alita-sdk 0.3.245__py3-none-any.whl → 0.3.247__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -38,7 +38,10 @@ _safe_import_configuration('slack', 'slack', 'SlackConfiguration')
38
38
  _safe_import_configuration('azure_search', 'azure_search', 'AzureSearchConfiguration')
39
39
  _safe_import_configuration('delta_lake', 'delta_lake', 'DeltaLakeConfiguration')
40
40
  _safe_import_configuration('bigquery', 'bigquery', 'BigQueryConfiguration')
41
- _safe_import_configuration('embedding', 'embedding', 'EmbeddingConfiguration')
41
+ _safe_import_configuration('xray', 'xray', 'XrayConfiguration')
42
+ _safe_import_configuration('zephyr', 'zephyr', 'ZephyrConfiguration')
43
+ _safe_import_configuration('figma', 'figma', 'FigmaConfiguration')
44
+ _safe_import_configuration('rally', 'rally', 'RallyConfiguration')
42
45
 
43
46
  # Log import summary
44
47
  available_count = len(AVAILABLE_CONFIGURATIONS)
@@ -31,8 +31,5 @@ class FigmaConfiguration(BaseModel):
31
31
  }
32
32
  }
33
33
  )
34
- url: str = Field(description="Testrail URL")
35
- email: str = Field(description="TestRail Email")
36
- password: SecretStr = Field(description="TestRail Password")
37
34
  token: Optional[SecretStr] = Field(description="Figma Token", json_schema_extra={"secret": True}, default=None)
38
35
  oauth2: Optional[SecretStr] = Field(description="OAuth2 Token", json_schema_extra={"secret": True}, default=None)
@@ -0,0 +1,20 @@
1
+ from typing import Optional
2
+
3
+ from pydantic import BaseModel, ConfigDict, Field, SecretStr
4
+
5
+
6
+ class ZephyrEnterpriseConfiguration(BaseModel):
7
+ model_config = ConfigDict(
8
+ json_schema_extra={
9
+ "metadata": {
10
+ "label": "Zephyr",
11
+ "icon_url": "zephyr.svg",
12
+ "section": "credentials",
13
+ "type": "zephyr-enterprise",
14
+ "categories": ["test management"],
15
+ "extra_categories": ["zephyr", "test automation", "test case management", "test planning"],
16
+ }
17
+ }
18
+ )
19
+ base_url: str = Field(description="Zephyr base URL")
20
+ token: Optional[SecretStr] = Field(description="API token")
@@ -7,6 +7,7 @@ from pydantic import create_model, BaseModel, ConfigDict, Field, SecretStr
7
7
  from pydantic.fields import FieldInfo
8
8
  from ..tools.artifact import ArtifactWrapper
9
9
  from alita_sdk.tools.base.tool import BaseAction
10
+ from ...configurations.pgvector import PgVectorConfiguration
10
11
 
11
12
 
12
13
  class ArtifactToolkit(BaseToolkit):
@@ -23,13 +24,11 @@ class ArtifactToolkit(BaseToolkit):
23
24
  bucket = (str, FieldInfo(description="Bucket name", json_schema_extra={'toolkit_name': True, 'max_toolkit_length': ArtifactToolkit.toolkit_max_length})),
24
25
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
25
26
  # indexer settings
26
- connection_string = (Optional[SecretStr], Field(description="Connection string for vectorstore",
27
- default=None,
28
- json_schema_extra={'secret': True})),
27
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default=None, description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
28
+
29
29
  # embedding model settings
30
- embedding_model=(str, Field(default="HuggingFaceEmbeddings", description="Embedding model to use")),
31
- embedding_model_params=(dict, Field(default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"},
32
- description="Parameters for embedding model")),
30
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.",
31
+ json_schema_extra={'configuration_types': ['embedding_model']})),
33
32
 
34
33
  __config__=ConfigDict(json_schema_extra={'metadata': {"label": "Artifact", "icon_url": None}})
35
34
  )
@@ -39,7 +38,11 @@ class ArtifactToolkit(BaseToolkit):
39
38
  if selected_tools is None:
40
39
  selected_tools = []
41
40
  tools = []
42
- artifact_wrapper = ArtifactWrapper(client=client, bucket=bucket, **kwargs)
41
+ wrapper_payload = {
42
+ **kwargs,
43
+ **(kwargs.get('pgvector_configuration') or {}),
44
+ }
45
+ artifact_wrapper = ArtifactWrapper(alita=client, bucket=bucket, **wrapper_payload)
43
46
  prefix = clean_string(toolkit_name, cls.toolkit_max_length) + TOOLKIT_SPLITTER if toolkit_name else ''
44
47
  available_tools = artifact_wrapper.get_available_tools()
45
48
  for tool in available_tools:
@@ -76,7 +76,7 @@ def get_tools(tools_list: list, alita_client, llm, memory_store: BaseStore = Non
76
76
  # indexer settings
77
77
  connection_string=tool['settings'].get('connection_string', None),
78
78
  collection_name=tool.get('toolkit_name'),
79
- embedding_model=tool['settings'].get('embedding_model', None),
79
+ embedding_model=tool['settings'].get('embedding_model'),
80
80
  embedding_model_params=tool['settings'].get('embedding_model_params', None),
81
81
  vectorstore_type="PGVector"
82
82
  ).get_tools())
@@ -15,18 +15,17 @@ except ImportError:
15
15
  from alita_sdk.langchain.interfaces.llm_processor import get_embeddings
16
16
 
17
17
  class ArtifactWrapper(BaseVectorStoreToolApiWrapper):
18
- client: Any
19
18
  bucket: str
20
19
  artifact: Optional[Any] = None
21
20
 
22
21
  @model_validator(mode='before')
23
22
  @classmethod
24
23
  def validate_toolkit(cls, values):
25
- if not values.get('client'):
24
+ if not values.get('alita'):
26
25
  raise ValueError("Client is required.")
27
26
  if not values.get('bucket'):
28
27
  raise ValueError("Bucket is required.")
29
- values["artifact"] = values['client'].artifact(values['bucket'])
28
+ values["artifact"] = values['alita'].artifact(values['bucket'])
30
29
  return values
31
30
 
32
31
  def list_files(self, bucket_name = None, return_as_string = True):
@@ -18,7 +18,7 @@ def get_tools(tool_type, tool):
18
18
  "pgvector_configuration": tool['settings'].get('pgvector_configuration', {}),
19
19
  "collection_name": tool['toolkit_name'],
20
20
  "doctype": 'doc',
21
- "embedding_configuration": tool['settings'].get('embedding_configuration', {}),
21
+ "embedding_model": tool['settings'].get('embedding_configuration', {}).get('name', None),
22
22
  "vectorstore_type": "PGVector"
23
23
  }
24
24
  if tool_type == 'ado_plans':
@@ -6,7 +6,6 @@ from pydantic import BaseModel, Field, create_model
6
6
  import requests
7
7
 
8
8
  from ....configurations.ado import AdoReposConfiguration
9
- from ....configurations.embedding import EmbeddingConfiguration
10
9
  from ....configurations.pgvector import PgVectorConfiguration
11
10
  from ...base.tool import BaseAction
12
11
  from .repos_wrapper import ReposApiWrapper
@@ -24,9 +23,9 @@ def _get_toolkit(tool) -> BaseToolkit:
24
23
  active_branch=tool['settings'].get('active_branch', ""),
25
24
  toolkit_name=tool['settings'].get('toolkit_name', ""),
26
25
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
27
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
28
26
  collection_name=tool['toolkit_name'],
29
27
  doctype='code',
28
+ embedding_model=tool['settings'].get('embedding_model'),
30
29
  vectorstore_type="PGVector",
31
30
  )
32
31
 
@@ -52,10 +51,9 @@ class AzureDevOpsReposToolkit(BaseToolkit):
52
51
  active_branch=(Optional[str], Field(default="", title="Active branch", description="ADO active branch (e.g., main)")),
53
52
 
54
53
  # indexer settings
55
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
54
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default=None, description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
56
55
  # embedder settings
57
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
58
- json_schema_extra={'configuration_types': ['embedding']})),
56
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
59
57
 
60
58
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
61
59
  __config__={'json_schema_extra': {'metadata':
@@ -109,7 +107,6 @@ class AzureDevOpsReposToolkit(BaseToolkit):
109
107
  # TODO use ado_repos_configuration fields
110
108
  **kwargs['ado_repos_configuration'],
111
109
  **(kwargs.get('pgvector_configuration') or {}),
112
- **(kwargs.get('embedding_configuration') or {}),
113
110
  }
114
111
  azure_devops_repos_wrapper = ReposApiWrapper(**wrapper_payload)
115
112
  available_tools = azure_devops_repos_wrapper.get_available_tools()
@@ -5,7 +5,6 @@ from pydantic import create_model, BaseModel, Field
5
5
 
6
6
  import requests
7
7
  from ....configurations.ado import AdoConfiguration
8
- from ....configurations.embedding import EmbeddingConfiguration
9
8
  from ....configurations.pgvector import PgVectorConfiguration
10
9
  from .test_plan_wrapper import TestPlanApiWrapper
11
10
  from ...base.tool import BaseAction
@@ -30,11 +29,10 @@ class AzureDevOpsPlansToolkit(BaseToolkit):
30
29
  ado_configuration=(AdoConfiguration, Field(description="Ado configuration", json_schema_extra={'configuration_types': ['ado']})),
31
30
  limit=(Optional[int], Field(description="ADO plans limit used for limitation of the list with results", default=5)),
32
31
  # indexer settings
33
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
32
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default=None,
33
+ description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
34
34
  # embedder settings
35
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
36
- json_schema_extra={'configuration_types': [
37
- 'embedding']})),
35
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
38
36
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
39
37
  __config__={'json_schema_extra': {'metadata':
40
38
  {
@@ -92,7 +90,6 @@ class AzureDevOpsPlansToolkit(BaseToolkit):
92
90
  # TODO use ado_configuration fields in TestPlanApiWrapper
93
91
  **kwargs['ado_configuration'],
94
92
  **(kwargs.get('pgvector_configuration') or {}),
95
- **(kwargs.get('embedding_configuration') or {}),
96
93
  }
97
94
  azure_devops_api_wrapper = TestPlanApiWrapper(**wrapper_payload)
98
95
  available_tools = azure_devops_api_wrapper.get_available_tools()
@@ -5,7 +5,6 @@ from pydantic import create_model, BaseModel, Field
5
5
 
6
6
  import requests
7
7
  from ....configurations.ado import AdoConfiguration
8
- from ....configurations.embedding import EmbeddingConfiguration
9
8
  from ....configurations.pgvector import PgVectorConfiguration
10
9
  from ...base.tool import BaseAction
11
10
  from ...utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
@@ -30,11 +29,10 @@ class AzureDevOpsWikiToolkit(BaseToolkit):
30
29
  ),
31
30
  ado_configuration=(AdoConfiguration, Field(description="Ado configuration", json_schema_extra={'configuration_types': ['ado']})),
32
31
  # indexer settings
33
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
32
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default=None,
33
+ description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
34
34
  # embedder settings
35
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
36
- json_schema_extra={'configuration_types': [
37
- 'embedding']})),
35
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
38
36
  selected_tools=(List[Literal[tuple(selected_tools)]],
39
37
  Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
40
38
  __config__={
@@ -90,7 +88,6 @@ class AzureDevOpsWikiToolkit(BaseToolkit):
90
88
  # TODO use ado_configuration fields in AzureDevOpsApiWrapper
91
89
  **kwargs['ado_configuration'],
92
90
  **(kwargs.get('pgvector_configuration') or {}),
93
- **(kwargs.get('embedding_configuration') or {}),
94
91
  }
95
92
  azure_devops_api_wrapper = AzureDevOpsApiWrapper(**wrapper_payload)
96
93
  available_tools = azure_devops_api_wrapper.get_available_tools()
@@ -110,4 +107,3 @@ class AzureDevOpsWikiToolkit(BaseToolkit):
110
107
 
111
108
  def get_tools(self):
112
109
  return self.tools
113
-
@@ -5,7 +5,6 @@ from pydantic import create_model, BaseModel, Field
5
5
 
6
6
  import requests
7
7
  from ....configurations.ado import AdoConfiguration
8
- from ....configurations.embedding import EmbeddingConfiguration
9
8
  from ....configurations.pgvector import PgVectorConfiguration
10
9
  from ...base.tool import BaseAction
11
10
  from ...utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
@@ -31,11 +30,11 @@ class AzureDevOpsWorkItemsToolkit(BaseToolkit):
31
30
  limit=(Optional[int], Field(description="ADO plans limit used for limitation of the list with results", default=5)),
32
31
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
33
32
  # indexer settings
34
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
33
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default = None,
34
+ description="PgVector Configuration",
35
+ json_schema_extra={'configuration_types': ['pgvector']})),
35
36
  # embedder settings
36
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
37
- json_schema_extra={'configuration_types': [
38
- 'embedding']})),
37
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
39
38
  __config__={
40
39
  'json_schema_extra': {
41
40
  'metadata': {
@@ -90,7 +89,6 @@ class AzureDevOpsWorkItemsToolkit(BaseToolkit):
90
89
  # TODO use ado_configuration fields in AzureDevOpsApiWrapper
91
90
  **kwargs['ado_configuration'],
92
91
  **(kwargs.get('pgvector_configuration') or {}),
93
- **(kwargs.get('embedding_configuration') or {}),
94
92
  }
95
93
  azure_devops_api_wrapper = AzureDevOpsApiWrapper(**wrapper_payload)
96
94
  available_tools = azure_devops_api_wrapper.get_available_tools()
@@ -110,4 +108,3 @@ class AzureDevOpsWorkItemsToolkit(BaseToolkit):
110
108
 
111
109
  def get_tools(self):
112
110
  return self.tools
113
-
@@ -9,7 +9,6 @@ from langchain_core.tools import BaseTool
9
9
  from pydantic import BaseModel, Field, ConfigDict, create_model
10
10
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
11
11
  from ...configurations.bitbucket import BitbucketConfiguration
12
- from ...configurations.embedding import EmbeddingConfiguration
13
12
  from ...configurations.pgvector import PgVectorConfiguration
14
13
  import requests
15
14
 
@@ -31,8 +30,7 @@ def get_tools(tool):
31
30
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
32
31
  collection_name=str(tool['toolkit_name']),
33
32
  doctype='code',
34
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
35
- vectorstore_type="PGVector",
33
+ embedding_model=tool['settings'].get('embedding_model'),
36
34
  toolkit_name=tool.get('toolkit_name')
37
35
  ).get_tools()
38
36
 
@@ -55,11 +53,9 @@ class AlitaBitbucketToolkit(BaseToolkit):
55
53
  branch=(str, Field(description="Main branch", default="main")),
56
54
  cloud=(Optional[bool], Field(description="Hosting Option", default=None)),
57
55
  bitbucket_configuration=(Optional[BitbucketConfiguration], Field(description="Bitbucket Configuration", json_schema_extra={'configuration_types': ['bitbucket']})),
58
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", default={'configuration_types': ['pgvector']})),
56
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default=None, description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
59
57
  # embedder settings
60
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.",
61
- json_schema_extra={'configuration_types': [
62
- 'embedding']})),
58
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
63
59
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
64
60
  __config__=ConfigDict(json_schema_extra=
65
61
  {
@@ -100,7 +96,6 @@ class AlitaBitbucketToolkit(BaseToolkit):
100
96
  # TODO use bitbucket_configuration fields
101
97
  **kwargs['bitbucket_configuration'],
102
98
  **(kwargs.get('pgvector_configuration') or {}),
103
- **(kwargs.get('embedding_configuration') or {}),
104
99
  }
105
100
  bitbucket_api_wrapper = BitbucketAPIWrapper(**wrapper_payload)
106
101
  available_tools: List[Dict] = __all__
@@ -6,7 +6,6 @@ from ..base.tool import BaseAction
6
6
  from pydantic import create_model, BaseModel, ConfigDict, Field
7
7
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, parse_list, check_connection_response
8
8
  from ...configurations.confluence import ConfluenceConfiguration
9
- from ...configurations.embedding import EmbeddingConfiguration
10
9
  from ...configurations.pgvector import PgVectorConfiguration
11
10
  import requests
12
11
 
@@ -30,7 +29,7 @@ def get_tools(tool):
30
29
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
31
30
  collection_name=str(tool['toolkit_name']),
32
31
  doctype='doc',
33
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
32
+ embedding_model=tool['settings'].get('embedding_model'),
34
33
  vectorstore_type="PGVector"
35
34
  ).get_tools()
36
35
 
@@ -80,11 +79,11 @@ class ConfluenceToolkit(BaseToolkit):
80
79
  min_retry_seconds=(int, Field(description="Min retry, sec", default=10)),
81
80
  max_retry_seconds=(int, Field(description="Max retry, sec", default=60)),
82
81
  confluence_configuration=(Optional[ConfluenceConfiguration], Field(description="Confluence Configuration", json_schema_extra={'configuration_types': ['confluence']})),
83
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
82
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default = None,
83
+ description="PgVector Configuration",
84
+ json_schema_extra={'configuration_types': ['pgvector']})),
84
85
  # embedder settings
85
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.",
86
- json_schema_extra={'configuration_types': [
87
- 'embedding']})),
86
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
88
87
 
89
88
  selected_tools=(List[Literal[tuple(selected_tools)]],
90
89
  Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
@@ -124,7 +123,6 @@ class ConfluenceToolkit(BaseToolkit):
124
123
  # TODO use confluence_configuration fields
125
124
  **kwargs['confluence_configuration'],
126
125
  **(kwargs.get('pgvector_configuration') or {}),
127
- **(kwargs.get('embedding_configuration') or {}),
128
126
  }
129
127
  confluence_api_wrapper = ConfluenceAPIWrapper(**wrapper_payload)
130
128
  prefix = clean_string(toolkit_name, ConfluenceToolkit.toolkit_max_length) + TOOLKIT_SPLITTER if toolkit_name else ''
@@ -1,12 +1,11 @@
1
1
  from typing import List, Literal, Optional
2
2
 
3
3
  from langchain_core.tools import BaseTool, BaseToolkit
4
- from pydantic import BaseModel, ConfigDict, Field, create_model, SecretStr
4
+ from pydantic import BaseModel, ConfigDict, Field, create_model
5
5
 
6
6
  from ..base.tool import BaseAction
7
7
  from .api_wrapper import FigmaApiWrapper, GLOBAL_LIMIT
8
8
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
9
- from ...configurations.embedding import EmbeddingConfiguration
10
9
  from ...configurations.figma import FigmaConfiguration
11
10
  from ...configurations.pgvector import PgVectorConfiguration
12
11
 
@@ -27,7 +26,7 @@ def get_tools(tool):
27
26
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
28
27
  collection_name=str(tool['toolkit_name']),
29
28
  doctype='doc',
30
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
29
+ embedding_model=tool['settings'].get('embedding_model'),
31
30
  vectorstore_type="PGVector"
32
31
  )
33
32
  .get_tools()
@@ -60,9 +59,7 @@ class FigmaToolkit(BaseToolkit):
60
59
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
61
60
 
62
61
  # embedder settings
63
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.",
64
- json_schema_extra={'configuration_types': [
65
- 'embedding']})),
62
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
66
63
  __config__=ConfigDict(
67
64
  json_schema_extra={
68
65
  "metadata": {
@@ -84,7 +81,6 @@ class FigmaToolkit(BaseToolkit):
84
81
  **kwargs,
85
82
  **kwargs.get('figma_configuration'),
86
83
  **(kwargs.get('pgvector_configuration') or {}),
87
- **(kwargs.get('embedding_configuration') or {}),
88
84
  }
89
85
  figma_api_wrapper = FigmaApiWrapper(**wrapper_payload)
90
86
  prefix = clean_string(toolkit_name, cls.toolkit_max_length) + TOOLKIT_SPLITTER if toolkit_name else ''
@@ -1,13 +1,12 @@
1
1
  from typing import Dict, List, Optional, Literal
2
2
 
3
3
  from langchain_core.tools import BaseTool, BaseToolkit
4
- from pydantic import create_model, BaseModel, ConfigDict, Field, SecretStr
4
+ from pydantic import create_model, BaseModel, ConfigDict, Field
5
5
 
6
6
  from .api_wrapper import AlitaGitHubAPIWrapper
7
7
  from .tool import GitHubAction
8
8
 
9
9
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
10
- from ...configurations.embedding import EmbeddingConfiguration
11
10
  from ...configurations.github import GithubConfiguration
12
11
  from ...configurations.pgvector import PgVectorConfiguration
13
12
 
@@ -26,7 +25,7 @@ def _get_toolkit(tool) -> BaseToolkit:
26
25
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
27
26
  collection_name=str(tool['toolkit_name']),
28
27
  doctype='code',
29
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
28
+ embedding_model=tool['settings'].get('embedding_model'),
30
29
  vectorstore_type="PGVector",
31
30
  toolkit_name=tool.get('toolkit_name')
32
31
  )
@@ -67,9 +66,7 @@ class AlitaGitHubToolkit(BaseToolkit):
67
66
  active_branch=(Optional[str], Field(description="Active branch", default="main")),
68
67
  base_branch=(Optional[str], Field(description="Github Base branch", default="main")),
69
68
  # embedder settings
70
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.",
71
- json_schema_extra={'configuration_types': [
72
- 'embedding']})),
69
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
73
70
  selected_tools=(List[Literal[tuple(selected_tools)]],
74
71
  Field(default=[], json_schema_extra={'args_schemas': selected_tools}))
75
72
  )
@@ -8,7 +8,6 @@ from pydantic.fields import Field
8
8
 
9
9
  from .api_wrapper import GitLabAPIWrapper
10
10
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
11
- from ...configurations.embedding import EmbeddingConfiguration
12
11
  from ...configurations.gitlab import GitlabConfiguration
13
12
  from ...configurations.pgvector import PgVectorConfiguration
14
13
 
@@ -28,7 +27,7 @@ def get_tools(tool):
28
27
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
29
28
  collection_name=str(tool['toolkit_name']),
30
29
  doctype='code',
31
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
30
+ embedding_model=tool['settings'].get('embedding_model'),
32
31
  vectorstore_type="PGVector",
33
32
  toolkit_name=tool.get('toolkit_name')
34
33
  ).get_tools()
@@ -48,11 +47,11 @@ class AlitaGitlabToolkit(BaseToolkit):
48
47
  gitlab_configuration=(Optional[GitlabConfiguration], Field(description="GitLab configuration", json_schema_extra={'configuration_types': ['gitlab']})),
49
48
  branch=(str, Field(description="Main branch", default="main")),
50
49
  # indexer settings
51
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
50
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default = None,
51
+ description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
52
52
  # embedder settings
53
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.",
54
- json_schema_extra={'configuration_types': [
55
- 'embedding']})),
53
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.",
54
+ json_schema_extra={'configuration_types': ['embedding_model']})),
56
55
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
57
56
  __config__=ConfigDict(json_schema_extra={
58
57
  'metadata': {
@@ -6,7 +6,6 @@ from pydantic import create_model, BaseModel, ConfigDict, Field
6
6
  import requests
7
7
 
8
8
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, parse_list, check_connection_response
9
- from ...configurations.embedding import EmbeddingConfiguration
10
9
  from ...configurations.jira import JiraConfiguration
11
10
  from ...configurations.pgvector import PgVectorConfiguration
12
11
 
@@ -27,8 +26,8 @@ def get_tools(tool):
27
26
  llm=tool['settings'].get('llm', None),
28
27
  alita=tool['settings'].get('alita', None),
29
28
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
30
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
31
29
  collection_name=str(tool['toolkit_name']),
30
+ embedding_model=tool['settings'].get('embedding_model'),
32
31
  vectorstore_type="PGVector",
33
32
  toolkit_name=tool.get('toolkit_name')
34
33
  ).get_tools()
@@ -77,11 +76,10 @@ class JiraToolkit(BaseToolkit):
77
76
  verify_ssl=(bool, Field(description="Verify SSL", default=True)),
78
77
  additional_fields=(Optional[str], Field(description="Additional fields", default="")),
79
78
  jira_configuration=(Optional[JiraConfiguration], Field(description="Jira Configuration", json_schema_extra={'configuration_types': ['jira']})),
80
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
79
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default=None,
80
+ description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
81
81
  # embedder settings
82
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.",
83
- json_schema_extra={'configuration_types': [
84
- 'embedding']})),
82
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
85
83
 
86
84
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
87
85
  __config__=ConfigDict(json_schema_extra={
@@ -105,7 +103,6 @@ class JiraToolkit(BaseToolkit):
105
103
  # TODO use jira_configuration fields
106
104
  **kwargs['jira_configuration'],
107
105
  **(kwargs.get('pgvector_configuration') or {}),
108
- **(kwargs.get('embedding_configuration') or {}),
109
106
  }
110
107
  jira_api_wrapper = JiraApiWrapper(**wrapper_payload)
111
108
  prefix = clean_string(toolkit_name, cls.toolkit_max_length) + TOOLKIT_SPLITTER if toolkit_name else ''
@@ -5,7 +5,6 @@ from pydantic import create_model, BaseModel, ConfigDict, Field, SecretStr
5
5
  from .api_wrapper import SharepointApiWrapper
6
6
  from ..base.tool import BaseAction
7
7
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
8
- from ...configurations.embedding import EmbeddingConfiguration
9
8
  from ...configurations.pgvector import PgVectorConfiguration
10
9
 
11
10
  name = "sharepoint"
@@ -22,7 +21,7 @@ def get_tools(tool):
22
21
  alita=tool['settings'].get('alita', None),
23
22
  # indexer settings
24
23
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
25
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
24
+ embedding_model=tool['settings'].get('embedding_model'),
26
25
  collection_name=str(tool['toolkit_name']),
27
26
  vectorstore_type="PGVector")
28
27
  .get_tools())
@@ -43,10 +42,11 @@ class SharepointToolkit(BaseToolkit):
43
42
  client_secret=(SecretStr, Field(description="Client Secret", json_schema_extra={'secret': True})),
44
43
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
45
44
  # indexer settings
46
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
45
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default=None,
46
+ description="PgVector Configuration",
47
+ json_schema_extra={'configuration_types': ['pgvector']})),
47
48
  # embedder settings
48
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
49
- json_schema_extra={'configuration_types': ['embedding']})),
49
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
50
50
  __config__=ConfigDict(json_schema_extra={
51
51
  'metadata': {
52
52
  "label": "Sharepoint", "icon_url": "sharepoint.svg",
@@ -62,7 +62,6 @@ class SharepointToolkit(BaseToolkit):
62
62
  wrapper_payload = {
63
63
  **kwargs,
64
64
  **(kwargs.get('pgvector_configuration') or {}),
65
- **(kwargs.get('embedding_configuration') or {}),
66
65
  }
67
66
  sharepoint_api_wrapper = SharepointApiWrapper(**wrapper_payload)
68
67
  prefix = clean_string(toolkit_name, cls.toolkit_max_length) + TOOLKIT_SPLITTER if toolkit_name else ''
@@ -7,7 +7,6 @@ import requests
7
7
  from .api_wrapper import TestrailAPIWrapper
8
8
  from ..base.tool import BaseAction
9
9
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
10
- from ...configurations.embedding import EmbeddingConfiguration
11
10
  from ...configurations.testrail import TestRailConfiguration
12
11
  from ...configurations.pgvector import PgVectorConfiguration
13
12
 
@@ -24,7 +23,7 @@ def get_tools(tool):
24
23
 
25
24
  # indexer settings
26
25
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
27
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
26
+ embedding_model=tool['settings'].get('embedding_model'),
28
27
  collection_name=f"{tool.get('toolkit_name')}",
29
28
  vectorstore_type="PGVector"
30
29
  ).get_tools()
@@ -44,9 +43,10 @@ class TestrailToolkit(BaseToolkit):
44
43
  'toolkit_name': True,
45
44
  "max_length": TestrailToolkit.toolkit_max_length})),
46
45
  testrail_configuration=(Optional[TestRailConfiguration], Field(description="TestRail Configuration", json_schema_extra={'configuration_types': ['testrail']})),
47
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
46
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default = None,
47
+ description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
48
48
  # embedder settings
49
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding']})),
49
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
50
50
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
51
51
  __config__=ConfigDict(json_schema_extra={'metadata':
52
52
  {"label": "Testrail", "icon_url": "testrail-icon.svg",
@@ -76,7 +76,6 @@ class TestrailToolkit(BaseToolkit):
76
76
  # TODO use testrail_configuration fields
77
77
  **kwargs['testrail_configuration'],
78
78
  **(kwargs.get('pgvector_configuration') or {}),
79
- **(kwargs.get('embedding_configuration') or {}),
80
79
  }
81
80
  testrail_api_wrapper = TestrailAPIWrapper(**wrapper_payload)
82
81
  prefix = clean_string(toolkit_name, cls.toolkit_max_length) + TOOLKIT_SPLITTER if toolkit_name else ''
@@ -589,7 +589,6 @@ class TestrailAPIWrapper(BaseVectorStoreToolApiWrapper):
589
589
  try:
590
590
  if not self._include_attachments:
591
591
  # If attachments are not included, return the document as is
592
- yield document
593
592
  return
594
593
 
595
594
  # get base data from the document required to extract attachments and other metadata
@@ -3,12 +3,11 @@ from typing import List, Optional, Literal
3
3
 
4
4
  from langchain_community.agent_toolkits.base import BaseToolkit
5
5
  from langchain_core.tools import BaseTool
6
- from pydantic import create_model, BaseModel, Field, SecretStr
6
+ from pydantic import create_model, BaseModel, Field
7
7
 
8
8
  from .api_wrapper import XrayApiWrapper
9
9
  from ..base.tool import BaseAction
10
10
  from ..utils import clean_string, get_max_toolkit_length, TOOLKIT_SPLITTER
11
- from ...configurations.embedding import EmbeddingConfiguration
12
11
  from ...configurations.pgvector import PgVectorConfiguration
13
12
  from ...configurations.xray import XrayConfiguration
14
13
 
@@ -28,7 +27,7 @@ def get_tools(tool):
28
27
 
29
28
  # indexer settings
30
29
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
31
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
30
+ embedding_model=tool['settings'].get('embedding_model'),
32
31
  collection_name=str(tool['toolkit_name']),
33
32
  vectorstore_type="PGVector"
34
33
  ).get_tools()
@@ -46,13 +45,12 @@ class XrayToolkit(BaseToolkit):
46
45
  name,
47
46
  limit=(Optional[int], Field(description="Limit", default=100)),
48
47
  xray_configuration=(Optional[XrayConfiguration], Field(description="Xray Configuration", json_schema_extra={'configuration_types': ['xray']})),
49
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
48
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default=None,
49
+ description="PgVector Configuration",
50
50
  json_schema_extra={
51
51
  'configuration_types': ['pgvector']})),
52
52
  # embedder settings
53
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.",
54
- json_schema_extra={'configuration_types': [
55
- 'embedding']})),
53
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
56
54
 
57
55
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
58
56
  __config__={'json_schema_extra':
@@ -75,7 +73,6 @@ class XrayToolkit(BaseToolkit):
75
73
  # Use xray_configuration fields
76
74
  **kwargs.get('xray_configuration', {}),
77
75
  **(kwargs.get('pgvector_configuration') or {}),
78
- **(kwargs.get('embedding_configuration') or {}),
79
76
  }
80
77
  xray_api_wrapper = XrayApiWrapper(**wrapper_payload)
81
78
  prefix = clean_string(toolkit_name, cls.toolkit_max_length) + TOOLKIT_SPLITTER if toolkit_name else ''
@@ -1,28 +1,26 @@
1
1
  from langchain_core.tools import BaseToolkit, BaseTool
2
- from pydantic import create_model, BaseModel, ConfigDict, Field, SecretStr
2
+ from pydantic import create_model, BaseModel, ConfigDict, Field
3
3
  from typing import List, Literal, Optional
4
4
 
5
5
  from .api_wrapper import ZephyrApiWrapper
6
6
  from ..base.tool import BaseAction
7
7
  from ..utils import clean_string, get_max_toolkit_length, TOOLKIT_SPLITTER
8
- from ...configurations.embedding import EmbeddingConfiguration
9
8
  from ...configurations.pgvector import PgVectorConfiguration
10
- from ...configurations.zephyr import ZephyrConfiguration
9
+ from ...configurations.zephyr_enterprise import ZephyrEnterpriseConfiguration
11
10
 
12
11
  name = "zephyr_enterprise"
13
12
 
14
13
  def get_tools(tool):
15
14
  return ZephyrEnterpriseToolkit().get_toolkit(
16
15
  selected_tools=tool['settings'].get('selected_tools', []),
17
- base_url=tool['settings']['base_url'],
18
- token=tool['settings']['token'],
16
+ zephyr_configuration=tool['settings'].get('zephyr_configuration', {}),
19
17
  toolkit_name=tool.get('toolkit_name'),
20
18
  llm=tool['settings'].get('llm', None),
21
19
  alita=tool['settings'].get('alita', None),
22
20
 
23
21
  # indexer settings
24
22
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
25
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
23
+ embedding_model=tool['settings'].get('embedding_model'),
26
24
  collection_name=str(tool['toolkit_name']),
27
25
  vectorstore_type="PGVector"
28
26
  ).get_tools()
@@ -38,14 +36,13 @@ class ZephyrEnterpriseToolkit(BaseToolkit):
38
36
  ZephyrEnterpriseToolkit.toolkit_max_length = get_max_toolkit_length(selected_tools)
39
37
  return create_model(
40
38
  name,
41
- zephyr_configuration=(Optional[ZephyrConfiguration], Field(description="Zephyr Configuration", json_schema_extra={'configuration_types': ['zephyr']})),
39
+ zephyr_configuration=(Optional[ZephyrEnterpriseConfiguration], Field(description="Zephyr Configuration", json_schema_extra={'configuration_types': ['zephyr-enterprise']})),
42
40
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
43
41
  json_schema_extra={
44
- 'configuration_types': ['pgvector']})),
42
+ 'configuration_types': ['pgvector']},
43
+ default=None)),
45
44
  # embedder settings
46
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.",
47
- json_schema_extra={'configuration_types': [
48
- 'embedding']})),
45
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
49
46
  selected_tools=(List[Literal[tuple(selected_tools)]], []),
50
47
  __config__=ConfigDict(json_schema_extra={
51
48
  'metadata': {
@@ -1,12 +1,11 @@
1
1
  from typing import List, Literal, Optional
2
2
 
3
3
  from langchain_core.tools import BaseToolkit, BaseTool
4
- from pydantic import create_model, BaseModel, Field, SecretStr
4
+ from pydantic import create_model, BaseModel, Field
5
5
 
6
6
  from .api_wrapper import ZephyrEssentialApiWrapper
7
7
  from ..base.tool import BaseAction
8
8
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
9
- from ...configurations.embedding import EmbeddingConfiguration
10
9
  from ...configurations.pgvector import PgVectorConfiguration
11
10
 
12
11
  name = "zephyr_essential"
@@ -22,7 +21,7 @@ def get_tools(tool):
22
21
  # indexer settings
23
22
  collection_name=str(tool['toolkit_name']),
24
23
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
25
- embedding_configuration=tool['settings'].get('embedding_configuration', {}),
24
+ embedding_model=tool['settings'].get('embedding_model'),
26
25
  vectorstore_type = "PGVector"
27
26
  ).get_tools()
28
27
 
@@ -39,13 +38,12 @@ class ZephyrEssentialToolkit(BaseToolkit):
39
38
  token=(str, Field(description="Bearer api token")),
40
39
  base_url=(Optional[str], Field(description="Zephyr Essential base url", default=None)),
41
40
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
42
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
41
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default=None,
42
+ description="PgVector Configuration",
43
43
  json_schema_extra={
44
44
  'configuration_types': ['pgvector']})),
45
45
  # embedder settings
46
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.",
47
- json_schema_extra={'configuration_types': [
48
- 'embedding']})),
46
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding_model']})),
49
47
  __config__={'json_schema_extra': {'metadata': {"label": "Zephyr Essential", "icon_url": "zephyr.svg",
50
48
  "categories": ["test management"],
51
49
  "extra_categories": ["test automation", "test case management", "test planning"]
@@ -59,7 +57,6 @@ class ZephyrEssentialToolkit(BaseToolkit):
59
57
  wrapper_payload = {
60
58
  **kwargs,
61
59
  **(kwargs.get('pgvector_configuration') or {}),
62
- **(kwargs.get('embedding_configuration') or {}),
63
60
  }
64
61
  zephyr_api_wrapper = ZephyrEssentialApiWrapper(**wrapper_payload)
65
62
  prefix = clean_string(toolkit_name, cls.toolkit_max_length) + TOOLKIT_SPLITTER if toolkit_name else ''
@@ -2,12 +2,11 @@ from typing import Optional, List, Literal
2
2
 
3
3
  from langchain_community.agent_toolkits.base import BaseToolkit
4
4
  from langchain_core.tools import BaseTool
5
- from pydantic import create_model, BaseModel, Field, SecretStr
5
+ from pydantic import create_model, BaseModel, Field
6
6
 
7
7
  from .api_wrapper import ZephyrScaleApiWrapper
8
8
  from ..base.tool import BaseAction
9
9
  from ..utils import clean_string, get_max_toolkit_length, TOOLKIT_SPLITTER
10
- from ...configurations.embedding import EmbeddingConfiguration
11
10
  from ...configurations.pgvector import PgVectorConfiguration
12
11
  from ...configurations.zephyr import ZephyrConfiguration
13
12
 
@@ -16,11 +15,7 @@ name = "zephyr_scale"
16
15
  def get_tools(tool):
17
16
  return ZephyrScaleToolkit().get_toolkit(
18
17
  selected_tools=tool['settings'].get('selected_tools', []),
19
- base_url=tool['settings'].get('base_url', None),
20
- token=tool['settings'].get('token', None),
21
- username=tool['settings'].get('username', None),
22
- password=tool['settings'].get('password', None),
23
- cookies=tool['settings'].get('cookies', None),
18
+ zephyr_configuration=tool['settings'].get('zephyr_configuration', {}),
24
19
  max_results=tool['settings'].get('max_results', 100),
25
20
  toolkit_name=tool.get('toolkit_name'),
26
21
  llm=tool['settings'].get('llm', None),
@@ -29,8 +24,7 @@ def get_tools(tool):
29
24
  # indexer settings
30
25
  pgvector_configuration=tool['settings'].get('pgvector_configuration', {}),
31
26
  collection_name=str(tool['toolkit_name']),
32
- embedding_model="HuggingFaceEmbeddings",
33
- embedding_model_params={"model_name": "sentence-transformers/all-MiniLM-L6-v2"},
27
+ embedding_model=tool['settings'].get('embedding_model', None),
34
28
  vectorstore_type="PGVector"
35
29
  ).get_tools()
36
30
 
@@ -46,14 +40,14 @@ class ZephyrScaleToolkit(BaseToolkit):
46
40
  return create_model(
47
41
  name,
48
42
  max_results=(int, Field(default=100, description="Results count to show")),
49
- zephyr_configuration=(Optional[ZephyrConfiguration], Field(description="Zephyr Configuration", json_schema_extra={'configuration_types': ['zephyr']})),
50
- pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
43
+ zephyr_configuration=(Optional[ZephyrConfiguration], Field(description="Zephyr Configuration",
44
+ json_schema_extra={'configuration_types': ['zephyr']})),
45
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(default=None, description="PgVector Configuration",
51
46
  json_schema_extra={
52
47
  'configuration_types': ['pgvector']})),
53
48
  # embedder settings
54
- embedding_configuration=(Optional[EmbeddingConfiguration], Field(default=None, description="Embedding configuration.",
55
- json_schema_extra={'configuration_types': [
56
- 'embedding']})),
49
+ embedding_model=(Optional[str], Field(default=None, description="Embedding configuration.",
50
+ json_schema_extra={'configuration_types': ['embedding_model']})),
57
51
  selected_tools=(List[Literal[tuple(selected_tools)]],
58
52
  Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
59
53
  __config__={
@@ -63,25 +57,6 @@ class ZephyrScaleToolkit(BaseToolkit):
63
57
  "icon_url": "zephyr.svg",
64
58
  "categories": ["test management"],
65
59
  "extra_categories": ["test automation", "test case management", "test planning"],
66
- "sections": {
67
- "auth": {
68
- "required": True,
69
- "subsections": [
70
- {
71
- "name": "Token",
72
- "fields": ["token"]
73
- },
74
- {
75
- "name": "Password",
76
- "fields": ["username", "password"]
77
- },
78
- {
79
- "name": "Cookie",
80
- "fields": ["cookies"]
81
- }
82
- ]
83
- }
84
- }
85
60
  }
86
61
  }
87
62
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: alita_sdk
3
- Version: 0.3.245
3
+ Version: 0.3.247
4
4
  Summary: SDK for building langchain agents using resources from Alita
5
5
  Author-email: Artem Rozumenko <artyom.rozumenko@gmail.com>, Mikalai Biazruchka <mikalai_biazruchka@epam.com>, Roman Mitusov <roman_mitusov@epam.com>, Ivan Krakhmaliuk <lifedjik@gmail.com>, Artem Dubrovskiy <ad13box@gmail.com>
6
6
  License-Expression: Apache-2.0
@@ -1,7 +1,7 @@
1
1
  alita_sdk/__init__.py,sha256=fxeNiqiVpIFAJls31Oomifyrtd5gT9iPUTdkWjDOB2Y,656
2
2
  alita_sdk/community/__init__.py,sha256=8N7wWwPhoyOq3p8wlV3-pb3l3nJCR8TUrtV9iIPLU88,2523
3
3
  alita_sdk/community/utils.py,sha256=lvuCJaNqVPHOORJV6kIPcXJcdprVW_TJvERtYAEgpjM,249
4
- alita_sdk/configurations/__init__.py,sha256=xWTgIx2FLmPuXZQhM0iZA-7aIamF4oFpQl9wb0HXH_Q,2905
4
+ alita_sdk/configurations/__init__.py,sha256=kayVc1lkXzrogAztw0te72f-MQBkDRwXDl8l4aWysgQ,3094
5
5
  alita_sdk/configurations/ado.py,sha256=sP6eDLhEqr_u6CXm8Scx45rcn1wf-J_Y2fjkp5n582k,1189
6
6
  alita_sdk/configurations/azure_search.py,sha256=PV2wMeNZI9XTN1nbrT0Li3xDAV7x8S9SJBoEKJqn_KY,809
7
7
  alita_sdk/configurations/bigquery.py,sha256=-hG5HnNKhxeQKRy85V6cunTmQNUobbACNOg4Z1KPc-g,920
@@ -9,7 +9,7 @@ alita_sdk/configurations/bitbucket.py,sha256=iX0HAV_OJbgxitCVw5T_gJHOg7EAqHV2Ty8
9
9
  alita_sdk/configurations/confluence.py,sha256=LFFjhp0whiWcAN-2DnOVSUnQmjURBmV4C4iDyKs7vys,1423
10
10
  alita_sdk/configurations/delta_lake.py,sha256=ADWcjabi7Krq2yxIpoc_tmhdncdgot2GBphE7ziDeTY,1133
11
11
  alita_sdk/configurations/embedding.py,sha256=8GSC8Feh8CH7bT_6cQhNqlS6raE91S2YRAtb2N9bUA8,552
12
- alita_sdk/configurations/figma.py,sha256=UmnIKvC8G3hVvX47O-w_syiJwJAMn1LCmoZMWJTK40w,1473
12
+ alita_sdk/configurations/figma.py,sha256=vecZ20IyZgnFO2GdphkovYHMISRPcUYh7fxkUQsPwX8,1306
13
13
  alita_sdk/configurations/github.py,sha256=GSj6sA4f6SfW0ZpoHXKi5FzbPDC6wE1AlscwWqIPj14,1832
14
14
  alita_sdk/configurations/gitlab.py,sha256=15tXlnFM3IQSUA10wy4tpfHC-dJIW-xYmHoSzoqRRc4,1077
15
15
  alita_sdk/configurations/jira.py,sha256=OxvkJ7a_ig7DQGqpL8rSZod_lJzN25KFaJDRnjt2xPs,1380
@@ -22,6 +22,7 @@ alita_sdk/configurations/slack.py,sha256=x-Hz_Uo1xXCtlpMfJUY39q9kXm5IB0IR9l4wSLA
22
22
  alita_sdk/configurations/testrail.py,sha256=k0fPmHBIrWAfEKhrDdB9Rdirw-UFHFoXkRePyrsqcWI,725
23
23
  alita_sdk/configurations/xray.py,sha256=tRCzdLwNN6VZucWOgUusLv8x4tJzgNszEm1v3BTmO8k,1142
24
24
  alita_sdk/configurations/zephyr.py,sha256=9P6DfbUP_azFxzccCiC7WbBsf4MFQ2xb5-Azb9wVy-g,1648
25
+ alita_sdk/configurations/zephyr_enterprise.py,sha256=UYVTFwTKM-W4XWjASb6-nC3T-24MOdtNCPoXUBgj2jw,699
25
26
  alita_sdk/runtime/__init__.py,sha256=4W0UF-nl3QF2bvET5lnah4o24CoTwSoKXhuN0YnwvEE,828
26
27
  alita_sdk/runtime/clients/__init__.py,sha256=BdehU5GBztN1Qi1Wul0cqlU46FxUfMnI6Vq2Zd_oq1M,296
27
28
  alita_sdk/runtime/clients/artifact.py,sha256=H3pJAh5G-zWVyJ6YbqHGk4jA8U6HfacQduiTivpJZ3Y,3210
@@ -81,17 +82,17 @@ alita_sdk/runtime/llms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3
81
82
  alita_sdk/runtime/llms/preloaded.py,sha256=3AaUbZK3d8fvxAQMjR3ftOoYa0SnkCOL1EvdvDCXIHE,11321
82
83
  alita_sdk/runtime/toolkits/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
83
84
  alita_sdk/runtime/toolkits/application.py,sha256=Mn8xwIdlbuyNzroH-WVVWJG0biOUV7u8qS15fQJ_XmI,2186
84
- alita_sdk/runtime/toolkits/artifact.py,sha256=_vQOR4_xPeyOd3Gqcf5vDxTu2uLzViYt7igFHpJm4FQ,3062
85
+ alita_sdk/runtime/toolkits/artifact.py,sha256=UMhHMtbHI62Lg2bU_ljvHb0qBABN5520D_N776aj1s8,3054
85
86
  alita_sdk/runtime/toolkits/configurations.py,sha256=kIDAlnryPQfbZyFxV-9SzN2-Vefzx06TX1BBdIIpN90,141
86
87
  alita_sdk/runtime/toolkits/datasource.py,sha256=qk78OdPoReYPCWwahfkKLbKc4pfsu-061oXRryFLP6I,2498
87
88
  alita_sdk/runtime/toolkits/prompt.py,sha256=WIpTkkVYWqIqOWR_LlSWz3ug8uO9tm5jJ7aZYdiGRn0,1192
88
89
  alita_sdk/runtime/toolkits/subgraph.py,sha256=ZYqI4yVLbEPAjCR8dpXbjbL2ipX598Hk3fL6AgaqFD4,1758
89
- alita_sdk/runtime/toolkits/tools.py,sha256=ebvVIyNzLMvqvgW58uP5qGmWV5bLczuKIr58OgladUQ,8029
90
+ alita_sdk/runtime/toolkits/tools.py,sha256=o_l2Md1Z0dRoBdt5jN4GTQkwcbCPTAOr0_J7hhTyo2s,8023
90
91
  alita_sdk/runtime/toolkits/vectorstore.py,sha256=BGppQADa1ZiLO17fC0uCACTTEvPHlodEDYEzUcBRbAA,2901
91
92
  alita_sdk/runtime/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
92
93
  alita_sdk/runtime/tools/agent.py,sha256=m98QxOHwnCRTT9j18Olbb5UPS8-ZGeQaGiUyZJSyFck,3162
93
94
  alita_sdk/runtime/tools/application.py,sha256=mC2_ZFx4WLHc98Gzll88Vw6cqyx2cmbig2IeJBtHRdg,2836
94
- alita_sdk/runtime/tools/artifact.py,sha256=vqDLHLm820PFRjIM9-iD41aNB_Q5lPIb38jgXMYSTuM,8821
95
+ alita_sdk/runtime/tools/artifact.py,sha256=WpSGvGzypa5MShOv0qRC6ncEyhIzxTlR8jab5HkPDyA,8803
95
96
  alita_sdk/runtime/tools/datasource.py,sha256=pvbaSfI-ThQQnjHG-QhYNSTYRnZB0rYtZFpjCfpzxYI,2443
96
97
  alita_sdk/runtime/tools/echo.py,sha256=spw9eCweXzixJqHnZofHE1yWiSUa04L4VKycf3KCEaM,486
97
98
  alita_sdk/runtime/tools/function.py,sha256=ZFpd7TGwIawze2e7BHlKwP0NHwNw42wwrmmnXyJQJhk,2600
@@ -117,15 +118,15 @@ alita_sdk/runtime/utils/toolkit_utils.py,sha256=I9QFqnaqfVgN26LUr6s3XlBlG6y0CoHU
117
118
  alita_sdk/runtime/utils/utils.py,sha256=CpEl3LCeLbhzQySz08lkKPm7Auac6IiLF7WB8wmArMI,589
118
119
  alita_sdk/tools/__init__.py,sha256=ko5TToGYZFmBrho26DRAVvrkHWxQ2sfs8gVAASinYp8,10611
119
120
  alita_sdk/tools/elitea_base.py,sha256=yRjU1FQwsGdDpUDSmgLb7p-ZYWLLJTgqSzIVC2jcACQ,30268
120
- alita_sdk/tools/ado/__init__.py,sha256=gGddsqMIQBz0vDbvhpEzw06dMOw7hfUO360F-gys6uI,1233
121
+ alita_sdk/tools/ado/__init__.py,sha256=bArTObt5cqG1SkijKevWGbsIILHBA3aCStg8Q1jd69k,1243
121
122
  alita_sdk/tools/ado/utils.py,sha256=PTCludvaQmPLakF2EbCGy66Mro4-rjDtavVP-xcB2Wc,1252
122
- alita_sdk/tools/ado/repos/__init__.py,sha256=d7WNLB0JmIw9-8_lhErpr2UBGknEG53Lwaxfbmqek40,5995
123
+ alita_sdk/tools/ado/repos/__init__.py,sha256=nRd3pf_rjz63wEt6WszMl-4oon5N7P-_aQP6k39ex-c,5797
123
124
  alita_sdk/tools/ado/repos/repos_wrapper.py,sha256=nPVsS10Se52yHmZ_YXVGywCSaYLlBEYBTBlhBcDJr80,50143
124
- alita_sdk/tools/ado/test_plan/__init__.py,sha256=_F9bfaLvdEu8ECr_KW7eHFzyDf1YeFaZwHBukAWs-mU,5453
125
+ alita_sdk/tools/ado/test_plan/__init__.py,sha256=NUHAXqteVCHoAJdFiCFxrUjkI-uL1x2mYuvqOruF43o,5251
125
126
  alita_sdk/tools/ado/test_plan/test_plan_wrapper.py,sha256=jQt8kFmdAzsopjByLTMiSnWtoqz_IUOmYkhPTVGeMnU,20265
126
- alita_sdk/tools/ado/wiki/__init__.py,sha256=tvsQx_iun4Tjhp33UsQFhsb-XLOFltzaxdocl_CGyA0,5382
127
+ alita_sdk/tools/ado/wiki/__init__.py,sha256=a1_FIS6E8yhWBQY00WofvnS1GkhJ9ssvXHkqXtvRFPA,5179
127
128
  alita_sdk/tools/ado/wiki/ado_wrapper.py,sha256=zg6wMRar1DTp-ZRlYaQifBEnpYmTrHXskTNPdrLdy8s,14759
128
- alita_sdk/tools/ado/work_item/__init__.py,sha256=UJReU0rbkvDUeIkd6SPxcwbkTQWlGvX4NzOGsPQe2pI,5517
129
+ alita_sdk/tools/ado/work_item/__init__.py,sha256=9w-_QvfOfCY2Upa1rjbBYbpdDopDi1VxQxOeixSDYoo,5391
129
130
  alita_sdk/tools/ado/work_item/ado_wrapper.py,sha256=ubeF2m8J6CGZF_gnkTEbmW_eh6YWsk7bD2clu9FmZpY,28313
130
131
  alita_sdk/tools/advanced_jira_mining/__init__.py,sha256=pUTzECqGvYaR5qWY3JPUhrImrZgc7pCXuqSe5eWIE80,4604
131
132
  alita_sdk/tools/advanced_jira_mining/data_mining_wrapper.py,sha256=nZPtuwVWp8VeHw1B8q9kdwf-6ZvHnlXTOGdcIMDkKpw,44211
@@ -139,7 +140,7 @@ alita_sdk/tools/azure_ai/search/__init__.py,sha256=FVWNSW4LlOXKt34fVUgXut5oZcok9
139
140
  alita_sdk/tools/azure_ai/search/api_wrapper.py,sha256=E4p6HPDlwgxfT_i6cvg9rN4Vn_47CVAyNBAKLIGq3mU,7265
140
141
  alita_sdk/tools/base/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
141
142
  alita_sdk/tools/base/tool.py,sha256=-N27AodZS49vdPCgFkU-bFS9bxoPopZBnNrmwInx3d0,864
142
- alita_sdk/tools/bitbucket/__init__.py,sha256=ELdEHRUI8g3UhtyEQSCs3xBmlsvPATW4ajcifaC1H3s,5730
143
+ alita_sdk/tools/bitbucket/__init__.py,sha256=3wYs5vxh-LHZBO7niIiMkviMwoHWj6cQS3ziLYNrEYg,5393
143
144
  alita_sdk/tools/bitbucket/api_wrapper.py,sha256=OU55KjtFalYIZ4ioeBck0zjqTewB6BdwQuAS3Kud4R0,10847
144
145
  alita_sdk/tools/bitbucket/bitbucket_constants.py,sha256=UsbhQ1iEvrKoxceTFPWTYhaXS1zSxbmjs1TwY0-P4gw,462
145
146
  alita_sdk/tools/bitbucket/cloud_api_wrapper.py,sha256=VELi65tLXvszwCGQSqVfyVal0ylx9DgAmAGpRQL_Zkg,15522
@@ -207,7 +208,7 @@ alita_sdk/tools/code/linter/api_wrapper.py,sha256=wylpwhAw02Jt8L18CqBq2He5PbwIkx
207
208
  alita_sdk/tools/code/loaders/codesearcher.py,sha256=XoXXZtIQZhvjIwZlnl_4wVGHC-3saYzFo5oDR_Zh3EY,529
208
209
  alita_sdk/tools/code/sonar/__init__.py,sha256=u8wpgXJ_shToLl3G9-XEtGDor5dhmsnurIImh1-e-U0,3165
209
210
  alita_sdk/tools/code/sonar/api_wrapper.py,sha256=nNqxcWN_6W8c0ckj-Er9HkNuAdgQLoWBXh5UyzNutis,2653
210
- alita_sdk/tools/confluence/__init__.py,sha256=fwxeQLCXrUTqBr7DENixisevwceLdYCodiH-bmYI4yg,7341
211
+ alita_sdk/tools/confluence/__init__.py,sha256=JqSINkzWcKujznLSkJR0SAxnAjLrxhRbTzBlISK-_To,7183
211
212
  alita_sdk/tools/confluence/api_wrapper.py,sha256=4WqjVeFWyFeb4-VD5v4_J69pbyjire4Op7cBSKU9EXw,85057
212
213
  alita_sdk/tools/confluence/loader.py,sha256=4bf5qrJMEiJzuZp2NlxO2XObLD1w7fxss_WyMUpe8sg,9290
213
214
  alita_sdk/tools/confluence/utils.py,sha256=Lxo6dBD0OlvM4o0JuK6qeB_4LV9BptiwJA9e1vqNcDw,435
@@ -215,16 +216,16 @@ alita_sdk/tools/custom_open_api/__init__.py,sha256=9aT5SPNPWcJC6jMZEM-3rUCXVULj_
215
216
  alita_sdk/tools/custom_open_api/api_wrapper.py,sha256=sDSFpvEqpSvXHGiBISdQQcUecfO3md-_F8hAi6p2dvg,4340
216
217
  alita_sdk/tools/elastic/__init__.py,sha256=iwnSRppRpzvJ1da2K3Glu8Uu41MhBDCYbguboLkEbW0,2818
217
218
  alita_sdk/tools/elastic/api_wrapper.py,sha256=pl8CqQxteJAGwyOhMcld-ZgtOTFwwbv42OITQVe8rM0,1948
218
- alita_sdk/tools/figma/__init__.py,sha256=xaYyPdg9qZkp6y5h0EeOmyXqFznkRbLUSEg326Hwbbo,4763
219
+ alita_sdk/tools/figma/__init__.py,sha256=RsLRsYGTxO_CuChTbSA2r1Ci4ph7dkWUBcYY4Kgk4MU,4428
219
220
  alita_sdk/tools/figma/api_wrapper.py,sha256=Rtgt9FvR8VD0oPdYhlgvVyXLVqLTjtiOPTlwNeaV80w,20560
220
- alita_sdk/tools/github/__init__.py,sha256=BEtPsqP-yuyt05pINlic2fJ41j_tx7OmGGqCN75kgEo,5406
221
+ alita_sdk/tools/github/__init__.py,sha256=sv9T8-MdvBANe7M1fKCokBCj7HRYuBuLi6mC_9I_Ra4,5132
221
222
  alita_sdk/tools/github/api_wrapper.py,sha256=uDwYckdnpYRJtb0uZnDkaz2udvdDLVxuCh1tSwspsiU,8411
222
223
  alita_sdk/tools/github/github_client.py,sha256=nxnSXsDul2PPbWvYZS8TmAFFmR-5ALyakNoV5LN2D4U,86617
223
224
  alita_sdk/tools/github/graphql_client_wrapper.py,sha256=d3AGjzLGH_hdQV2V8HeAX92dJ4dlnE5OXqUlCO_PBr0,71539
224
225
  alita_sdk/tools/github/schemas.py,sha256=yFsqivfjCPRk9GxFJrL8sTz6nnjFCZ0j5DIfPtGSsvA,13852
225
226
  alita_sdk/tools/github/tool.py,sha256=Jnnv5lenV5ds8AAdyo2m8hSzyJ117HZBjzHC6T1ck-M,1037
226
227
  alita_sdk/tools/github/tool_prompts.py,sha256=y6ZW_FpUCE87Uop3WuQAZVRnzxO5t7xjBOI5bCqiluw,30194
227
- alita_sdk/tools/gitlab/__init__.py,sha256=JniVJI_lYC0OSrc2lES-pyZY4zw5zUR3nMA2NoOmNVU,4618
228
+ alita_sdk/tools/gitlab/__init__.py,sha256=pXmTffcc2-WMwssbaLhT_Gbb4OgWY9x3-snaRQSS2GA,4496
228
229
  alita_sdk/tools/gitlab/api_wrapper.py,sha256=KYCRO2pF8EPTLhWuEj64XsHPCYSucsf8S3R_ofJttrA,22301
229
230
  alita_sdk/tools/gitlab/tools.py,sha256=vOGTlSaGaFmWn6LS6YFP-FuTqUPun9vnv1VrUcUHAZQ,16500
230
231
  alita_sdk/tools/gitlab/utils.py,sha256=Z2XiqIg54ouqqt1to-geFybmkCb1I6bpE91wfnINH1I,2320
@@ -240,7 +241,7 @@ alita_sdk/tools/google/bigquery/schemas.py,sha256=Gb8KQZSoRkmjXiz21dTC95c1MHEHFc
240
241
  alita_sdk/tools/google/bigquery/tool.py,sha256=Esf9Hsp8I0e7-5EdkFqQ-bid0cfrg-bfSoHoW_IIARo,1027
241
242
  alita_sdk/tools/google_places/__init__.py,sha256=mHKc7u9P2gqGDzqqJNQC9qiZYEm5gncnM_1XjtrM17o,3152
242
243
  alita_sdk/tools/google_places/api_wrapper.py,sha256=7nZly6nk4f4Tm7s2MVdnnwlb-1_WHRrDhyjDiqoyPjA,4674
243
- alita_sdk/tools/jira/__init__.py,sha256=p5XzIY0XTLkHy7JVyf0Vv-XJnwtI_1JtgIrbSzIfWxQ,6316
244
+ alita_sdk/tools/jira/__init__.py,sha256=9V4QNc66eBjPkqpgcLayzDunwYhPYZe_a8WBapLNhPI,6081
244
245
  alita_sdk/tools/jira/api_wrapper.py,sha256=i8x8CttVEW_FFEl6hBNdzCqc-aMyy1FhqkiEHGaDmpo,76178
245
246
  alita_sdk/tools/keycloak/__init__.py,sha256=0WB9yXMUUAHQRni1ghDEmd7GYa7aJPsTVlZgMCM9cQ0,3050
246
247
  alita_sdk/tools/keycloak/api_wrapper.py,sha256=cOGr0f3S3-c6tRDBWI8wMnetjoNSxiV5rvC_0VHb8uw,3100
@@ -293,7 +294,7 @@ alita_sdk/tools/salesforce/model.py,sha256=wzpbTdUx5mANApAZFQIKzq7xXtYBiiSlKvrTX
293
294
  alita_sdk/tools/servicenow/__init__.py,sha256=hReiTp8yv07eR0O_1KJThzUO2xhWhIWcjU9DAk1D0rI,4540
294
295
  alita_sdk/tools/servicenow/api_wrapper.py,sha256=WpH-bBLGFdhehs4g-K-WAkNuaD1CSrwsDpdgB3RG53s,6120
295
296
  alita_sdk/tools/servicenow/servicenow_client.py,sha256=Rdqfu-ll-qbnclMzChLZBsfXRDzgoX_FdeI2WLApWxc,3269
296
- alita_sdk/tools/sharepoint/__init__.py,sha256=0-ucohAZG6RR4FGGQtbiEYUTESSc2D6UGkQcbFIEGro,4187
297
+ alita_sdk/tools/sharepoint/__init__.py,sha256=8fiBp-U-GRBXSsoMRixOhO5kRMzBMrVtLHKPhFPGkNE,4122
297
298
  alita_sdk/tools/sharepoint/api_wrapper.py,sha256=TSdKZuLnn3uSkaNuYb7a2xG4w4sQzXbzOO3c8tIlFds,9259
298
299
  alita_sdk/tools/sharepoint/authorization_helper.py,sha256=n-nL5dlBoLMK70nHu7P2RYCb8C6c9HMA_gEaw8LxuhE,2007
299
300
  alita_sdk/tools/sharepoint/utils.py,sha256=fZ1YzAu5CTjKSZeslowpOPH974902S8vCp1Wu7L44LM,446
@@ -304,13 +305,13 @@ alita_sdk/tools/sql/api_wrapper.py,sha256=Rky0_CX9HWDQ2mClHGAgP3LHjYVX4iymPuilZM
304
305
  alita_sdk/tools/sql/models.py,sha256=AKJgSl_kEEz4fZfw3kbvdGHXaRZ-yiaqfJOB6YOj3i0,641
305
306
  alita_sdk/tools/testio/__init__.py,sha256=qi12wyJXN02hrUXg08CbijcCL5pi30JMbJfiXjn1Zr0,2646
306
307
  alita_sdk/tools/testio/api_wrapper.py,sha256=BvmL5h634BzG6p7ajnQLmj-uoAw1gjWnd4FHHu1h--Q,21638
307
- alita_sdk/tools/testrail/__init__.py,sha256=vUG0yhMcAP8bgP6B17q_J32DuAuC-mnNDC5rDogwn4I,4716
308
- alita_sdk/tools/testrail/api_wrapper.py,sha256=Aax0jspgidXYNxLIw6qTWu3dO2JOIS0ALIqsCzQuFbQ,32087
308
+ alita_sdk/tools/testrail/__init__.py,sha256=3IejxSEK2LPEuenGdinKNR_MJUFjOAHEjoWR9wioOIo,4642
309
+ alita_sdk/tools/testrail/api_wrapper.py,sha256=K-Gc42RH2z-fK4cXi8zQq3s9A4v_pCJkRB3XKLAhypc,32056
309
310
  alita_sdk/tools/utils/__init__.py,sha256=155xepXPr4OEzs2Mz5YnjXcBpxSv1X2eznRUVoPtyK0,3268
310
311
  alita_sdk/tools/utils/content_parser.py,sha256=uqJoaJzl9w4Nf9yFy40sm1-qm88bvj7Y1S-1OxHkTks,7410
311
312
  alita_sdk/tools/vector_adapters/VectorStoreAdapter.py,sha256=a6FAsiix_EvATIKUf5YT6vHh5LDyJ5uSP3LJqoxFo04,17367
312
313
  alita_sdk/tools/vector_adapters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
313
- alita_sdk/tools/xray/__init__.py,sha256=g07EiwTu0ugY2kziJcZbNTOkjufRRLk8cIj4DPn2Xys,4634
314
+ alita_sdk/tools/xray/__init__.py,sha256=_xLIBut0Ox6wPOrzOHQQf58CKlDPNLUC4eHYK2IturY,4388
314
315
  alita_sdk/tools/xray/api_wrapper.py,sha256=A8PJmY2k7TowaD_vk6ZxkMnSUoZUt9A6g4TJrZfNTAw,32225
315
316
  alita_sdk/tools/yagmail/__init__.py,sha256=c4Qn3em0tLxzRmFKpzbBgY9W2EnOoKf0azoDJHng5CY,2208
316
317
  alita_sdk/tools/yagmail/yagmail_wrapper.py,sha256=SKoGVd1X4Ew3ad5tOdtPoY00M6jStNdT3q7GXEjQc5g,1952
@@ -318,19 +319,19 @@ alita_sdk/tools/zephyr/Zephyr.py,sha256=ODZbg9Aw0H0Rbv-HcDXLI4KHbPiLDHoteDofshw9
318
319
  alita_sdk/tools/zephyr/__init__.py,sha256=8B2Ibz5QTmB5WkV0q8Sq4kuj92FFaFWZLrT877zRRLg,2897
319
320
  alita_sdk/tools/zephyr/api_wrapper.py,sha256=lJCYPG03ej0qgdpLflnS7LFB4HSAfGzIvTjAJt07CQs,6244
320
321
  alita_sdk/tools/zephyr/rest_client.py,sha256=7vSD3oYIX-3KbAFed-mphSQif_VRuXrq5O07ryNQ7Pk,6208
321
- alita_sdk/tools/zephyr_enterprise/__init__.py,sha256=Jw_6Zc-03ZMC7KNuYnjS89wwMk3AaK7r3_Ye3rHnCZc,4247
322
+ alita_sdk/tools/zephyr_enterprise/__init__.py,sha256=8WnIXxFNf1BeX1WTrpUKvmWmm5BHTWtmB7D2X7rtZnE,4095
322
323
  alita_sdk/tools/zephyr_enterprise/api_wrapper.py,sha256=p9EpkO5tif3JJzprz2_VuLsQ1yET7TwwBfPOKJGwt9c,11215
323
324
  alita_sdk/tools/zephyr_enterprise/zephyr_enterprise.py,sha256=hV9LIrYfJT6oYp-ZfQR0YHflqBFPsUw2Oc55HwK0H48,6809
324
- alita_sdk/tools/zephyr_essential/__init__.py,sha256=UYq5SfFRagvqNNUAOq7r6xAVqHLZuUBOm5aBL1U30l0,4015
325
+ alita_sdk/tools/zephyr_essential/__init__.py,sha256=JEd-o1vriqs-pTaYcqdt9t8g1OLlBrr9Oe28IgKJEFQ,3769
325
326
  alita_sdk/tools/zephyr_essential/api_wrapper.py,sha256=TpNov35XPgjM9eymCEFqv22mbpdVvLMBTb9WVqUcvNA,36795
326
327
  alita_sdk/tools/zephyr_essential/client.py,sha256=bfNcUKNqj9MFWTludGbbqD4qZlxrBaC2JtWsCfZMqSY,9722
327
- alita_sdk/tools/zephyr_scale/__init__.py,sha256=WLBzMhZQfhyfDqR3UnRXpD1tuC0lwtoPk1Gkm6AQb4Y,5555
328
+ alita_sdk/tools/zephyr_scale/__init__.py,sha256=4TQnr_Go9zIBg2Gyl8P_oMMEjQGDYRbsOJrFNlV05cw,4307
328
329
  alita_sdk/tools/zephyr_scale/api_wrapper.py,sha256=JAeWf-RXohsxheUpT0iMDClc_izj-zxMwafXCW4jtC0,78015
329
330
  alita_sdk/tools/zephyr_squad/__init__.py,sha256=0AI_j27xVO5Gk5HQMFrqPTd4uvuVTpiZUicBrdfEpKg,2796
330
331
  alita_sdk/tools/zephyr_squad/api_wrapper.py,sha256=kmw_xol8YIYFplBLWTqP_VKPRhL_1ItDD0_vXTe_UuI,14906
331
332
  alita_sdk/tools/zephyr_squad/zephyr_squad_cloud_client.py,sha256=R371waHsms4sllHCbijKYs90C-9Yu0sSR3N4SUfQOgU,5066
332
- alita_sdk-0.3.245.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
333
- alita_sdk-0.3.245.dist-info/METADATA,sha256=4jO-XaHDi2ABmhFG4j5bJ9vz2yw4fxxWWKWRqgCyWgY,18897
334
- alita_sdk-0.3.245.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
335
- alita_sdk-0.3.245.dist-info/top_level.txt,sha256=0vJYy5p_jK6AwVb1aqXr7Kgqgk3WDtQ6t5C-XI9zkmg,10
336
- alita_sdk-0.3.245.dist-info/RECORD,,
333
+ alita_sdk-0.3.247.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
334
+ alita_sdk-0.3.247.dist-info/METADATA,sha256=DAftAidF4sLFmpAYORbo4Ulr9BgoZi2kH6Ldp2gKPcQ,18897
335
+ alita_sdk-0.3.247.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
336
+ alita_sdk-0.3.247.dist-info/top_level.txt,sha256=0vJYy5p_jK6AwVb1aqXr7Kgqgk3WDtQ6t5C-XI9zkmg,10
337
+ alita_sdk-0.3.247.dist-info/RECORD,,