alita-sdk 0.3.532__py3-none-any.whl → 0.3.554__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of alita-sdk might be problematic. Click here for more details.

Files changed (42) hide show
  1. alita_sdk/community/__init__.py +8 -4
  2. alita_sdk/configurations/__init__.py +1 -0
  3. alita_sdk/configurations/openapi.py +111 -0
  4. alita_sdk/runtime/clients/client.py +161 -5
  5. alita_sdk/runtime/langchain/langraph_agent.py +2 -2
  6. alita_sdk/runtime/langchain/utils.py +46 -0
  7. alita_sdk/runtime/skills/__init__.py +91 -0
  8. alita_sdk/runtime/skills/callbacks.py +498 -0
  9. alita_sdk/runtime/skills/discovery.py +540 -0
  10. alita_sdk/runtime/skills/executor.py +610 -0
  11. alita_sdk/runtime/skills/input_builder.py +371 -0
  12. alita_sdk/runtime/skills/models.py +330 -0
  13. alita_sdk/runtime/skills/registry.py +355 -0
  14. alita_sdk/runtime/skills/skill_runner.py +330 -0
  15. alita_sdk/runtime/toolkits/__init__.py +2 -0
  16. alita_sdk/runtime/toolkits/skill_router.py +238 -0
  17. alita_sdk/runtime/toolkits/tools.py +76 -9
  18. alita_sdk/runtime/tools/__init__.py +3 -1
  19. alita_sdk/runtime/tools/llm.py +241 -73
  20. alita_sdk/runtime/tools/loop.py +3 -1
  21. alita_sdk/runtime/tools/loop_output.py +3 -1
  22. alita_sdk/runtime/tools/skill_router.py +776 -0
  23. alita_sdk/runtime/tools/tool.py +3 -1
  24. alita_sdk/runtime/tools/vectorstore.py +7 -2
  25. alita_sdk/runtime/tools/vectorstore_base.py +7 -2
  26. alita_sdk/tools/__init__.py +41 -1
  27. alita_sdk/tools/ado/work_item/ado_wrapper.py +33 -2
  28. alita_sdk/tools/base_indexer_toolkit.py +36 -24
  29. alita_sdk/tools/confluence/api_wrapper.py +5 -6
  30. alita_sdk/tools/confluence/loader.py +4 -2
  31. alita_sdk/tools/openapi/__init__.py +280 -120
  32. alita_sdk/tools/openapi/api_wrapper.py +883 -0
  33. alita_sdk/tools/openapi/tool.py +20 -0
  34. alita_sdk/tools/pandas/dataframe/generator/base.py +3 -1
  35. alita_sdk/tools/servicenow/__init__.py +9 -9
  36. alita_sdk/tools/servicenow/api_wrapper.py +1 -1
  37. {alita_sdk-0.3.532.dist-info → alita_sdk-0.3.554.dist-info}/METADATA +1 -1
  38. {alita_sdk-0.3.532.dist-info → alita_sdk-0.3.554.dist-info}/RECORD +42 -29
  39. {alita_sdk-0.3.532.dist-info → alita_sdk-0.3.554.dist-info}/WHEEL +0 -0
  40. {alita_sdk-0.3.532.dist-info → alita_sdk-0.3.554.dist-info}/entry_points.txt +0 -0
  41. {alita_sdk-0.3.532.dist-info → alita_sdk-0.3.554.dist-info}/licenses/LICENSE +0 -0
  42. {alita_sdk-0.3.532.dist-info → alita_sdk-0.3.554.dist-info}/top_level.txt +0 -0
@@ -6,7 +6,6 @@ from typing import Any, Optional, List, Union, Literal
6
6
  from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
7
7
  from langchain_core.runnables import RunnableConfig
8
8
  from langchain_core.tools import BaseTool, ToolException
9
- from langchain_core.exceptions import OutputParserException
10
9
  from langchain_core.callbacks import dispatch_custom_event
11
10
  from pydantic import Field
12
11
 
@@ -44,6 +43,17 @@ logger = logging.getLogger(__name__)
44
43
 
45
44
  # return supports_reasoning
46
45
 
46
+ JSON_INSTRUCTION_TEMPLATE = (
47
+ "\n\n**IMPORTANT: You MUST respond with ONLY a valid JSON object.**\n\n"
48
+ "Required JSON fields:\n{field_descriptions}\n\n"
49
+ "Example format:\n"
50
+ "{{\n{example_fields}\n}}\n\n"
51
+ "Rules:\n"
52
+ "1. Output ONLY the JSON object - no markdown, no explanations, no extra text\n"
53
+ "2. Ensure all required fields are present\n"
54
+ "3. Use proper JSON syntax with double quotes for strings\n"
55
+ "4. Do not wrap the JSON in code blocks or backticks"
56
+ )
47
57
 
48
58
  class LLMNode(BaseTool):
49
59
  """Enhanced LLM node with chat history and tool binding support"""
@@ -67,6 +77,221 @@ class LLMNode(BaseTool):
67
77
  steps_limit: Optional[int] = Field(default=25, description='Maximum steps for tool execution')
68
78
  tool_execution_timeout: Optional[int] = Field(default=900, description='Timeout (seconds) for tool execution. Default is 15 minutes.')
69
79
 
80
+ def _prepare_structured_output_params(self) -> dict:
81
+ """
82
+ Prepare structured output parameters from structured_output_dict.
83
+
84
+ Returns:
85
+ Dictionary with parameter definitions for creating Pydantic model
86
+ """
87
+ struct_params = {
88
+ key: {
89
+ "type": 'list[str]' if 'list' in value else value,
90
+ "description": ""
91
+ }
92
+ for key, value in (self.structured_output_dict or {}).items()
93
+ }
94
+ # Add default output field for proper response to user
95
+ struct_params[ELITEA_RS] = {
96
+ 'description': 'final output to user (summarized output from LLM)',
97
+ 'type': 'str',
98
+ "default": None
99
+ }
100
+ return struct_params
101
+
102
+ def _invoke_with_structured_output(self, llm_client: Any, messages: List, struct_model: Any, config: RunnableConfig):
103
+ """
104
+ Invoke LLM with structured output, handling tool calls if present.
105
+
106
+ Args:
107
+ llm_client: LLM client instance
108
+ messages: List of conversation messages
109
+ struct_model: Pydantic model for structured output
110
+ config: Runnable configuration
111
+
112
+ Returns:
113
+ Tuple of (completion, initial_completion, final_messages)
114
+ """
115
+ initial_completion = llm_client.invoke(messages, config=config)
116
+
117
+ if hasattr(initial_completion, 'tool_calls') and initial_completion.tool_calls:
118
+ # Handle tool calls first, then apply structured output
119
+ new_messages, _ = self._run_async_in_sync_context(
120
+ self.__perform_tool_calling(initial_completion, messages, llm_client, config)
121
+ )
122
+ llm = self.__get_struct_output_model(llm_client, struct_model)
123
+ completion = llm.invoke(new_messages, config=config)
124
+ return completion, initial_completion, new_messages
125
+ else:
126
+ # Direct structured output without tool calls
127
+ llm = self.__get_struct_output_model(llm_client, struct_model)
128
+ completion = llm.invoke(messages, config=config)
129
+ return completion, initial_completion, messages
130
+
131
+ def _build_json_instruction(self, struct_model: Any) -> str:
132
+ """
133
+ Build JSON instruction message for fallback handling.
134
+
135
+ Args:
136
+ struct_model: Pydantic model with field definitions
137
+
138
+ Returns:
139
+ Formatted JSON instruction string
140
+ """
141
+ field_descriptions = []
142
+ for name, field in struct_model.model_fields.items():
143
+ field_type = field.annotation.__name__ if hasattr(field.annotation, '__name__') else str(field.annotation)
144
+ field_desc = field.description or field_type
145
+ field_descriptions.append(f" - {name} ({field_type}): {field_desc}")
146
+
147
+ example_fields = ",\n".join([
148
+ f' "{k}": <{field.annotation.__name__ if hasattr(field.annotation, "__name__") else "value"}>'
149
+ for k, field in struct_model.model_fields.items()
150
+ ])
151
+
152
+ return JSON_INSTRUCTION_TEMPLATE.format(
153
+ field_descriptions="\n".join(field_descriptions),
154
+ example_fields=example_fields
155
+ )
156
+
157
+ def _create_fallback_completion(self, content: str, struct_model: Any) -> Any:
158
+ """
159
+ Create a fallback completion object when JSON parsing fails.
160
+
161
+ Args:
162
+ content: Plain text content from LLM
163
+ struct_model: Pydantic model to construct
164
+
165
+ Returns:
166
+ Pydantic model instance with fallback values
167
+ """
168
+ result_dict = {}
169
+ for k, field in struct_model.model_fields.items():
170
+ if k == ELITEA_RS:
171
+ result_dict[k] = content
172
+ elif field.is_required():
173
+ # Set default values for required fields based on type
174
+ result_dict[k] = field.default if field.default is not None else None
175
+ else:
176
+ result_dict[k] = field.default
177
+ return struct_model.model_construct(**result_dict)
178
+
179
+ def _handle_structured_output_fallback(self, llm_client: Any, messages: List, struct_model: Any,
180
+ config: RunnableConfig, original_error: Exception) -> Any:
181
+ """
182
+ Handle structured output fallback through multiple strategies.
183
+
184
+ Tries fallback methods in order:
185
+ 1. json_mode with explicit instructions
186
+ 2. function_calling method
187
+ 3. Plain text with JSON extraction
188
+
189
+ Args:
190
+ llm_client: LLM client instance
191
+ messages: Original conversation messages
192
+ struct_model: Pydantic model for structured output
193
+ config: Runnable configuration
194
+ original_error: The original ValueError that triggered fallback
195
+
196
+ Returns:
197
+ Completion with structured output (best effort)
198
+
199
+ Raises:
200
+ Propagates exceptions from LLM invocation
201
+ """
202
+ logger.error(f"Error invoking structured output model: {format_exc()}")
203
+ logger.info("Attempting to fall back to json mode")
204
+
205
+ # Build JSON instruction once
206
+ json_instruction = self._build_json_instruction(struct_model)
207
+
208
+ # Add instruction to messages
209
+ modified_messages = messages.copy()
210
+ if modified_messages and isinstance(modified_messages[-1], HumanMessage):
211
+ modified_messages[-1] = HumanMessage(
212
+ content=modified_messages[-1].content + json_instruction
213
+ )
214
+ else:
215
+ modified_messages.append(HumanMessage(content=json_instruction))
216
+
217
+ # Try json_mode with explicit instructions
218
+ try:
219
+ completion = self.__get_struct_output_model(
220
+ llm_client, struct_model, method="json_mode"
221
+ ).invoke(modified_messages, config=config)
222
+ return completion
223
+ except Exception as json_mode_error:
224
+ logger.warning(f"json_mode also failed: {json_mode_error}")
225
+ logger.info("Falling back to function_calling method")
226
+
227
+ # Try function_calling as a third fallback
228
+ try:
229
+ completion = self.__get_struct_output_model(
230
+ llm_client, struct_model, method="function_calling"
231
+ ).invoke(modified_messages, config=config)
232
+ return completion
233
+ except Exception as function_calling_error:
234
+ logger.error(f"function_calling also failed: {function_calling_error}")
235
+ logger.info("Final fallback: using plain LLM response")
236
+
237
+ # Last resort: get plain text response and wrap in structure
238
+ plain_completion = llm_client.invoke(modified_messages, config=config)
239
+ content = plain_completion.content.strip() if hasattr(plain_completion, 'content') else str(plain_completion)
240
+
241
+ # Try to extract JSON from the response
242
+ import json
243
+ import re
244
+
245
+ json_match = re.search(r'\{.*\}', content, re.DOTALL)
246
+ if json_match:
247
+ try:
248
+ parsed_json = json.loads(json_match.group(0))
249
+ # Validate it has expected fields and wrap in pydantic model
250
+ completion = struct_model(**parsed_json)
251
+ return completion
252
+ except (json.JSONDecodeError, Exception) as parse_error:
253
+ logger.warning(f"Could not parse extracted JSON: {parse_error}")
254
+ return self._create_fallback_completion(content, struct_model)
255
+ else:
256
+ # No JSON found, create response with content in elitea_response
257
+ return self._create_fallback_completion(content, struct_model)
258
+
259
+ def _format_structured_output_result(self, result: dict, messages: List, initial_completion: Any) -> dict:
260
+ """
261
+ Format structured output result with properly formatted messages.
262
+
263
+ Args:
264
+ result: Result dictionary from model_dump()
265
+ messages: Original conversation messages
266
+ initial_completion: Initial completion before tool calls
267
+
268
+ Returns:
269
+ Formatted result dictionary with messages
270
+ """
271
+ # Ensure messages are properly formatted
272
+ if result.get('messages') and isinstance(result['messages'], list):
273
+ result['messages'] = [{'role': 'assistant', 'content': '\n'.join(result['messages'])}]
274
+ else:
275
+ # Extract content from initial_completion, handling thinking blocks
276
+ fallback_content = result.get(ELITEA_RS, '')
277
+ if not fallback_content and initial_completion:
278
+ content_parts = self._extract_content_from_completion(initial_completion)
279
+ fallback_content = content_parts.get('text') or ''
280
+ thinking = content_parts.get('thinking')
281
+
282
+ # Log thinking if present
283
+ if thinking:
284
+ logger.debug(f"Thinking content present in structured output: {thinking[:100]}...")
285
+
286
+ if not fallback_content:
287
+ # Final fallback to raw content
288
+ content = initial_completion.content
289
+ fallback_content = content if isinstance(content, str) else str(content)
290
+
291
+ result['messages'] = messages + [AIMessage(content=fallback_content)]
292
+
293
+ return result
294
+
70
295
  def get_filtered_tools(self) -> List[BaseTool]:
71
296
  """
72
297
  Filter available tools based on tool_names list.
@@ -164,8 +389,6 @@ class LLMNode(BaseTool):
164
389
  if func_args.get('system') is None or func_args.get('task') is None:
165
390
  raise ToolException(f"LLMNode requires 'system' and 'task' parameters in input mapping. "
166
391
  f"Actual params: {func_args}")
167
- raise ToolException(f"LLMNode requires 'system' and 'task' parameters in input mapping. "
168
- f"Actual params: {func_args}")
169
392
  # cast to str in case user passes variable different from str
170
393
  messages = [SystemMessage(content=str(func_args.get('system'))), *func_args.get('chat_history', []), HumanMessage(content=str(func_args.get('task')))]
171
394
  # Remove pre-last item if last two messages are same type and content
@@ -197,78 +420,23 @@ class LLMNode(BaseTool):
197
420
  try:
198
421
  if self.structured_output and self.output_variables:
199
422
  # Handle structured output
200
- struct_params = {
201
- key: {
202
- "type": 'list[str]' if 'list' in value else value,
203
- "description": ""
204
- }
205
- for key, value in (self.structured_output_dict or {}).items()
206
- }
207
- # Add default output field for proper response to user
208
- struct_params['elitea_response'] = {
209
- 'description': 'final output to user (summarized output from LLM)', 'type': 'str',
210
- "default": None}
423
+ struct_params = self._prepare_structured_output_params()
211
424
  struct_model = create_pydantic_model(f"LLMOutput", struct_params)
212
- initial_completion = llm_client.invoke(messages, config=config)
213
- if hasattr(initial_completion, 'tool_calls') and initial_completion.tool_calls:
214
- new_messages, _ = self._run_async_in_sync_context(
215
- self.__perform_tool_calling(initial_completion, messages, llm_client, config)
425
+
426
+ try:
427
+ completion, initial_completion, final_messages = self._invoke_with_structured_output(
428
+ llm_client, messages, struct_model, config
216
429
  )
217
- llm = self.__get_struct_output_model(llm_client, struct_model)
218
- completion = llm.invoke(new_messages, config=config)
219
- result = completion.model_dump()
220
- else:
221
- try:
222
- llm = self.__get_struct_output_model(llm_client, struct_model)
223
- completion = llm.invoke(messages, config=config)
224
- except (ValueError, OutputParserException) as e:
225
- logger.error(f"Error invoking structured output model: {format_exc()}")
226
- logger.info("Attempting to fall back to json mode")
227
- try:
228
- # Fallback to regular LLM with JSON extraction
229
- completion = self.__get_struct_output_model(llm_client, struct_model,
230
- method="json_mode").invoke(messages, config=config)
231
- except (ValueError, OutputParserException) as e2:
232
- logger.error(f"json_mode fallback also failed: {format_exc()}")
233
- logger.info("Attempting to fall back to function_calling")
234
- # Final fallback to function_calling method
235
- completion = self.__get_struct_output_model(llm_client, struct_model,
236
- method="json_schema").invoke(messages, config=config)
237
- result = completion.model_dump()
238
-
239
- # Ensure messages are properly formatted
240
- if result.get('messages') and isinstance(result['messages'], list):
241
- result['messages'] = [{'role': 'assistant', 'content': '\n'.join(result['messages'])}]
242
- else:
243
- # Extract content from initial_completion, handling thinking blocks
244
- fallback_content = result.get(ELITEA_RS, '')
245
- if not fallback_content and initial_completion:
246
- content_parts = self._extract_content_from_completion(initial_completion)
247
- fallback_content = content_parts.get('text') or ''
248
- thinking = content_parts.get('thinking')
249
-
250
- # Dispatch thinking event if present
251
- if thinking:
252
- try:
253
- model_name = getattr(llm_client, 'model_name', None) or getattr(llm_client, 'model', 'LLM')
254
- dispatch_custom_event(
255
- name="thinking_step",
256
- data={
257
- "message": thinking,
258
- "tool_name": f"LLM ({model_name})",
259
- "toolkit": "reasoning",
260
- },
261
- config=config,
262
- )
263
- except Exception as e:
264
- logger.warning(f"Failed to dispatch thinking event: {e}")
265
-
266
- if not fallback_content:
267
- # Final fallback to raw content
268
- content = initial_completion.content
269
- fallback_content = content if isinstance(content, str) else str(content)
270
-
271
- result['messages'] = messages + [AIMessage(content=fallback_content)]
430
+ except ValueError as e:
431
+ # Handle fallback for structured output failures
432
+ completion = self._handle_structured_output_fallback(
433
+ llm_client, messages, struct_model, config, e
434
+ )
435
+ initial_completion = None
436
+ final_messages = messages
437
+
438
+ result = completion.model_dump()
439
+ result = self._format_structured_output_result(result, final_messages, initial_completion or completion)
272
440
 
273
441
  return result
274
442
  else:
@@ -102,7 +102,9 @@ Input Data:
102
102
  logger.debug(f"LoopNode input: {predict_input}")
103
103
  completion = self.client.invoke(predict_input, config=config)
104
104
  logger.debug(f"LoopNode pure output: {completion}")
105
- loop_data = _old_extract_json(completion.content.strip())
105
+ from ..langchain.utils import extract_text_from_completion
106
+ content_text = extract_text_from_completion(completion)
107
+ loop_data = _old_extract_json(content_text.strip())
106
108
  logger.debug(f"LoopNode output: {loop_data}")
107
109
  if self.return_type == "str":
108
110
  accumulated_response = ''
@@ -93,7 +93,9 @@ Answer must be JSON only extractable by JSON.LOADS."""
93
93
  else:
94
94
  input_[-1].content += self.unstructured_output
95
95
  completion = self.client.invoke(input_, config=config)
96
- result = _extract_json(completion.content.strip())
96
+ from ..langchain.utils import extract_text_from_completion
97
+ content_text = extract_text_from_completion(completion)
98
+ result = _extract_json(content_text.strip())
97
99
  try:
98
100
  tool_result: dict | List[dict] = self.tool.invoke(result, config=config, kwargs=kwargs)
99
101
  dispatch_custom_event(