alita-sdk 0.3.528__py3-none-any.whl → 0.3.554__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of alita-sdk might be problematic. Click here for more details.
- alita_sdk/community/__init__.py +8 -4
- alita_sdk/configurations/__init__.py +1 -0
- alita_sdk/configurations/openapi.py +111 -0
- alita_sdk/runtime/clients/client.py +185 -10
- alita_sdk/runtime/langchain/langraph_agent.py +2 -2
- alita_sdk/runtime/langchain/utils.py +46 -0
- alita_sdk/runtime/skills/__init__.py +91 -0
- alita_sdk/runtime/skills/callbacks.py +498 -0
- alita_sdk/runtime/skills/discovery.py +540 -0
- alita_sdk/runtime/skills/executor.py +610 -0
- alita_sdk/runtime/skills/input_builder.py +371 -0
- alita_sdk/runtime/skills/models.py +330 -0
- alita_sdk/runtime/skills/registry.py +355 -0
- alita_sdk/runtime/skills/skill_runner.py +330 -0
- alita_sdk/runtime/toolkits/__init__.py +2 -0
- alita_sdk/runtime/toolkits/skill_router.py +238 -0
- alita_sdk/runtime/toolkits/tools.py +76 -9
- alita_sdk/runtime/tools/__init__.py +3 -1
- alita_sdk/runtime/tools/artifact.py +70 -21
- alita_sdk/runtime/tools/image_generation.py +50 -44
- alita_sdk/runtime/tools/llm.py +363 -44
- alita_sdk/runtime/tools/loop.py +3 -1
- alita_sdk/runtime/tools/loop_output.py +3 -1
- alita_sdk/runtime/tools/skill_router.py +776 -0
- alita_sdk/runtime/tools/tool.py +3 -1
- alita_sdk/runtime/tools/vectorstore.py +7 -2
- alita_sdk/runtime/tools/vectorstore_base.py +7 -2
- alita_sdk/runtime/utils/AlitaCallback.py +2 -1
- alita_sdk/runtime/utils/utils.py +34 -0
- alita_sdk/tools/__init__.py +41 -1
- alita_sdk/tools/ado/work_item/ado_wrapper.py +33 -2
- alita_sdk/tools/base_indexer_toolkit.py +36 -24
- alita_sdk/tools/confluence/api_wrapper.py +5 -6
- alita_sdk/tools/confluence/loader.py +4 -2
- alita_sdk/tools/openapi/__init__.py +280 -120
- alita_sdk/tools/openapi/api_wrapper.py +883 -0
- alita_sdk/tools/openapi/tool.py +20 -0
- alita_sdk/tools/pandas/dataframe/generator/base.py +3 -1
- alita_sdk/tools/servicenow/__init__.py +9 -9
- alita_sdk/tools/servicenow/api_wrapper.py +1 -1
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.554.dist-info}/METADATA +2 -2
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.554.dist-info}/RECORD +46 -33
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.554.dist-info}/WHEEL +0 -0
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.554.dist-info}/entry_points.txt +0 -0
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.554.dist-info}/licenses/LICENSE +0 -0
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.554.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,238 @@
|
|
|
1
|
+
"""
|
|
2
|
+
SkillRouter Toolkit for configuring and accessing specialized skills.
|
|
3
|
+
|
|
4
|
+
This toolkit provides a configurable way to set up the skill router with
|
|
5
|
+
specific skills from filesystem or platform-hosted agents/pipelines.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from typing import List, Optional, TYPE_CHECKING
|
|
9
|
+
from pydantic import create_model, BaseModel, Field, ConfigDict
|
|
10
|
+
from langchain_community.agent_toolkits.base import BaseToolkit
|
|
11
|
+
from langchain_core.tools import BaseTool
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from alita_sdk.clients import AlitaClient
|
|
15
|
+
|
|
16
|
+
from alita_sdk.tools.base.tool import BaseAction
|
|
17
|
+
from alita_sdk.tools.utils import clean_string
|
|
18
|
+
from ..skills import SkillsRegistry, SkillMetadata, SkillType, SkillSource
|
|
19
|
+
from ..tools.skill_router import SkillRouterWrapper
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class SkillConfig(BaseModel):
|
|
23
|
+
"""Configuration for a single skill."""
|
|
24
|
+
|
|
25
|
+
# Platform skill fields (type is implicit from parent field: agents or pipelines)
|
|
26
|
+
id: int = Field(description="Platform ID (for agent/pipeline skills)")
|
|
27
|
+
version_id: int = Field(description="Platform version ID (for agent/pipeline skills)")
|
|
28
|
+
name: Optional[str] = Field(default=None, description="Skill name (optional override)")
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class SkillRouterToolkit(BaseToolkit):
|
|
32
|
+
"""Toolkit for configuring skill router with specific skills."""
|
|
33
|
+
|
|
34
|
+
tools: List[BaseTool] = []
|
|
35
|
+
|
|
36
|
+
@staticmethod
|
|
37
|
+
def toolkit_config_schema() -> BaseModel:
|
|
38
|
+
"""Define the configuration schema for the skill router toolkit."""
|
|
39
|
+
# Get available tools for selected_tools field
|
|
40
|
+
selected_tools_options = {x['name']: x['args_schema'].schema() for x in SkillRouterWrapper.model_construct().get_available_tools()}
|
|
41
|
+
|
|
42
|
+
return create_model(
|
|
43
|
+
"skill_router",
|
|
44
|
+
# Separate fields for agents and pipelines - optional but default to empty lists
|
|
45
|
+
agents=(Optional[List[SkillConfig]], Field(
|
|
46
|
+
description="List of agents to make available as skills",
|
|
47
|
+
default=[],
|
|
48
|
+
json_schema_extra={
|
|
49
|
+
"agent_tags": ["skill"]
|
|
50
|
+
}
|
|
51
|
+
)),
|
|
52
|
+
pipelines=(Optional[List[SkillConfig]], Field(
|
|
53
|
+
description="List of pipelines to make available as skills",
|
|
54
|
+
default=[],
|
|
55
|
+
json_schema_extra={
|
|
56
|
+
"pipeline_tags": ["skill"]
|
|
57
|
+
}
|
|
58
|
+
)),
|
|
59
|
+
prompt=(Optional[str], Field(
|
|
60
|
+
description="Custom system prompt for skill routing",
|
|
61
|
+
default="",
|
|
62
|
+
json_schema_extra={"lines": 4}
|
|
63
|
+
)),
|
|
64
|
+
timeout=(Optional[int], Field(description="Default timeout in seconds for skill execution", default=300)),
|
|
65
|
+
execution_mode=(Optional[str], Field(
|
|
66
|
+
description="Default execution mode for skills",
|
|
67
|
+
default=None,
|
|
68
|
+
json_schema_extra={"enum": ["subprocess", "remote"]}
|
|
69
|
+
)),
|
|
70
|
+
selected_tools=(List[str], Field(
|
|
71
|
+
description="List of tools to enable",
|
|
72
|
+
default=list(selected_tools_options.keys()),
|
|
73
|
+
json_schema_extra={'args_schemas': selected_tools_options}
|
|
74
|
+
)),
|
|
75
|
+
__config__=ConfigDict(json_schema_extra={'metadata': {"label": "Skill Router", "icon_url": None}})
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
@classmethod
|
|
79
|
+
def get_toolkit(
|
|
80
|
+
cls,
|
|
81
|
+
client: 'AlitaClient',
|
|
82
|
+
llm = None,
|
|
83
|
+
toolkit_name: Optional[str] = None,
|
|
84
|
+
selected_tools: List[str] = None,
|
|
85
|
+
agents: List[SkillConfig] = None,
|
|
86
|
+
pipelines: List[SkillConfig] = None,
|
|
87
|
+
prompt: Optional[str] = None,
|
|
88
|
+
timeout: Optional[int] = None,
|
|
89
|
+
execution_mode: Optional[str] = None
|
|
90
|
+
):
|
|
91
|
+
"""Create a skill router toolkit with configured skills."""
|
|
92
|
+
|
|
93
|
+
if selected_tools is None:
|
|
94
|
+
selected_tools = []
|
|
95
|
+
|
|
96
|
+
# Create a custom registry for this toolkit
|
|
97
|
+
registry = SkillsRegistry(search_paths=[])
|
|
98
|
+
|
|
99
|
+
# Helper function to process skill configs
|
|
100
|
+
def add_skills_to_registry(skill_configs, skill_type):
|
|
101
|
+
if skill_configs:
|
|
102
|
+
for skill_config_dict in skill_configs:
|
|
103
|
+
# Convert dict to SkillConfig object
|
|
104
|
+
skill_config = SkillConfig(**skill_config_dict)
|
|
105
|
+
skill_metadata = cls._create_skill_from_config(skill_config, client, skill_type)
|
|
106
|
+
if skill_metadata:
|
|
107
|
+
# Add skill to registry manually
|
|
108
|
+
registry.discovery.cache[skill_metadata.name] = skill_metadata
|
|
109
|
+
|
|
110
|
+
# Add configured agents (if provided)
|
|
111
|
+
add_skills_to_registry(agents or [], "agent")
|
|
112
|
+
|
|
113
|
+
# Add configured pipelines (if provided)
|
|
114
|
+
add_skills_to_registry(pipelines or [], "pipeline")
|
|
115
|
+
|
|
116
|
+
# Create skill router wrapper with custom configuration
|
|
117
|
+
wrapper = SkillRouterWrapper(
|
|
118
|
+
registry=registry,
|
|
119
|
+
alita_client=client,
|
|
120
|
+
llm=llm,
|
|
121
|
+
enable_callbacks=True,
|
|
122
|
+
default_timeout=timeout,
|
|
123
|
+
default_execution_mode=execution_mode,
|
|
124
|
+
custom_prompt=prompt
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
# Get available tools from wrapper
|
|
128
|
+
available_tools = wrapper.get_available_tools()
|
|
129
|
+
|
|
130
|
+
# Filter by selected_tools if provided
|
|
131
|
+
tools = []
|
|
132
|
+
toolkit_context = f" [Toolkit: {clean_string(toolkit_name, 0)}]" if toolkit_name else ''
|
|
133
|
+
|
|
134
|
+
for tool in available_tools:
|
|
135
|
+
if selected_tools:
|
|
136
|
+
if tool["name"] not in selected_tools:
|
|
137
|
+
continue
|
|
138
|
+
|
|
139
|
+
# Add toolkit context to description with character limit
|
|
140
|
+
description = tool["description"]
|
|
141
|
+
if toolkit_context and len(description + toolkit_context) <= 1000:
|
|
142
|
+
description = description + toolkit_context
|
|
143
|
+
|
|
144
|
+
# Wrap in BaseAction
|
|
145
|
+
tools.append(BaseAction(
|
|
146
|
+
api_wrapper=wrapper,
|
|
147
|
+
name=tool["name"],
|
|
148
|
+
description=description,
|
|
149
|
+
args_schema=tool["args_schema"],
|
|
150
|
+
metadata={"toolkit_name": toolkit_name} if toolkit_name else {}
|
|
151
|
+
))
|
|
152
|
+
|
|
153
|
+
return cls(tools=tools)
|
|
154
|
+
|
|
155
|
+
@classmethod
|
|
156
|
+
def _create_skill_from_config(cls, config: SkillConfig, client: 'AlitaClient', skill_type: str) -> Optional[SkillMetadata]:
|
|
157
|
+
"""Create SkillMetadata from SkillConfig.
|
|
158
|
+
|
|
159
|
+
Args:
|
|
160
|
+
config: SkillConfig with id, version_id, and optional name
|
|
161
|
+
client: AlitaClient for fetching skill details
|
|
162
|
+
skill_type: Either "agent" or "pipeline" (from parent field)
|
|
163
|
+
"""
|
|
164
|
+
try:
|
|
165
|
+
# Get skill details from platform
|
|
166
|
+
if skill_type == "agent":
|
|
167
|
+
skill_details = cls._get_agent_details(client, config.id, config.version_id)
|
|
168
|
+
metadata_type = SkillType.AGENT
|
|
169
|
+
else: # pipeline
|
|
170
|
+
skill_details = cls._get_pipeline_details(client, config.id, config.version_id)
|
|
171
|
+
metadata_type = SkillType.PIPELINE
|
|
172
|
+
|
|
173
|
+
# Create SkillMetadata for platform skill
|
|
174
|
+
return SkillMetadata(
|
|
175
|
+
name=config.name or skill_details.get('name', f"{skill_type}_{config.id}"),
|
|
176
|
+
skill_type=metadata_type,
|
|
177
|
+
source=SkillSource.PLATFORM,
|
|
178
|
+
id=config.id,
|
|
179
|
+
version_id=config.version_id,
|
|
180
|
+
description=skill_details.get('description', ''),
|
|
181
|
+
capabilities=skill_details.get('capabilities', []),
|
|
182
|
+
tags=skill_details.get('tags', []),
|
|
183
|
+
version=skill_details.get('version', '1.0.0'),
|
|
184
|
+
# Set default execution config - platform skills run remotely
|
|
185
|
+
execution={"mode": "remote", "timeout": 300},
|
|
186
|
+
results={"format": "text_with_links"},
|
|
187
|
+
inputs={},
|
|
188
|
+
outputs={}
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
except Exception as e:
|
|
192
|
+
import logging
|
|
193
|
+
logging.getLogger(__name__).error(f"Failed to create skill from config {config}: {e}")
|
|
194
|
+
return None
|
|
195
|
+
|
|
196
|
+
@classmethod
|
|
197
|
+
def _get_agent_details(cls, client: 'AlitaClient', agent_id: int, version_id: int) -> dict:
|
|
198
|
+
"""Get agent details from platform."""
|
|
199
|
+
try:
|
|
200
|
+
app_details = client.get_app_details(agent_id)
|
|
201
|
+
version_details = client.get_app_version_details(agent_id, version_id)
|
|
202
|
+
|
|
203
|
+
return {
|
|
204
|
+
'name': app_details.get('name', f'agent_{agent_id}'),
|
|
205
|
+
'description': app_details.get('description', ''),
|
|
206
|
+
'capabilities': [], # Could be extracted from app metadata
|
|
207
|
+
'tags': [], # Could be extracted from app metadata
|
|
208
|
+
'version': version_details.get('version', '1.0.0')
|
|
209
|
+
}
|
|
210
|
+
except Exception as e:
|
|
211
|
+
import logging
|
|
212
|
+
logging.getLogger(__name__).error(f"Failed to get agent details for {agent_id}/{version_id}: {e}")
|
|
213
|
+
return {'name': f'agent_{agent_id}', 'description': 'Platform-hosted agent'}
|
|
214
|
+
|
|
215
|
+
@classmethod
|
|
216
|
+
def _get_pipeline_details(cls, client: 'AlitaClient', pipeline_id: int, version_id: int) -> dict:
|
|
217
|
+
"""Get pipeline details from platform."""
|
|
218
|
+
try:
|
|
219
|
+
# For now, use the same method as agents since they use the same API
|
|
220
|
+
# In the future, this might use a different endpoint for pipelines
|
|
221
|
+
app_details = client.get_app_details(pipeline_id)
|
|
222
|
+
version_details = client.get_app_version_details(pipeline_id, version_id)
|
|
223
|
+
|
|
224
|
+
return {
|
|
225
|
+
'name': app_details.get('name', f'pipeline_{pipeline_id}'),
|
|
226
|
+
'description': app_details.get('description', ''),
|
|
227
|
+
'capabilities': [], # Could be extracted from pipeline metadata
|
|
228
|
+
'tags': [], # Could be extracted from pipeline metadata
|
|
229
|
+
'version': version_details.get('version', '1.0.0')
|
|
230
|
+
}
|
|
231
|
+
except Exception as e:
|
|
232
|
+
import logging
|
|
233
|
+
logging.getLogger(__name__).error(f"Failed to get pipeline details for {pipeline_id}/{version_id}: {e}")
|
|
234
|
+
return {'name': f'pipeline_{pipeline_id}', 'description': 'Platform-hosted pipeline'}
|
|
235
|
+
|
|
236
|
+
def get_tools(self):
|
|
237
|
+
"""Get the configured tools."""
|
|
238
|
+
return self.tools
|
|
@@ -14,6 +14,7 @@ from .prompt import PromptToolkit
|
|
|
14
14
|
from .subgraph import SubgraphToolkit
|
|
15
15
|
from .vectorstore import VectorStoreToolkit
|
|
16
16
|
from .mcp import McpToolkit
|
|
17
|
+
from .skill_router import SkillRouterToolkit
|
|
17
18
|
from ..tools.mcp_server_tool import McpServerTool
|
|
18
19
|
from ..tools.sandbox import SandboxToolkit
|
|
19
20
|
from ..tools.image_generation import ImageGenerationToolkit
|
|
@@ -35,19 +36,50 @@ def get_toolkits():
|
|
|
35
36
|
VectorStoreToolkit.toolkit_config_schema(),
|
|
36
37
|
SandboxToolkit.toolkit_config_schema(),
|
|
37
38
|
ImageGenerationToolkit.toolkit_config_schema(),
|
|
38
|
-
McpToolkit.toolkit_config_schema()
|
|
39
|
+
McpToolkit.toolkit_config_schema(),
|
|
40
|
+
SkillRouterToolkit.toolkit_config_schema()
|
|
39
41
|
]
|
|
40
42
|
|
|
41
43
|
return core_toolkits + community_toolkits() + alita_toolkits()
|
|
42
44
|
|
|
43
45
|
|
|
44
46
|
def get_tools(tools_list: list, alita_client=None, llm=None, memory_store: BaseStore = None, debug_mode: Optional[bool] = False, mcp_tokens: Optional[dict] = None, conversation_id: Optional[str] = None, ignored_mcp_servers: Optional[list] = None) -> list:
|
|
47
|
+
# Sanitize tools_list to handle corrupted tool configurations
|
|
48
|
+
sanitized_tools = []
|
|
49
|
+
for tool in tools_list:
|
|
50
|
+
if isinstance(tool, dict):
|
|
51
|
+
# Check for corrupted structure where 'type' and 'name' contain the full tool config
|
|
52
|
+
if 'type' in tool and isinstance(tool['type'], dict):
|
|
53
|
+
# This is a corrupted tool - use the inner dict instead
|
|
54
|
+
logger.warning(f"Detected corrupted tool configuration (type=dict), fixing: {tool}")
|
|
55
|
+
actual_tool = tool['type'] # or tool['name'], they should be the same
|
|
56
|
+
sanitized_tools.append(actual_tool)
|
|
57
|
+
elif 'name' in tool and isinstance(tool['name'], dict):
|
|
58
|
+
# Another corruption pattern where name contains the full config
|
|
59
|
+
logger.warning(f"Detected corrupted tool configuration (name=dict), fixing: {tool}")
|
|
60
|
+
actual_tool = tool['name']
|
|
61
|
+
sanitized_tools.append(actual_tool)
|
|
62
|
+
elif 'type' in tool and isinstance(tool['type'], str):
|
|
63
|
+
# Valid tool configuration
|
|
64
|
+
sanitized_tools.append(tool)
|
|
65
|
+
else:
|
|
66
|
+
# Skip invalid/corrupted tools that can't be fixed
|
|
67
|
+
logger.warning(f"Skipping invalid tool configuration: {tool}")
|
|
68
|
+
else:
|
|
69
|
+
logger.warning(f"Skipping non-dict tool: {tool}")
|
|
70
|
+
# Skip non-dict tools
|
|
71
|
+
|
|
45
72
|
prompts = []
|
|
46
73
|
tools = []
|
|
74
|
+
unhandled_tools = [] # Track tools not handled by main processing
|
|
47
75
|
|
|
48
|
-
for tool in
|
|
76
|
+
for tool in sanitized_tools:
|
|
77
|
+
# Flag to track if this tool was processed by the main loop
|
|
78
|
+
# Used to prevent double processing by fallback systems
|
|
79
|
+
tool_handled = False
|
|
49
80
|
try:
|
|
50
81
|
if tool['type'] == 'datasource':
|
|
82
|
+
tool_handled = True
|
|
51
83
|
tools.extend(DatasourcesToolkit.get_toolkit(
|
|
52
84
|
alita_client,
|
|
53
85
|
datasource_ids=[int(tool['settings']['datasource_id'])],
|
|
@@ -55,6 +87,7 @@ def get_tools(tools_list: list, alita_client=None, llm=None, memory_store: BaseS
|
|
|
55
87
|
toolkit_name=tool.get('toolkit_name', '') or tool.get('name', '')
|
|
56
88
|
).get_tools())
|
|
57
89
|
elif tool['type'] == 'application':
|
|
90
|
+
tool_handled = True
|
|
58
91
|
tools.extend(ApplicationToolkit.get_toolkit(
|
|
59
92
|
alita_client,
|
|
60
93
|
application_id=int(tool['settings']['application_id']),
|
|
@@ -74,6 +107,7 @@ def get_tools(tools_list: list, alita_client=None, llm=None, memory_store: BaseS
|
|
|
74
107
|
llm=llm
|
|
75
108
|
))
|
|
76
109
|
elif tool['type'] == 'memory':
|
|
110
|
+
tool_handled = True
|
|
77
111
|
tools += MemoryToolkit.get_toolkit(
|
|
78
112
|
namespace=tool['settings'].get('namespace', str(tool['id'])),
|
|
79
113
|
pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
|
|
@@ -81,6 +115,7 @@ def get_tools(tools_list: list, alita_client=None, llm=None, memory_store: BaseS
|
|
|
81
115
|
).get_tools()
|
|
82
116
|
# TODO: update configuration of internal tools
|
|
83
117
|
elif tool['type'] == 'internal_tool':
|
|
118
|
+
tool_handled = True
|
|
84
119
|
if tool['name'] == 'pyodide':
|
|
85
120
|
tools += SandboxToolkit.get_toolkit(
|
|
86
121
|
stateful=False,
|
|
@@ -101,6 +136,7 @@ def get_tools(tools_list: list, alita_client=None, llm=None, memory_store: BaseS
|
|
|
101
136
|
conversation_id=conversation_id,
|
|
102
137
|
).get_tools()
|
|
103
138
|
elif tool['type'] == 'artifact':
|
|
139
|
+
tool_handled = True
|
|
104
140
|
toolkit_tools = ArtifactToolkit.get_toolkit(
|
|
105
141
|
client=alita_client,
|
|
106
142
|
bucket=tool['settings']['bucket'],
|
|
@@ -119,11 +155,13 @@ def get_tools(tools_list: list, alita_client=None, llm=None, memory_store: BaseS
|
|
|
119
155
|
tools.extend(toolkit_tools)
|
|
120
156
|
|
|
121
157
|
elif tool['type'] == 'vectorstore':
|
|
158
|
+
tool_handled = True
|
|
122
159
|
tools.extend(VectorStoreToolkit.get_toolkit(
|
|
123
160
|
llm=llm,
|
|
124
161
|
toolkit_name=tool.get('toolkit_name', ''),
|
|
125
162
|
**tool['settings']).get_tools())
|
|
126
163
|
elif tool['type'] == 'planning':
|
|
164
|
+
tool_handled = True
|
|
127
165
|
# Planning toolkit for multi-step task tracking
|
|
128
166
|
settings = tool.get('settings', {})
|
|
129
167
|
|
|
@@ -163,6 +201,7 @@ def get_tools(tools_list: list, alita_client=None, llm=None, memory_store: BaseS
|
|
|
163
201
|
conversation_id=conversation_id or settings.get('conversation_id'),
|
|
164
202
|
).get_tools())
|
|
165
203
|
elif tool['type'] == 'mcp':
|
|
204
|
+
tool_handled = True
|
|
166
205
|
# remote mcp tool initialization with token injection
|
|
167
206
|
settings = dict(tool['settings'])
|
|
168
207
|
url = settings.get('url')
|
|
@@ -214,6 +253,28 @@ def get_tools(tools_list: list, alita_client=None, llm=None, memory_store: BaseS
|
|
|
214
253
|
toolkit_name=tool.get('toolkit_name', ''),
|
|
215
254
|
client=alita_client,
|
|
216
255
|
**settings).get_tools())
|
|
256
|
+
elif tool['type'] == 'skill_router':
|
|
257
|
+
tool_handled = True
|
|
258
|
+
# Skills Registry Router Toolkit
|
|
259
|
+
logger.info(f"Processing skill_router toolkit: {tool}")
|
|
260
|
+
try:
|
|
261
|
+
settings = tool.get('settings', {})
|
|
262
|
+
toolkit_name = tool.get('toolkit_name', '')
|
|
263
|
+
selected_tools = settings.get('selected_tools', [])
|
|
264
|
+
|
|
265
|
+
toolkit_tools = SkillRouterToolkit.get_toolkit(
|
|
266
|
+
client=alita_client,
|
|
267
|
+
llm=llm,
|
|
268
|
+
toolkit_name=toolkit_name,
|
|
269
|
+
selected_tools=selected_tools,
|
|
270
|
+
**settings
|
|
271
|
+
).get_tools()
|
|
272
|
+
|
|
273
|
+
tools.extend(toolkit_tools)
|
|
274
|
+
logger.info(f"✅ Successfully added {len(toolkit_tools)} tools from SkillRouterToolkit")
|
|
275
|
+
except Exception as e:
|
|
276
|
+
logger.error(f"❌ Failed to initialize SkillRouterToolkit: {e}")
|
|
277
|
+
raise
|
|
217
278
|
except McpAuthorizationRequired:
|
|
218
279
|
# Re-raise auth required exceptions directly
|
|
219
280
|
raise
|
|
@@ -224,17 +285,23 @@ def get_tools(tools_list: list, alita_client=None, llm=None, memory_store: BaseS
|
|
|
224
285
|
continue
|
|
225
286
|
else:
|
|
226
287
|
raise ToolException(f"Error initializing toolkit for tool '{tool.get('name', 'unknown')}': {e}")
|
|
227
|
-
|
|
288
|
+
|
|
289
|
+
# Track unhandled tools (make a copy to avoid reference issues)
|
|
290
|
+
if not tool_handled:
|
|
291
|
+
# Ensure we only add valid tool configurations to unhandled_tools
|
|
292
|
+
if isinstance(tool, dict) and 'type' in tool and isinstance(tool['type'], str):
|
|
293
|
+
unhandled_tools.append(dict(tool))
|
|
294
|
+
|
|
228
295
|
if len(prompts) > 0:
|
|
229
296
|
tools += PromptToolkit.get_toolkit(alita_client, prompts).get_tools()
|
|
230
|
-
|
|
231
|
-
# Add community tools
|
|
232
|
-
tools += community_tools(
|
|
233
|
-
# Add alita tools
|
|
234
|
-
tools += alita_tools(
|
|
297
|
+
|
|
298
|
+
# Add community tools (only for unhandled tools)
|
|
299
|
+
tools += community_tools(unhandled_tools, alita_client, llm)
|
|
300
|
+
# Add alita tools (only for unhandled tools)
|
|
301
|
+
tools += alita_tools(unhandled_tools, alita_client, llm, memory_store)
|
|
235
302
|
# Add MCP tools registered via alita-mcp CLI (static registry)
|
|
236
303
|
# Note: Tools with type='mcp' are already handled in main loop above
|
|
237
|
-
tools += _mcp_tools(
|
|
304
|
+
tools += _mcp_tools(unhandled_tools, alita_client)
|
|
238
305
|
|
|
239
306
|
# Sanitize tool names to meet OpenAI's function naming requirements
|
|
240
307
|
# tools = _sanitize_tool_names(tools)
|
|
@@ -10,6 +10,7 @@ from .image_generation import (
|
|
|
10
10
|
create_image_generation_tool,
|
|
11
11
|
ImageGenerationToolkit
|
|
12
12
|
)
|
|
13
|
+
from .skill_router import SkillRouterWrapper
|
|
13
14
|
|
|
14
15
|
__all__ = [
|
|
15
16
|
"PyodideSandboxTool",
|
|
@@ -18,5 +19,6 @@ __all__ = [
|
|
|
18
19
|
"EchoTool",
|
|
19
20
|
"ImageGenerationTool",
|
|
20
21
|
"ImageGenerationToolkit",
|
|
21
|
-
"create_image_generation_tool"
|
|
22
|
+
"create_image_generation_tool",
|
|
23
|
+
"SkillRouterWrapper"
|
|
22
24
|
]
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import base64
|
|
1
2
|
import hashlib
|
|
2
3
|
import io
|
|
3
4
|
import json
|
|
@@ -14,7 +15,7 @@ from pydantic import create_model, Field, model_validator
|
|
|
14
15
|
from ...tools.non_code_indexer_toolkit import NonCodeIndexerToolkit
|
|
15
16
|
from ...tools.utils.available_tools_decorator import extend_with_parent_available_tools
|
|
16
17
|
from ...tools.elitea_base import extend_with_file_operations, BaseCodeToolApiWrapper
|
|
17
|
-
from ...runtime.utils.utils import IndexerKeywords
|
|
18
|
+
from ...runtime.utils.utils import IndexerKeywords, resolve_image_from_cache
|
|
18
19
|
|
|
19
20
|
|
|
20
21
|
class ArtifactWrapper(NonCodeIndexerToolkit):
|
|
@@ -63,23 +64,30 @@ class ArtifactWrapper(NonCodeIndexerToolkit):
|
|
|
63
64
|
if was_modified:
|
|
64
65
|
logging.warning(f"Filename sanitized: '{filename}' -> '{sanitized_filename}'")
|
|
65
66
|
|
|
67
|
+
# Auto-detect and extract base64 from image_url structures (from image_generation tool)
|
|
68
|
+
# Returns tuple: (processed_data, is_from_image_generation)
|
|
69
|
+
filedata, is_from_image_generation = self._extract_base64_if_needed(filedata)
|
|
70
|
+
|
|
66
71
|
if sanitized_filename.endswith(".xlsx"):
|
|
67
72
|
data = json.loads(filedata)
|
|
68
73
|
filedata = self.create_xlsx_filedata(data)
|
|
69
74
|
|
|
70
75
|
result = self.artifact.create(sanitized_filename, filedata, bucket_name)
|
|
71
76
|
|
|
72
|
-
#
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
"
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
"
|
|
81
|
-
|
|
82
|
-
|
|
77
|
+
# Skip file_modified event for images from image_generation tool
|
|
78
|
+
# These are already tracked in the tool output and don't need duplicate events
|
|
79
|
+
if not is_from_image_generation:
|
|
80
|
+
# Dispatch custom event for file creation
|
|
81
|
+
dispatch_custom_event("file_modified", {
|
|
82
|
+
"message": f"File '{filename}' created successfully",
|
|
83
|
+
"filename": filename,
|
|
84
|
+
"tool_name": "createFile",
|
|
85
|
+
"toolkit": "artifact",
|
|
86
|
+
"operation_type": "create",
|
|
87
|
+
"meta": {
|
|
88
|
+
"bucket": bucket_name or self.bucket
|
|
89
|
+
}
|
|
90
|
+
})
|
|
83
91
|
|
|
84
92
|
return result
|
|
85
93
|
|
|
@@ -109,6 +117,43 @@ class ArtifactWrapper(NonCodeIndexerToolkit):
|
|
|
109
117
|
|
|
110
118
|
sanitized = sanitized_name + extension
|
|
111
119
|
return sanitized, (sanitized != original)
|
|
120
|
+
|
|
121
|
+
def _extract_base64_if_needed(self, filedata: str) -> tuple[str | bytes, bool]:
|
|
122
|
+
"""
|
|
123
|
+
Resolve cached_image_id references from cache and decode to binary data.
|
|
124
|
+
|
|
125
|
+
Requires JSON format with cached_image_id field: {"cached_image_id": "img_xxx"}
|
|
126
|
+
LLM must extract specific cached_image_id from generate_image response.
|
|
127
|
+
|
|
128
|
+
Returns:
|
|
129
|
+
tuple: (processed_data, is_from_image_generation)
|
|
130
|
+
- processed_data: Original filedata or resolved binary image data
|
|
131
|
+
- is_from_image_generation: True if data came from image_generation cache
|
|
132
|
+
"""
|
|
133
|
+
if not filedata or not isinstance(filedata, str):
|
|
134
|
+
return filedata, False
|
|
135
|
+
|
|
136
|
+
# Require JSON format - fail fast if not JSON
|
|
137
|
+
if '{' not in filedata:
|
|
138
|
+
return filedata, False
|
|
139
|
+
|
|
140
|
+
try:
|
|
141
|
+
data = json.loads(filedata)
|
|
142
|
+
except json.JSONDecodeError:
|
|
143
|
+
# Not valid JSON, return as-is (regular file content)
|
|
144
|
+
return filedata, False
|
|
145
|
+
|
|
146
|
+
if not isinstance(data, dict):
|
|
147
|
+
return filedata, False
|
|
148
|
+
|
|
149
|
+
# Only accept direct cached_image_id format: {"cached_image_id": "img_xxx"}
|
|
150
|
+
# LLM must parse generate_image response and extract specific cached_image_id
|
|
151
|
+
if 'cached_image_id' in data:
|
|
152
|
+
binary_data = resolve_image_from_cache(self.alita, data['cached_image_id'])
|
|
153
|
+
return binary_data, True # Mark as from image_generation
|
|
154
|
+
|
|
155
|
+
# If JSON doesn't have cached_image_id, treat as regular file content
|
|
156
|
+
return filedata, False
|
|
112
157
|
|
|
113
158
|
def create_xlsx_filedata(self, data: dict[str, list[list]]) -> bytes:
|
|
114
159
|
try:
|
|
@@ -377,15 +422,19 @@ class ArtifactWrapper(NonCodeIndexerToolkit):
|
|
|
377
422
|
"createFile",
|
|
378
423
|
filename=(str, Field(description="Filename")),
|
|
379
424
|
filedata=(str, Field(description="""Stringified content of the file.
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
425
|
+
|
|
426
|
+
Supports three input formats:
|
|
427
|
+
|
|
428
|
+
1. CACHED IMAGE REFERENCE (for generated/cached images):
|
|
429
|
+
Pass JSON with cached_image_id field: {"cached_image_id": "img_xxx"}
|
|
430
|
+
The tool will automatically resolve and decode the image from cache.
|
|
431
|
+
This is typically used when another tool returns an image reference.
|
|
432
|
+
|
|
433
|
+
2. EXCEL FILES (.xlsx extension):
|
|
434
|
+
Pass JSON with sheet structure: {"Sheet1": [["Name", "Age"], ["Alice", 25], ["Bob", 30]]}
|
|
435
|
+
|
|
436
|
+
3. TEXT/OTHER FILES:
|
|
437
|
+
Pass the plain text string directly.
|
|
389
438
|
""")),
|
|
390
439
|
bucket_name=bucket_name
|
|
391
440
|
)
|