcp/resources.py,sha256=tdJoBA55qRcdwXCPyaFJ2hR23oQRqfiNUTzHo-h5qfs,3460
21
+ alma/mcp/server.py,sha256=4LPs2J53I4fTXVB5P-1mZibce-FVWrPhFWCoUKHy9TM,19043
22
+ alma/mcp/tools.py,sha256=UEB9NzcjxcpuAiie6sJ_gGdjfP6Ey0ajgp8hZRx3NHE,9452
23
+ alma/retrieval/__init__.py,sha256=lhfJh7Lfi4d0UYzhgVxKPVCO3959eJwCH0VzK4mgTio,1006
24
+ alma/retrieval/cache.py,sha256=mJ-hJUaoX1aUlcQjYsrrYQBKb8F3qIJJe46bSQ2RMg4,34645
25
+ alma/retrieval/embeddings.py,sha256=S7KvogxBNoDP2r5ANwuH0hFdzqsAGXzAqAA8BY0_zMI,6464
26
+ alma/retrieval/engine.py,sha256=RHkCaBbhYMHA44t8CU1W7dxMuUj1yvZ7p_v52cC23bY,9659
27
+ alma/retrieval/scoring.py,sha256=VG41Vq1mV0DgLv0cM7m89KLwRNqOWaLboSRNhoC0cy8,10102
28
+ alma/storage/__init__.py,sha256=PtKICN39q2MQ7CuUmFnERQMIfo8Tbpv_Ro61jLLvUvQ,528
29
+ alma/storage/azure_cosmos.py,sha256=GAeheRabaWXKsXLS66qtl8ALzVk2QM6bw3sgC6ImpSI,32805
30
+ alma/storage/base.py,sha256=-1Xi3zQFdFgdkIWvqLhNNq9SPdjaIYoagijPMKA3I8M,8960
31
+ alma/storage/file_based.py,sha256=g-1dkmu68T6ePhyvh40o_u-THqK1WbXtt4xfccChySM,20709
32
+ alma/storage/sqlite_local.py,sha256=qovQ_vhq67zsrhZLxMtFaCR-9ZPpuV1EAknxmRouqEA,32820
33
+ alma_memory-0.2.0.dist-info/METADATA,sha256=jQQOgv5q1ODVlLdM6lUfdapw4MBAv1HJCmrBR332W0c,12555
34
+ alma_memory-0.2.0.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
35
+ alma_memory-0.2.0.dist-info/top_level.txt,sha256=5oN68LXctTl8a8i1LA-5WqSaP-pDA-J0x1AfCFfLm4A,5
36
+ alma_memory-0.2.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.10.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ alma