alita-sdk 0.3.528__py3-none-any.whl → 0.3.532__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of alita-sdk might be problematic. Click here for more details.
- alita_sdk/runtime/clients/client.py +24 -5
- alita_sdk/runtime/tools/artifact.py +70 -21
- alita_sdk/runtime/tools/image_generation.py +50 -44
- alita_sdk/runtime/tools/llm.py +164 -13
- alita_sdk/runtime/utils/AlitaCallback.py +2 -1
- alita_sdk/runtime/utils/utils.py +34 -0
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.532.dist-info}/METADATA +2 -2
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.532.dist-info}/RECORD +12 -12
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.532.dist-info}/WHEEL +0 -0
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.532.dist-info}/entry_points.txt +0 -0
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.532.dist-info}/licenses/LICENSE +0 -0
- {alita_sdk-0.3.528.dist-info → alita_sdk-0.3.532.dist-info}/top_level.txt +0 -0
|
@@ -44,6 +44,7 @@ class AlitaClient:
|
|
|
44
44
|
self.base_url = base_url.rstrip('/')
|
|
45
45
|
self.api_path = '/api/v1'
|
|
46
46
|
self.llm_path = '/llm/v1'
|
|
47
|
+
self.allm_path = '/llm'
|
|
47
48
|
self.project_id = project_id
|
|
48
49
|
self.auth_token = auth_token
|
|
49
50
|
self.headers = {
|
|
@@ -75,6 +76,10 @@ class AlitaClient:
|
|
|
75
76
|
self.configurations: list = configurations or []
|
|
76
77
|
self.model_timeout = kwargs.get('model_timeout', 120)
|
|
77
78
|
self.model_image_generation = kwargs.get('model_image_generation')
|
|
79
|
+
|
|
80
|
+
# Cache for generated images to avoid token consumption
|
|
81
|
+
# This is used by image_generation and artifact toolkits to pass data via reference
|
|
82
|
+
self._generated_images_cache: Dict[str, Dict[str, Any]] = {}
|
|
78
83
|
|
|
79
84
|
def get_mcp_toolkits(self):
|
|
80
85
|
if user_id := self._get_real_user_id():
|
|
@@ -264,17 +269,32 @@ class AlitaClient:
|
|
|
264
269
|
if is_anthropic:
|
|
265
270
|
# ChatAnthropic configuration
|
|
266
271
|
target_kwargs = {
|
|
267
|
-
"base_url": f"{self.base_url}{self.
|
|
272
|
+
"base_url": f"{self.base_url}{self.allm_path}",
|
|
268
273
|
"model": model_name,
|
|
269
274
|
"api_key": self.auth_token,
|
|
270
275
|
"streaming": model_config.get("streaming", True),
|
|
271
276
|
"max_tokens": llm_max_tokens,
|
|
272
|
-
"effort": model_config.get("reasoning_effort"),
|
|
273
277
|
"temperature": model_config.get("temperature"),
|
|
274
278
|
"max_retries": model_config.get("max_retries", 3),
|
|
275
|
-
"default_headers": {"openai-organization": str(self.project_id)
|
|
279
|
+
"default_headers": {"openai-organization": str(self.project_id),
|
|
280
|
+
"Authorization": f"Bearer {self.auth_token}"},
|
|
276
281
|
}
|
|
277
|
-
|
|
282
|
+
|
|
283
|
+
# TODO": Check on ChatAnthropic client when they get "effort" support back
|
|
284
|
+
if model_config.get("reasoning_effort"):
|
|
285
|
+
if model_config["reasoning_effort"].lower() == "low":
|
|
286
|
+
target_kwargs['thinking'] = {"type": "enabled", "budget_tokens": 2048}
|
|
287
|
+
target_kwargs['temperature'] = 1
|
|
288
|
+
target_kwargs["max_tokens"] = 2048 + target_kwargs["max_tokens"]
|
|
289
|
+
elif model_config["reasoning_effort"].lower() == "medium":
|
|
290
|
+
target_kwargs['thinking'] = {"type": "enabled", "budget_tokens": 4096}
|
|
291
|
+
target_kwargs['temperature'] = 1
|
|
292
|
+
target_kwargs["max_tokens"] = 4096 + target_kwargs["max_tokens"]
|
|
293
|
+
elif model_config["reasoning_effort"].lower() == "high":
|
|
294
|
+
target_kwargs['thinking'] = {"type": "enabled", "budget_tokens": 9092}
|
|
295
|
+
target_kwargs['temperature'] = 1
|
|
296
|
+
target_kwargs["max_tokens"] = 9092 + target_kwargs["max_tokens"]
|
|
297
|
+
|
|
278
298
|
# Add http_client if provided
|
|
279
299
|
if "http_client" in model_config:
|
|
280
300
|
target_kwargs["http_client"] = model_config["http_client"]
|
|
@@ -300,7 +320,6 @@ class AlitaClient:
|
|
|
300
320
|
target_kwargs["use_responses_api"] = True
|
|
301
321
|
|
|
302
322
|
llm = ChatOpenAI(**target_kwargs)
|
|
303
|
-
|
|
304
323
|
return llm
|
|
305
324
|
|
|
306
325
|
def generate_image(self,
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import base64
|
|
1
2
|
import hashlib
|
|
2
3
|
import io
|
|
3
4
|
import json
|
|
@@ -14,7 +15,7 @@ from pydantic import create_model, Field, model_validator
|
|
|
14
15
|
from ...tools.non_code_indexer_toolkit import NonCodeIndexerToolkit
|
|
15
16
|
from ...tools.utils.available_tools_decorator import extend_with_parent_available_tools
|
|
16
17
|
from ...tools.elitea_base import extend_with_file_operations, BaseCodeToolApiWrapper
|
|
17
|
-
from ...runtime.utils.utils import IndexerKeywords
|
|
18
|
+
from ...runtime.utils.utils import IndexerKeywords, resolve_image_from_cache
|
|
18
19
|
|
|
19
20
|
|
|
20
21
|
class ArtifactWrapper(NonCodeIndexerToolkit):
|
|
@@ -63,23 +64,30 @@ class ArtifactWrapper(NonCodeIndexerToolkit):
|
|
|
63
64
|
if was_modified:
|
|
64
65
|
logging.warning(f"Filename sanitized: '{filename}' -> '{sanitized_filename}'")
|
|
65
66
|
|
|
67
|
+
# Auto-detect and extract base64 from image_url structures (from image_generation tool)
|
|
68
|
+
# Returns tuple: (processed_data, is_from_image_generation)
|
|
69
|
+
filedata, is_from_image_generation = self._extract_base64_if_needed(filedata)
|
|
70
|
+
|
|
66
71
|
if sanitized_filename.endswith(".xlsx"):
|
|
67
72
|
data = json.loads(filedata)
|
|
68
73
|
filedata = self.create_xlsx_filedata(data)
|
|
69
74
|
|
|
70
75
|
result = self.artifact.create(sanitized_filename, filedata, bucket_name)
|
|
71
76
|
|
|
72
|
-
#
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
"
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
"
|
|
81
|
-
|
|
82
|
-
|
|
77
|
+
# Skip file_modified event for images from image_generation tool
|
|
78
|
+
# These are already tracked in the tool output and don't need duplicate events
|
|
79
|
+
if not is_from_image_generation:
|
|
80
|
+
# Dispatch custom event for file creation
|
|
81
|
+
dispatch_custom_event("file_modified", {
|
|
82
|
+
"message": f"File '{filename}' created successfully",
|
|
83
|
+
"filename": filename,
|
|
84
|
+
"tool_name": "createFile",
|
|
85
|
+
"toolkit": "artifact",
|
|
86
|
+
"operation_type": "create",
|
|
87
|
+
"meta": {
|
|
88
|
+
"bucket": bucket_name or self.bucket
|
|
89
|
+
}
|
|
90
|
+
})
|
|
83
91
|
|
|
84
92
|
return result
|
|
85
93
|
|
|
@@ -109,6 +117,43 @@ class ArtifactWrapper(NonCodeIndexerToolkit):
|
|
|
109
117
|
|
|
110
118
|
sanitized = sanitized_name + extension
|
|
111
119
|
return sanitized, (sanitized != original)
|
|
120
|
+
|
|
121
|
+
def _extract_base64_if_needed(self, filedata: str) -> tuple[str | bytes, bool]:
|
|
122
|
+
"""
|
|
123
|
+
Resolve cached_image_id references from cache and decode to binary data.
|
|
124
|
+
|
|
125
|
+
Requires JSON format with cached_image_id field: {"cached_image_id": "img_xxx"}
|
|
126
|
+
LLM must extract specific cached_image_id from generate_image response.
|
|
127
|
+
|
|
128
|
+
Returns:
|
|
129
|
+
tuple: (processed_data, is_from_image_generation)
|
|
130
|
+
- processed_data: Original filedata or resolved binary image data
|
|
131
|
+
- is_from_image_generation: True if data came from image_generation cache
|
|
132
|
+
"""
|
|
133
|
+
if not filedata or not isinstance(filedata, str):
|
|
134
|
+
return filedata, False
|
|
135
|
+
|
|
136
|
+
# Require JSON format - fail fast if not JSON
|
|
137
|
+
if '{' not in filedata:
|
|
138
|
+
return filedata, False
|
|
139
|
+
|
|
140
|
+
try:
|
|
141
|
+
data = json.loads(filedata)
|
|
142
|
+
except json.JSONDecodeError:
|
|
143
|
+
# Not valid JSON, return as-is (regular file content)
|
|
144
|
+
return filedata, False
|
|
145
|
+
|
|
146
|
+
if not isinstance(data, dict):
|
|
147
|
+
return filedata, False
|
|
148
|
+
|
|
149
|
+
# Only accept direct cached_image_id format: {"cached_image_id": "img_xxx"}
|
|
150
|
+
# LLM must parse generate_image response and extract specific cached_image_id
|
|
151
|
+
if 'cached_image_id' in data:
|
|
152
|
+
binary_data = resolve_image_from_cache(self.alita, data['cached_image_id'])
|
|
153
|
+
return binary_data, True # Mark as from image_generation
|
|
154
|
+
|
|
155
|
+
# If JSON doesn't have cached_image_id, treat as regular file content
|
|
156
|
+
return filedata, False
|
|
112
157
|
|
|
113
158
|
def create_xlsx_filedata(self, data: dict[str, list[list]]) -> bytes:
|
|
114
159
|
try:
|
|
@@ -377,15 +422,19 @@ class ArtifactWrapper(NonCodeIndexerToolkit):
|
|
|
377
422
|
"createFile",
|
|
378
423
|
filename=(str, Field(description="Filename")),
|
|
379
424
|
filedata=(str, Field(description="""Stringified content of the file.
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
425
|
+
|
|
426
|
+
Supports three input formats:
|
|
427
|
+
|
|
428
|
+
1. CACHED IMAGE REFERENCE (for generated/cached images):
|
|
429
|
+
Pass JSON with cached_image_id field: {"cached_image_id": "img_xxx"}
|
|
430
|
+
The tool will automatically resolve and decode the image from cache.
|
|
431
|
+
This is typically used when another tool returns an image reference.
|
|
432
|
+
|
|
433
|
+
2. EXCEL FILES (.xlsx extension):
|
|
434
|
+
Pass JSON with sheet structure: {"Sheet1": [["Name", "Age"], ["Alice", 25], ["Bob", 30]]}
|
|
435
|
+
|
|
436
|
+
3. TEXT/OTHER FILES:
|
|
437
|
+
Pass the plain text string directly.
|
|
389
438
|
""")),
|
|
390
439
|
bucket_name=bucket_name
|
|
391
440
|
)
|
|
@@ -1,7 +1,9 @@
|
|
|
1
1
|
"""
|
|
2
2
|
Image generation tool for Alita SDK.
|
|
3
3
|
"""
|
|
4
|
+
import json
|
|
4
5
|
import logging
|
|
6
|
+
import uuid
|
|
5
7
|
from typing import Optional, Type, Any, List, Literal
|
|
6
8
|
from langchain_core.tools import BaseTool, BaseToolkit
|
|
7
9
|
from pydantic import BaseModel, Field, create_model, ConfigDict
|
|
@@ -76,7 +78,12 @@ class ImageGenerationTool(BaseTool):
|
|
|
76
78
|
"""Tool for generating images using the Alita client."""
|
|
77
79
|
|
|
78
80
|
name: str = "generate_image"
|
|
79
|
-
description: str =
|
|
81
|
+
description: str = (
|
|
82
|
+
"Generate images from text prompts using AI models. "
|
|
83
|
+
"Returns a JSON object with 'cached_image_id' field containing a reference to the generated image data. "
|
|
84
|
+
"The cached_image_id can be used to save or process the image. "
|
|
85
|
+
"The actual image data is stored temporarily and can be retrieved using the cached_image_id reference."
|
|
86
|
+
)
|
|
80
87
|
args_schema: Type[BaseModel] = ImageGenerationInput
|
|
81
88
|
alita_client: Any = None
|
|
82
89
|
|
|
@@ -85,10 +92,10 @@ class ImageGenerationTool(BaseTool):
|
|
|
85
92
|
self.alita_client = client
|
|
86
93
|
|
|
87
94
|
def _run(self, prompt: str, n: int = 1, size: str = "auto",
|
|
88
|
-
quality: str = "auto", style: Optional[str] = None) ->
|
|
95
|
+
quality: str = "auto", style: Optional[str] = None) -> str:
|
|
89
96
|
"""Generate an image based on the provided parameters."""
|
|
90
97
|
try:
|
|
91
|
-
logger.
|
|
98
|
+
logger.debug(f"Generating image with prompt: {prompt[:50]}...")
|
|
92
99
|
|
|
93
100
|
result = self.alita_client.generate_image(
|
|
94
101
|
prompt=prompt,
|
|
@@ -98,57 +105,56 @@ class ImageGenerationTool(BaseTool):
|
|
|
98
105
|
style=style
|
|
99
106
|
)
|
|
100
107
|
|
|
101
|
-
# Return
|
|
108
|
+
# Return simple JSON structure with reference ID instead of full base64
|
|
102
109
|
if 'data' in result:
|
|
103
110
|
images = result['data']
|
|
104
|
-
content_chunks = []
|
|
105
111
|
|
|
106
|
-
#
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
112
|
+
# Process all images with unified structure
|
|
113
|
+
images_list = []
|
|
114
|
+
for idx, image_data in enumerate(images, 1):
|
|
115
|
+
if not image_data.get('b64_json'):
|
|
116
|
+
continue
|
|
117
|
+
|
|
118
|
+
cached_image_id = f"img_{uuid.uuid4().hex[:12]}"
|
|
119
|
+
|
|
120
|
+
# Store in cache
|
|
121
|
+
if hasattr(self.alita_client, '_generated_images_cache'):
|
|
122
|
+
self.alita_client._generated_images_cache[cached_image_id] = {
|
|
123
|
+
'base64_data': image_data['b64_json']
|
|
124
|
+
}
|
|
125
|
+
logger.debug(f"Stored generated image in cache with ID: {cached_image_id}")
|
|
126
|
+
|
|
127
|
+
images_list.append({
|
|
128
|
+
"image_number": idx,
|
|
129
|
+
"image_type": "png",
|
|
130
|
+
"cached_image_id": cached_image_id
|
|
117
131
|
})
|
|
118
132
|
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
"image_url": {
|
|
125
|
-
"url": image_data['url']
|
|
126
|
-
}
|
|
127
|
-
})
|
|
128
|
-
elif image_data.get('b64_json'):
|
|
129
|
-
content_chunks.append({
|
|
130
|
-
"type": "image_url",
|
|
131
|
-
"image_url": {
|
|
132
|
-
"url": f"data:image/png;base64,"
|
|
133
|
-
f"{image_data['b64_json']}"
|
|
134
|
-
}
|
|
135
|
-
})
|
|
133
|
+
if not images_list:
|
|
134
|
+
return json.dumps({
|
|
135
|
+
"status": "error",
|
|
136
|
+
"message": "No base64 image data found"
|
|
137
|
+
})
|
|
136
138
|
|
|
137
|
-
return
|
|
139
|
+
return json.dumps({
|
|
140
|
+
"status": "success",
|
|
141
|
+
"prompt": prompt,
|
|
142
|
+
"total_images": len(images_list),
|
|
143
|
+
"images": images_list
|
|
144
|
+
})
|
|
138
145
|
|
|
139
|
-
# Fallback to
|
|
140
|
-
return
|
|
141
|
-
"
|
|
142
|
-
"
|
|
143
|
-
|
|
144
|
-
}]
|
|
146
|
+
# Fallback to error response if no images in result
|
|
147
|
+
return json.dumps({
|
|
148
|
+
"status": "error",
|
|
149
|
+
"message": f"Image generation completed but no images returned: {result}"
|
|
150
|
+
})
|
|
145
151
|
|
|
146
152
|
except Exception as e:
|
|
147
153
|
logger.error(f"Error generating image: {e}")
|
|
148
|
-
return
|
|
149
|
-
"
|
|
150
|
-
"
|
|
151
|
-
}
|
|
154
|
+
return json.dumps({
|
|
155
|
+
"status": "error",
|
|
156
|
+
"message": f"Error generating image: {str(e)}"
|
|
157
|
+
})
|
|
152
158
|
|
|
153
159
|
async def _arun(self, prompt: str, n: int = 1, size: str = "256x256",
|
|
154
160
|
quality: str = "auto",
|
alita_sdk/runtime/tools/llm.py
CHANGED
|
@@ -6,6 +6,8 @@ from typing import Any, Optional, List, Union, Literal
|
|
|
6
6
|
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
|
|
7
7
|
from langchain_core.runnables import RunnableConfig
|
|
8
8
|
from langchain_core.tools import BaseTool, ToolException
|
|
9
|
+
from langchain_core.exceptions import OutputParserException
|
|
10
|
+
from langchain_core.callbacks import dispatch_custom_event
|
|
9
11
|
from pydantic import Field
|
|
10
12
|
|
|
11
13
|
from ..langchain.constants import ELITEA_RS
|
|
@@ -219,20 +221,54 @@ class LLMNode(BaseTool):
|
|
|
219
221
|
try:
|
|
220
222
|
llm = self.__get_struct_output_model(llm_client, struct_model)
|
|
221
223
|
completion = llm.invoke(messages, config=config)
|
|
222
|
-
except ValueError as e:
|
|
224
|
+
except (ValueError, OutputParserException) as e:
|
|
223
225
|
logger.error(f"Error invoking structured output model: {format_exc()}")
|
|
224
|
-
logger.info("
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
226
|
+
logger.info("Attempting to fall back to json mode")
|
|
227
|
+
try:
|
|
228
|
+
# Fallback to regular LLM with JSON extraction
|
|
229
|
+
completion = self.__get_struct_output_model(llm_client, struct_model,
|
|
230
|
+
method="json_mode").invoke(messages, config=config)
|
|
231
|
+
except (ValueError, OutputParserException) as e2:
|
|
232
|
+
logger.error(f"json_mode fallback also failed: {format_exc()}")
|
|
233
|
+
logger.info("Attempting to fall back to function_calling")
|
|
234
|
+
# Final fallback to function_calling method
|
|
235
|
+
completion = self.__get_struct_output_model(llm_client, struct_model,
|
|
236
|
+
method="json_schema").invoke(messages, config=config)
|
|
228
237
|
result = completion.model_dump()
|
|
229
238
|
|
|
230
239
|
# Ensure messages are properly formatted
|
|
231
240
|
if result.get('messages') and isinstance(result['messages'], list):
|
|
232
241
|
result['messages'] = [{'role': 'assistant', 'content': '\n'.join(result['messages'])}]
|
|
233
242
|
else:
|
|
234
|
-
|
|
235
|
-
|
|
243
|
+
# Extract content from initial_completion, handling thinking blocks
|
|
244
|
+
fallback_content = result.get(ELITEA_RS, '')
|
|
245
|
+
if not fallback_content and initial_completion:
|
|
246
|
+
content_parts = self._extract_content_from_completion(initial_completion)
|
|
247
|
+
fallback_content = content_parts.get('text') or ''
|
|
248
|
+
thinking = content_parts.get('thinking')
|
|
249
|
+
|
|
250
|
+
# Dispatch thinking event if present
|
|
251
|
+
if thinking:
|
|
252
|
+
try:
|
|
253
|
+
model_name = getattr(llm_client, 'model_name', None) or getattr(llm_client, 'model', 'LLM')
|
|
254
|
+
dispatch_custom_event(
|
|
255
|
+
name="thinking_step",
|
|
256
|
+
data={
|
|
257
|
+
"message": thinking,
|
|
258
|
+
"tool_name": f"LLM ({model_name})",
|
|
259
|
+
"toolkit": "reasoning",
|
|
260
|
+
},
|
|
261
|
+
config=config,
|
|
262
|
+
)
|
|
263
|
+
except Exception as e:
|
|
264
|
+
logger.warning(f"Failed to dispatch thinking event: {e}")
|
|
265
|
+
|
|
266
|
+
if not fallback_content:
|
|
267
|
+
# Final fallback to raw content
|
|
268
|
+
content = initial_completion.content
|
|
269
|
+
fallback_content = content if isinstance(content, str) else str(content)
|
|
270
|
+
|
|
271
|
+
result['messages'] = messages + [AIMessage(content=fallback_content)]
|
|
236
272
|
|
|
237
273
|
return result
|
|
238
274
|
else:
|
|
@@ -250,24 +286,89 @@ class LLMNode(BaseTool):
|
|
|
250
286
|
if self.output_variables:
|
|
251
287
|
if self.output_variables[0] == 'messages':
|
|
252
288
|
return output_msgs
|
|
253
|
-
|
|
289
|
+
# Extract content properly from thinking-enabled responses
|
|
290
|
+
if current_completion:
|
|
291
|
+
content_parts = self._extract_content_from_completion(current_completion)
|
|
292
|
+
text_content = content_parts.get('text')
|
|
293
|
+
thinking = content_parts.get('thinking')
|
|
294
|
+
|
|
295
|
+
# Dispatch thinking event if present
|
|
296
|
+
if thinking:
|
|
297
|
+
try:
|
|
298
|
+
model_name = getattr(llm_client, 'model_name', None) or getattr(llm_client, 'model', 'LLM')
|
|
299
|
+
dispatch_custom_event(
|
|
300
|
+
name="thinking_step",
|
|
301
|
+
data={
|
|
302
|
+
"message": thinking,
|
|
303
|
+
"tool_name": f"LLM ({model_name})",
|
|
304
|
+
"toolkit": "reasoning",
|
|
305
|
+
},
|
|
306
|
+
config=config,
|
|
307
|
+
)
|
|
308
|
+
except Exception as e:
|
|
309
|
+
logger.warning(f"Failed to dispatch thinking event: {e}")
|
|
310
|
+
|
|
311
|
+
if text_content:
|
|
312
|
+
output_msgs[self.output_variables[0]] = text_content
|
|
313
|
+
else:
|
|
314
|
+
# Fallback to raw content
|
|
315
|
+
content = current_completion.content
|
|
316
|
+
output_msgs[self.output_variables[0]] = content if isinstance(content, str) else str(content)
|
|
317
|
+
else:
|
|
318
|
+
output_msgs[self.output_variables[0]] = None
|
|
254
319
|
|
|
255
320
|
return output_msgs
|
|
256
321
|
else:
|
|
257
|
-
# Regular text response
|
|
258
|
-
|
|
322
|
+
# Regular text response - handle both simple strings and thinking-enabled responses
|
|
323
|
+
content_parts = self._extract_content_from_completion(completion)
|
|
324
|
+
thinking = content_parts.get('thinking')
|
|
325
|
+
text_content = content_parts.get('text') or ''
|
|
326
|
+
|
|
327
|
+
# Fallback to string representation if no content extracted
|
|
328
|
+
if not text_content:
|
|
329
|
+
if hasattr(completion, 'content'):
|
|
330
|
+
content = completion.content
|
|
331
|
+
text_content = content.strip() if isinstance(content, str) else str(content)
|
|
332
|
+
else:
|
|
333
|
+
text_content = str(completion)
|
|
334
|
+
|
|
335
|
+
# Dispatch thinking step event to chat if present
|
|
336
|
+
if thinking:
|
|
337
|
+
logger.info(f"Model thinking: {thinking[:200]}..." if len(thinking) > 200 else f"Model thinking: {thinking}")
|
|
338
|
+
|
|
339
|
+
# Dispatch custom event for thinking step to be displayed in chat
|
|
340
|
+
try:
|
|
341
|
+
model_name = getattr(llm_client, 'model_name', None) or getattr(llm_client, 'model', 'LLM')
|
|
342
|
+
dispatch_custom_event(
|
|
343
|
+
name="thinking_step",
|
|
344
|
+
data={
|
|
345
|
+
"message": thinking,
|
|
346
|
+
"tool_name": f"LLM ({model_name})",
|
|
347
|
+
"toolkit": "reasoning",
|
|
348
|
+
},
|
|
349
|
+
config=config,
|
|
350
|
+
)
|
|
351
|
+
except Exception as e:
|
|
352
|
+
logger.warning(f"Failed to dispatch thinking event: {e}")
|
|
353
|
+
|
|
354
|
+
# Build the AI message with both thinking and text
|
|
355
|
+
# Store thinking in additional_kwargs for potential future use
|
|
356
|
+
ai_message_kwargs = {'content': text_content}
|
|
357
|
+
if thinking:
|
|
358
|
+
ai_message_kwargs['additional_kwargs'] = {'thinking': thinking}
|
|
359
|
+
ai_message = AIMessage(**ai_message_kwargs)
|
|
259
360
|
|
|
260
361
|
# Try to extract JSON if output variables are specified (but exclude 'messages' which is handled separately)
|
|
261
362
|
json_output_vars = [var for var in (self.output_variables or []) if var != 'messages']
|
|
262
363
|
if json_output_vars:
|
|
263
364
|
# set response to be the first output variable for non-structured output
|
|
264
|
-
response_data = {json_output_vars[0]:
|
|
265
|
-
new_messages = messages + [
|
|
365
|
+
response_data = {json_output_vars[0]: text_content}
|
|
366
|
+
new_messages = messages + [ai_message]
|
|
266
367
|
response_data['messages'] = new_messages
|
|
267
368
|
return response_data
|
|
268
369
|
|
|
269
370
|
# Simple text response (either no output variables or JSON parsing failed)
|
|
270
|
-
new_messages = messages + [
|
|
371
|
+
new_messages = messages + [ai_message]
|
|
271
372
|
return {"messages": new_messages}
|
|
272
373
|
|
|
273
374
|
except Exception as e:
|
|
@@ -285,6 +386,56 @@ class LLMNode(BaseTool):
|
|
|
285
386
|
# Legacy support for old interface
|
|
286
387
|
return self.invoke(kwargs, **kwargs)
|
|
287
388
|
|
|
389
|
+
@staticmethod
|
|
390
|
+
def _extract_content_from_completion(completion) -> dict:
|
|
391
|
+
"""Extract thinking and text content from LLM completion.
|
|
392
|
+
|
|
393
|
+
Handles Anthropic's extended thinking format where content is a list
|
|
394
|
+
of blocks with types: 'thinking' and 'text'.
|
|
395
|
+
|
|
396
|
+
Args:
|
|
397
|
+
completion: LLM completion object with content attribute
|
|
398
|
+
|
|
399
|
+
Returns:
|
|
400
|
+
dict with 'thinking' and 'text' keys
|
|
401
|
+
"""
|
|
402
|
+
result = {'thinking': None, 'text': None}
|
|
403
|
+
|
|
404
|
+
if not hasattr(completion, 'content'):
|
|
405
|
+
return result
|
|
406
|
+
|
|
407
|
+
content = completion.content
|
|
408
|
+
|
|
409
|
+
# Handle list of content blocks (Anthropic extended thinking format)
|
|
410
|
+
if isinstance(content, list):
|
|
411
|
+
thinking_blocks = []
|
|
412
|
+
text_blocks = []
|
|
413
|
+
|
|
414
|
+
for block in content:
|
|
415
|
+
if isinstance(block, dict):
|
|
416
|
+
block_type = block.get('type', '')
|
|
417
|
+
if block_type == 'thinking':
|
|
418
|
+
thinking_blocks.append(block.get('thinking', ''))
|
|
419
|
+
elif block_type == 'text':
|
|
420
|
+
text_blocks.append(block.get('text', ''))
|
|
421
|
+
elif hasattr(block, 'type'):
|
|
422
|
+
# Handle object format
|
|
423
|
+
if block.type == 'thinking':
|
|
424
|
+
thinking_blocks.append(getattr(block, 'thinking', ''))
|
|
425
|
+
elif block.type == 'text':
|
|
426
|
+
text_blocks.append(getattr(block, 'text', ''))
|
|
427
|
+
|
|
428
|
+
if thinking_blocks:
|
|
429
|
+
result['thinking'] = '\n\n'.join(thinking_blocks)
|
|
430
|
+
if text_blocks:
|
|
431
|
+
result['text'] = '\n\n'.join(text_blocks)
|
|
432
|
+
|
|
433
|
+
# Handle simple string content
|
|
434
|
+
elif isinstance(content, str):
|
|
435
|
+
result['text'] = content
|
|
436
|
+
|
|
437
|
+
return result
|
|
438
|
+
|
|
288
439
|
def _run_async_in_sync_context(self, coro):
|
|
289
440
|
"""Run async coroutine from sync context.
|
|
290
441
|
|
|
@@ -313,7 +313,8 @@ class AlitaStreamlitCallback(BaseCallbackHandler):
|
|
|
313
313
|
if self.debug:
|
|
314
314
|
log.debug("on_llm_end(%s, %s)", response, kwargs)
|
|
315
315
|
llm_run_id = str(run_id)
|
|
316
|
-
if
|
|
316
|
+
# Check if callback_state exists and is not None before accessing
|
|
317
|
+
if self.callback_state is not None and self.callback_state.get(llm_run_id):
|
|
317
318
|
status_widget = self.callback_state[llm_run_id]
|
|
318
319
|
self._safe_streamlit_call(
|
|
319
320
|
status_widget.update,
|
alita_sdk/runtime/utils/utils.py
CHANGED
|
@@ -1,5 +1,8 @@
|
|
|
1
|
+
import base64
|
|
2
|
+
import logging
|
|
1
3
|
import re
|
|
2
4
|
from enum import Enum
|
|
5
|
+
from typing import Any
|
|
3
6
|
|
|
4
7
|
# DEPRECATED: Tool names no longer use prefixes
|
|
5
8
|
# Kept for backward compatibility only
|
|
@@ -32,3 +35,34 @@ def clean_node_str(s: str) -> str:
|
|
|
32
35
|
"""Cleans a node string by removing all non-alphanumeric characters except underscores and spaces."""
|
|
33
36
|
cleaned_string = re.sub(r'[^\w\s]', '', s)
|
|
34
37
|
return cleaned_string
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def resolve_image_from_cache(client: Any, cached_image_id: str) -> bytes:
|
|
41
|
+
"""
|
|
42
|
+
Resolve cached_image_id from client's image cache and return decoded binary data.
|
|
43
|
+
|
|
44
|
+
Args:
|
|
45
|
+
client: AlitaClient instance with _generated_images_cache attribute
|
|
46
|
+
cached_image_id: The cached image ID to resolve
|
|
47
|
+
|
|
48
|
+
Returns:
|
|
49
|
+
bytes: Decoded binary image data
|
|
50
|
+
|
|
51
|
+
Raises:
|
|
52
|
+
ValueError: If cached_image_id not found or decoding fails
|
|
53
|
+
"""
|
|
54
|
+
cache = getattr(client, '_generated_images_cache', {})
|
|
55
|
+
|
|
56
|
+
if cached_image_id not in cache:
|
|
57
|
+
raise ValueError(f"Image reference '{cached_image_id}' not found. The image may have expired.")
|
|
58
|
+
|
|
59
|
+
cached_data = cache[cached_image_id]
|
|
60
|
+
base64_data = cached_data.get('base64_data', '')
|
|
61
|
+
logging.debug(f"Resolved cached_image_id '{cached_image_id}' from cache (length: {len(base64_data)} chars)")
|
|
62
|
+
# Decode base64 to binary data for image files
|
|
63
|
+
try:
|
|
64
|
+
binary_data = base64.b64decode(base64_data)
|
|
65
|
+
logging.debug(f"Decoded base64 to binary data ({len(binary_data)} bytes)")
|
|
66
|
+
return binary_data
|
|
67
|
+
except Exception as e:
|
|
68
|
+
raise ValueError(f"Failed to decode image data for '{cached_image_id}': {e}")
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: alita_sdk
|
|
3
|
-
Version: 0.3.
|
|
3
|
+
Version: 0.3.532
|
|
4
4
|
Summary: SDK for building langchain agents using resources from Alita
|
|
5
5
|
Author-email: Artem Rozumenko <artyom.rozumenko@gmail.com>, Mikalai Biazruchka <mikalai_biazruchka@epam.com>, Roman Mitusov <roman_mitusov@epam.com>, Ivan Krakhmaliuk <lifedj27@gmail.com>, Artem Dubrovskiy <ad13box@gmail.com>
|
|
6
6
|
License-Expression: Apache-2.0
|
|
@@ -31,7 +31,7 @@ Requires-Dist: langchain_core<0.4.0,>=0.3.76; extra == "runtime"
|
|
|
31
31
|
Requires-Dist: langchain<0.4.0,>=0.3.22; extra == "runtime"
|
|
32
32
|
Requires-Dist: langchain_community<0.4.0,>=0.3.7; extra == "runtime"
|
|
33
33
|
Requires-Dist: langchain-openai<0.4.0,>=0.3.0; extra == "runtime"
|
|
34
|
-
Requires-Dist: langchain-anthropic<0.4.0,>=0.3.
|
|
34
|
+
Requires-Dist: langchain-anthropic<0.4.0,>=0.3.20; extra == "runtime"
|
|
35
35
|
Requires-Dist: anthropic>=0.57.0; extra == "runtime"
|
|
36
36
|
Requires-Dist: langgraph<0.5,>=0.4.8; extra == "runtime"
|
|
37
37
|
Requires-Dist: langgraph-prebuilt==0.5.2; extra == "runtime"
|
|
@@ -93,7 +93,7 @@ alita_sdk/configurations/zephyr_essential.py,sha256=TiZedsBlfIDroflipvoqxjJeEWPo
|
|
|
93
93
|
alita_sdk/runtime/__init__.py,sha256=4W0UF-nl3QF2bvET5lnah4o24CoTwSoKXhuN0YnwvEE,828
|
|
94
94
|
alita_sdk/runtime/clients/__init__.py,sha256=BdehU5GBztN1Qi1Wul0cqlU46FxUfMnI6Vq2Zd_oq1M,296
|
|
95
95
|
alita_sdk/runtime/clients/artifact.py,sha256=7C1e9RtftqOJd3Mo5gNDnBuYg1Z9xTqjxmfdWeJH5Cc,4014
|
|
96
|
-
alita_sdk/runtime/clients/client.py,sha256=
|
|
96
|
+
alita_sdk/runtime/clients/client.py,sha256=qsXM5wfQ6BaT44sH9wW3M4YkbFUK7WGLcWT8U0SHWGA,54748
|
|
97
97
|
alita_sdk/runtime/clients/datasource.py,sha256=HAZovoQN9jBg0_-lIlGBQzb4FJdczPhkHehAiVG3Wx0,1020
|
|
98
98
|
alita_sdk/runtime/clients/mcp_discovery.py,sha256=aFJ0wYQ8EAmXa9qLUusHZfQXkNec1wbgkqHdVeSFX-g,11697
|
|
99
99
|
alita_sdk/runtime/clients/mcp_manager.py,sha256=DRbqiO761l7UgOdv_keHbD2g0oZodtPHejpArXYZIoE,9050
|
|
@@ -170,14 +170,14 @@ alita_sdk/runtime/toolkits/vectorstore.py,sha256=H-HQsHhLm-vQWS3kvwkh-OHrOWKuylB
|
|
|
170
170
|
alita_sdk/runtime/tools/__init__.py,sha256=Fx7iHqkzA90-KfjdcUUzMUI_7kDarjuTsSpSzOW2pN0,568
|
|
171
171
|
alita_sdk/runtime/tools/agent.py,sha256=m98QxOHwnCRTT9j18Olbb5UPS8-ZGeQaGiUyZJSyFck,3162
|
|
172
172
|
alita_sdk/runtime/tools/application.py,sha256=RCGe-mRfj8372gTFkEX2xBvcYhw7IKdU1t50lXaBPOY,3701
|
|
173
|
-
alita_sdk/runtime/tools/artifact.py,sha256=
|
|
173
|
+
alita_sdk/runtime/tools/artifact.py,sha256=wZ6nPracF-SWkH52YtZWs2pePQavIDutUZ6BQpr5THU,23625
|
|
174
174
|
alita_sdk/runtime/tools/datasource.py,sha256=pvbaSfI-ThQQnjHG-QhYNSTYRnZB0rYtZFpjCfpzxYI,2443
|
|
175
175
|
alita_sdk/runtime/tools/echo.py,sha256=spw9eCweXzixJqHnZofHE1yWiSUa04L4VKycf3KCEaM,486
|
|
176
176
|
alita_sdk/runtime/tools/function.py,sha256=HSMO1nBTRKMvWC_m0M8TOLGaZ2k_7ksPgLqzuRh6kV4,7083
|
|
177
177
|
alita_sdk/runtime/tools/graph.py,sha256=7jImBBSEdP5Mjnn2keOiyUwdGDFhEXLUrgUiugO3mgA,3503
|
|
178
|
-
alita_sdk/runtime/tools/image_generation.py,sha256=
|
|
178
|
+
alita_sdk/runtime/tools/image_generation.py,sha256=waxxFIAgmh9-COcljL9uZ7e_s7EL9OWveUxYk0ulEUM,7855
|
|
179
179
|
alita_sdk/runtime/tools/indexer_tool.py,sha256=whSLPevB4WD6dhh2JDXEivDmTvbjiMV1MrPl9cz5eLA,4375
|
|
180
|
-
alita_sdk/runtime/tools/llm.py,sha256=
|
|
180
|
+
alita_sdk/runtime/tools/llm.py,sha256=j2d7Pd0TUMYCGNSD7B440N7gpbzuJVVshftRlqe8Jgw,52911
|
|
181
181
|
alita_sdk/runtime/tools/loop.py,sha256=uds0WhZvwMxDVFI6MZHrcmMle637cQfBNg682iLxoJA,8335
|
|
182
182
|
alita_sdk/runtime/tools/loop_output.py,sha256=U4hO9PCQgWlXwOq6jdmCGbegtAxGAPXObSxZQ3z38uk,8069
|
|
183
183
|
alita_sdk/runtime/tools/mcp_inspect_tool.py,sha256=38X8euaxDbEGjcfp6ElvExZalpZun6QEr6ZEW4nU5pQ,11496
|
|
@@ -193,7 +193,7 @@ alita_sdk/runtime/tools/vectorstore_base.py,sha256=GUO7Gxgy4GKTttsOrsPQTUb_I5EDe
|
|
|
193
193
|
alita_sdk/runtime/tools/planning/__init__.py,sha256=15eWTtz4oMB5vnKsLEFPW7lVY7y1Fxk3edo2bNf0ooE,821
|
|
194
194
|
alita_sdk/runtime/tools/planning/models.py,sha256=bcwfjEnDTqirTT9bjHEDF8o3UYIAD8IqiqrZsca8gfw,8816
|
|
195
195
|
alita_sdk/runtime/tools/planning/wrapper.py,sha256=om-4f3qMzkqBcBmINQ469IykBubm_UwJ-WZsEchehto,22412
|
|
196
|
-
alita_sdk/runtime/utils/AlitaCallback.py,sha256=
|
|
196
|
+
alita_sdk/runtime/utils/AlitaCallback.py,sha256=G-UU30P_Q9jiCr7eBZUDVRZ7Z6qlBPX5f0Cvt5tx528,12130
|
|
197
197
|
alita_sdk/runtime/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
198
198
|
alita_sdk/runtime/utils/constants.py,sha256=Xntx1b_uxUzT4clwqHA_U6K8y5bBqf_4lSQwXdcWrp4,13586
|
|
199
199
|
alita_sdk/runtime/utils/evaluate.py,sha256=iM1P8gzBLHTuSCe85_Ng_h30m52hFuGuhNXJ7kB1tgI,1872
|
|
@@ -206,7 +206,7 @@ alita_sdk/runtime/utils/save_dataframe.py,sha256=i-E1wp-t4wb17Zq3nA3xYwgSILjoXNi
|
|
|
206
206
|
alita_sdk/runtime/utils/streamlit.py,sha256=0TotNKnvMPHuwBdhMEpM5DhIedQQa1AUz9BlmXFBhAU,107179
|
|
207
207
|
alita_sdk/runtime/utils/toolkit_runtime.py,sha256=MU63Fpxj0b5_r1IUUc0Q3-PN9VwL7rUxp2MRR4tmYR8,5136
|
|
208
208
|
alita_sdk/runtime/utils/toolkit_utils.py,sha256=g1Au_nzJgde2NW732GACZGSIQOt7o0mjAbrRxG6GVwA,6579
|
|
209
|
-
alita_sdk/runtime/utils/utils.py,sha256=
|
|
209
|
+
alita_sdk/runtime/utils/utils.py,sha256=d0RLiKfBnobC3PrEFPvZt3uUx3Jie2rR32Fp-3hkWCU,2380
|
|
210
210
|
alita_sdk/tools/__init__.py,sha256=jzj502O3yO40cjs37Uzqcbd6fG3pFmoU1TLw1-j4_3M,13011
|
|
211
211
|
alita_sdk/tools/base_indexer_toolkit.py,sha256=AXygnaQZFEEeq6kkJbWIzUF1i31HoWdL7yidcDy_iKk,34305
|
|
212
212
|
alita_sdk/tools/code_indexer_toolkit.py,sha256=4uQHnv7sHzECmOWbeqoVPT4prt_hv91gYxWxvvRdOjg,9219
|
|
@@ -427,9 +427,9 @@ alita_sdk/tools/zephyr_scale/api_wrapper.py,sha256=kT0TbmMvuKhDUZc0i7KO18O38JM9S
|
|
|
427
427
|
alita_sdk/tools/zephyr_squad/__init__.py,sha256=gZTEanHf9pRCiZaKobF4Wbm33wUxxXoIjOr544TcXas,2903
|
|
428
428
|
alita_sdk/tools/zephyr_squad/api_wrapper.py,sha256=kmw_xol8YIYFplBLWTqP_VKPRhL_1ItDD0_vXTe_UuI,14906
|
|
429
429
|
alita_sdk/tools/zephyr_squad/zephyr_squad_cloud_client.py,sha256=R371waHsms4sllHCbijKYs90C-9Yu0sSR3N4SUfQOgU,5066
|
|
430
|
-
alita_sdk-0.3.
|
|
431
|
-
alita_sdk-0.3.
|
|
432
|
-
alita_sdk-0.3.
|
|
433
|
-
alita_sdk-0.3.
|
|
434
|
-
alita_sdk-0.3.
|
|
435
|
-
alita_sdk-0.3.
|
|
430
|
+
alita_sdk-0.3.532.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
431
|
+
alita_sdk-0.3.532.dist-info/METADATA,sha256=bAsh58nb6kyLbv_sI2BbOdxFiYfqGcmyhJrOpnlXo70,24266
|
|
432
|
+
alita_sdk-0.3.532.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
433
|
+
alita_sdk-0.3.532.dist-info/entry_points.txt,sha256=VijN0h4alp1WXm8tfS3P7vuGxN4a5RZqHjXAoEIBZnI,49
|
|
434
|
+
alita_sdk-0.3.532.dist-info/top_level.txt,sha256=0vJYy5p_jK6AwVb1aqXr7Kgqgk3WDtQ6t5C-XI9zkmg,10
|
|
435
|
+
alita_sdk-0.3.532.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|