alita-sdk 0.3.233__py3-none-any.whl → 0.3.234__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,19 @@
1
+ from pydantic import BaseModel, ConfigDict, Field, SecretStr
2
+
3
+
4
+ class EmbeddingConfiguration(BaseModel):
5
+ model_config = ConfigDict(
6
+ json_schema_extra={
7
+ "metadata": {
8
+ "label": "Embedding Vector Storage",
9
+ "icon_url": None,
10
+ "section": "vectorstorage",
11
+ "type": "embedding"
12
+ }
13
+ }
14
+ )
15
+ embedding_model: str = Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.",
16
+ default="HuggingFaceEmbeddings")
17
+ embedding_model_params: dict = Field(
18
+ description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}",
19
+ default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})
@@ -16,5 +16,6 @@ class TestRailConfiguration(BaseModel):
16
16
  }
17
17
  }
18
18
  )
19
- email: Optional[str] = Field(description="TestRail Email", default=None)
20
- password: Optional[SecretStr] = Field(description="TestRail Password", default=None)
19
+ url: str = Field(description="Testrail URL")
20
+ email: str = Field(description="TestRail Email")
21
+ password: SecretStr = Field(description="TestRail Password")
@@ -6,6 +6,7 @@ from pydantic import BaseModel, Field, create_model
6
6
  import requests
7
7
 
8
8
  from ....configurations.ado import AdoReposConfiguration
9
+ from ....configurations.embedding import EmbeddingConfiguration
9
10
  from ....configurations.pgvector import PgVectorConfiguration
10
11
  from ...base.tool import BaseAction
11
12
  from .repos_wrapper import ReposApiWrapper
@@ -54,11 +55,8 @@ class AzureDevOpsReposToolkit(BaseToolkit):
54
55
  # indexer settings
55
56
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
56
57
  # embedder settings
57
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.",
58
- default="HuggingFaceEmbeddings")),
59
- embedding_model_params=(dict, Field(
60
- description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}",
61
- default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
58
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
59
+ json_schema_extra={'configuration_types': ['embedding']})),
62
60
 
63
61
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
64
62
  __config__={'json_schema_extra': {'metadata':
@@ -5,6 +5,7 @@ from pydantic import create_model, BaseModel, Field
5
5
 
6
6
  import requests
7
7
  from ....configurations.ado import AdoConfiguration
8
+ from ....configurations.embedding import EmbeddingConfiguration
8
9
  from ....configurations.pgvector import PgVectorConfiguration
9
10
  from .test_plan_wrapper import TestPlanApiWrapper
10
11
  from ...base.tool import BaseAction
@@ -31,11 +32,9 @@ class AzureDevOpsPlansToolkit(BaseToolkit):
31
32
  # indexer settings
32
33
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
33
34
  # embedder settings
34
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.",
35
- default="HuggingFaceEmbeddings")),
36
- embedding_model_params=(dict, Field(
37
- description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}",
38
- default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
35
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
36
+ json_schema_extra={'configuration_types': [
37
+ 'embedding']})),
39
38
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
40
39
  __config__={'json_schema_extra': {'metadata':
41
40
  {
@@ -5,6 +5,7 @@ from pydantic import create_model, BaseModel, Field
5
5
 
6
6
  import requests
7
7
  from ....configurations.ado import AdoConfiguration
8
+ from ....configurations.embedding import EmbeddingConfiguration
8
9
  from ....configurations.pgvector import PgVectorConfiguration
9
10
  from ...base.tool import BaseAction
10
11
  from ...utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
@@ -31,11 +32,9 @@ class AzureDevOpsWikiToolkit(BaseToolkit):
31
32
  # indexer settings
32
33
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
33
34
  # embedder settings
34
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.",
35
- default="HuggingFaceEmbeddings")),
36
- embedding_model_params=(dict, Field(
37
- description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}",
38
- default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
35
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
36
+ json_schema_extra={'configuration_types': [
37
+ 'embedding']})),
39
38
  selected_tools=(List[Literal[tuple(selected_tools)]],
40
39
  Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
41
40
  __config__={
@@ -5,6 +5,7 @@ from pydantic import create_model, BaseModel, Field
5
5
 
6
6
  import requests
7
7
  from ....configurations.ado import AdoConfiguration
8
+ from ....configurations.embedding import EmbeddingConfiguration
8
9
  from ....configurations.pgvector import PgVectorConfiguration
9
10
  from ...base.tool import BaseAction
10
11
  from ...utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
@@ -32,11 +33,9 @@ class AzureDevOpsWorkItemsToolkit(BaseToolkit):
32
33
  # indexer settings
33
34
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
34
35
  # embedder settings
35
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.",
36
- default="HuggingFaceEmbeddings")),
37
- embedding_model_params=(dict, Field(
38
- description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}",
39
- default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
36
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
37
+ json_schema_extra={'configuration_types': [
38
+ 'embedding']})),
40
39
  __config__={
41
40
  'json_schema_extra': {
42
41
  'metadata': {
@@ -9,6 +9,7 @@ from langchain_core.tools import BaseTool
9
9
  from pydantic import BaseModel, Field, ConfigDict, create_model
10
10
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
11
11
  from ...configurations.bitbucket import BitbucketConfiguration
12
+ from ...configurations.embedding import EmbeddingConfiguration
12
13
  from ...configurations.pgvector import PgVectorConfiguration
13
14
  import requests
14
15
 
@@ -58,8 +59,9 @@ class AlitaBitbucketToolkit(BaseToolkit):
58
59
  bitbucket_configuration=(Optional[BitbucketConfiguration], Field(description="Bitbucket Configuration", json_schema_extra={'configuration_types': ['bitbucket']})),
59
60
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", default={'configuration_types': ['pgvector']})),
60
61
  # embedder settings
61
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
62
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
62
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
63
+ json_schema_extra={'configuration_types': [
64
+ 'embedding']})),
63
65
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
64
66
  __config__=ConfigDict(json_schema_extra=
65
67
  {
@@ -6,6 +6,7 @@ from ..base.tool import BaseAction
6
6
  from pydantic import create_model, BaseModel, ConfigDict, Field
7
7
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, parse_list, check_connection_response
8
8
  from ...configurations.confluence import ConfluenceConfiguration
9
+ from ...configurations.embedding import EmbeddingConfiguration
9
10
  from ...configurations.pgvector import PgVectorConfiguration
10
11
  import requests
11
12
 
@@ -81,8 +82,10 @@ class ConfluenceToolkit(BaseToolkit):
81
82
  max_retry_seconds=(int, Field(description="Max retry, sec", default=60)),
82
83
  confluence_configuration=(Optional[ConfluenceConfiguration], Field(description="Confluence Configuration", json_schema_extra={'configuration_types': ['confluence']})),
83
84
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
84
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
85
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
85
+ # embedder settings
86
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
87
+ json_schema_extra={'configuration_types': [
88
+ 'embedding']})),
86
89
 
87
90
  selected_tools=(List[Literal[tuple(selected_tools)]],
88
91
  Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
@@ -118,7 +118,7 @@ BaseIndexDataParams = create_model(
118
118
  description="Optional step size for progress reporting during indexing")),
119
119
  clean_index=(Optional[bool], Field(default=False,
120
120
  description="Optional flag to enforce clean existing index before indexing new data")),
121
- chunking_tool=(Literal['','markdown', 'statistical', 'proposal'], Field(description="Name of chunking tool", default=None)),
121
+ chunking_tool=(Literal[None,'markdown', 'statistical', 'proposal'], Field(description="Name of chunking tool", default=None)),
122
122
  chunking_config=(Optional[dict], Field(description="Chunking tool configuration", default_factory=dict)),
123
123
  )
124
124
 
@@ -6,6 +6,7 @@ from pydantic import BaseModel, ConfigDict, Field, create_model, SecretStr
6
6
  from ..base.tool import BaseAction
7
7
  from .api_wrapper import FigmaApiWrapper, GLOBAL_LIMIT
8
8
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
9
+ from ...configurations.embedding import EmbeddingConfiguration
9
10
  from ...configurations.pgvector import PgVectorConfiguration
10
11
 
11
12
  name = "figma"
@@ -58,8 +59,9 @@ class FigmaToolkit(BaseToolkit):
58
59
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
59
60
 
60
61
  # embedder settings
61
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
62
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
62
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
63
+ json_schema_extra={'configuration_types': [
64
+ 'embedding']})),
63
65
  __config__=ConfigDict(
64
66
  json_schema_extra={
65
67
  "metadata": {
@@ -7,6 +7,7 @@ from .api_wrapper import AlitaGitHubAPIWrapper
7
7
  from .tool import GitHubAction
8
8
 
9
9
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
10
+ from ...configurations.embedding import EmbeddingConfiguration
10
11
  from ...configurations.github import GithubConfiguration
11
12
  from ...configurations.pgvector import PgVectorConfiguration
12
13
 
@@ -66,9 +67,10 @@ class AlitaGitHubToolkit(BaseToolkit):
66
67
  'max_toolkit_length': AlitaGitHubToolkit.toolkit_max_length})),
67
68
  active_branch=(Optional[str], Field(description="Active branch", default="main")),
68
69
  base_branch=(Optional[str], Field(description="Github Base branch", default="main")),
69
- # indexer settings
70
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
71
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
70
+ # embedder settings
71
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
72
+ json_schema_extra={'configuration_types': [
73
+ 'embedding']})),
72
74
  selected_tools=(List[Literal[tuple(selected_tools)]],
73
75
  Field(default=[], json_schema_extra={'args_schemas': selected_tools}))
74
76
  )
@@ -8,6 +8,7 @@ from pydantic.fields import Field
8
8
 
9
9
  from .api_wrapper import GitLabAPIWrapper
10
10
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
11
+ from ...configurations.embedding import EmbeddingConfiguration
11
12
  from ...configurations.gitlab import GitlabConfiguration
12
13
  from ...configurations.pgvector import PgVectorConfiguration
13
14
 
@@ -51,8 +52,9 @@ class AlitaGitlabToolkit(BaseToolkit):
51
52
  # indexer settings
52
53
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
53
54
  # embedder settings
54
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
55
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
55
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
56
+ json_schema_extra={'configuration_types': [
57
+ 'embedding']})),
56
58
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
57
59
  __config__=ConfigDict(json_schema_extra={
58
60
  'metadata': {
@@ -6,6 +6,7 @@ from pydantic import create_model, BaseModel, ConfigDict, Field
6
6
  import requests
7
7
 
8
8
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, parse_list, check_connection_response
9
+ from ...configurations.embedding import EmbeddingConfiguration
9
10
  from ...configurations.jira import JiraConfiguration
10
11
  from ...configurations.pgvector import PgVectorConfiguration
11
12
 
@@ -86,8 +87,9 @@ class JiraToolkit(BaseToolkit):
86
87
  jira_configuration=(Optional[JiraConfiguration], Field(description="Jira Configuration", json_schema_extra={'configuration_types': ['jira']})),
87
88
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
88
89
  # embedder settings
89
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
90
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
90
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
91
+ json_schema_extra={'configuration_types': [
92
+ 'embedding']})),
91
93
 
92
94
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
93
95
  __config__=ConfigDict(json_schema_extra={
@@ -7,6 +7,7 @@ import requests
7
7
  from .api_wrapper import TestrailAPIWrapper
8
8
  from ..base.tool import BaseAction
9
9
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
10
+ from ...configurations.embedding import EmbeddingConfiguration
10
11
  from ...configurations.testrail import TestRailConfiguration
11
12
  from ...configurations.pgvector import PgVectorConfiguration
12
13
 
@@ -39,22 +40,13 @@ class TestrailToolkit(BaseToolkit):
39
40
  TestrailToolkit.toolkit_max_length = get_max_toolkit_length(selected_tools)
40
41
  m = create_model(
41
42
  name,
42
- url=(
43
- str,
44
- Field(
45
- description="Testrail URL",
46
- json_schema_extra={
47
- "max_length": TestrailToolkit.toolkit_max_length,
48
- "configuration": True,
49
- "configuration_title": True
50
- }
51
- )
52
- ),
43
+ name=(str, Field(description="Toolkit name", json_schema_extra={
44
+ 'toolkit_name': True,
45
+ "max_length": TestrailToolkit.toolkit_max_length})),
53
46
  testrail_configuration=(Optional[TestRailConfiguration], Field(description="TestRail Configuration", json_schema_extra={'configuration_types': ['testrail']})),
54
47
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
55
48
  # embedder settings
56
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
57
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
49
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding']})),
58
50
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
59
51
  __config__=ConfigDict(json_schema_extra={'metadata':
60
52
  {"label": "Testrail", "icon_url": "testrail-icon.svg",
@@ -78,9 +78,9 @@ def parse_file_content(file_name=None, file_content=None, is_capture_image: bool
78
78
 
79
79
  loader_object = loaders_map.get(extension)
80
80
  if not loader_object:
81
- raise ToolException(
82
- f"Not supported type ({extension}) of files entered. "
83
- f"Supported types are TXT, DOCX, PDF, PPTX, XLSX and XLS only.")
81
+ logger.warning(f"No loader found for file extension: {extension}. File: {file_path if file_path else file_name}")
82
+ return ToolException(
83
+ "Not supported type of files entered. Supported types are TXT, DOCX, PDF, PPTX, XLSX and XLS only.")
84
84
  loader_kwargs = loader_object['kwargs']
85
85
  loader_kwargs.update({
86
86
  "file_path": file_path,
@@ -8,6 +8,8 @@ from pydantic import create_model, BaseModel, Field, SecretStr
8
8
  from .api_wrapper import XrayApiWrapper
9
9
  from ..base.tool import BaseAction
10
10
  from ..utils import clean_string, get_max_toolkit_length, TOOLKIT_SPLITTER
11
+ from ...configurations.embedding import EmbeddingConfiguration
12
+ from ...configurations.pgvector import PgVectorConfiguration
11
13
 
12
14
  name = "xray_cloud"
13
15
 
@@ -46,14 +48,13 @@ class XrayToolkit(BaseToolkit):
46
48
  client_secret=(SecretStr, Field(description="Client secret", json_schema_extra={'secret': True})),
47
49
  limit=(Optional[int], Field(description="Limit", default=100)),
48
50
 
49
- # indexer settings
50
- connection_string=(Optional[SecretStr], Field(description="Connection string for vectorstore",
51
- default=None,
52
- json_schema_extra={'secret': True})),
53
-
51
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
52
+ json_schema_extra={
53
+ 'configuration_types': ['pgvector']})),
54
54
  # embedder settings
55
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
56
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
55
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
56
+ json_schema_extra={'configuration_types': [
57
+ 'embedding']})),
57
58
 
58
59
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
59
60
  __config__={'json_schema_extra':
@@ -5,6 +5,8 @@ from typing import List, Literal, Optional
5
5
  from .api_wrapper import ZephyrApiWrapper
6
6
  from ..base.tool import BaseAction
7
7
  from ..utils import clean_string, get_max_toolkit_length, TOOLKIT_SPLITTER
8
+ from ...configurations.embedding import EmbeddingConfiguration
9
+ from ...configurations.pgvector import PgVectorConfiguration
8
10
 
9
11
  name = "zephyr_enterprise"
10
12
 
@@ -37,14 +39,13 @@ class ZephyrEnterpriseToolkit(BaseToolkit):
37
39
  name,
38
40
  base_url=(str, Field(description="Zephyr Enterprise base URL", json_schema_extra={'toolkit_name': True, 'max_toolkit_length': ZephyrEnterpriseToolkit.toolkit_max_length })),
39
41
  token=(SecretStr, Field(description="API token", json_schema_extra={'secret': True})),
40
- # indexer settings
41
- connection_string=(Optional[SecretStr], Field(description="Connection string for vectorstore",
42
- default=None,
43
- json_schema_extra={'secret': True})),
44
-
42
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
43
+ json_schema_extra={
44
+ 'configuration_types': ['pgvector']})),
45
45
  # embedder settings
46
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
47
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
46
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
47
+ json_schema_extra={'configuration_types': [
48
+ 'embedding']})),
48
49
  selected_tools=(List[Literal[tuple(selected_tools)]], []),
49
50
  __config__=ConfigDict(json_schema_extra={
50
51
  'metadata': {
@@ -6,6 +6,8 @@ from pydantic import create_model, BaseModel, Field, SecretStr
6
6
  from .api_wrapper import ZephyrEssentialApiWrapper
7
7
  from ..base.tool import BaseAction
8
8
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
9
+ from ...configurations.embedding import EmbeddingConfiguration
10
+ from ...configurations.pgvector import PgVectorConfiguration
9
11
 
10
12
  name = "zephyr_essential"
11
13
 
@@ -37,14 +39,13 @@ class ZephyrEssentialToolkit(BaseToolkit):
37
39
  token=(str, Field(description="Bearer api token")),
38
40
  base_url=(Optional[str], Field(description="Zephyr Essential base url", default=None)),
39
41
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
40
- # indexer settings
41
- connection_string=(Optional[SecretStr], Field(description="Connection string for vectorstore",
42
- default=None,
43
- json_schema_extra={'secret': True})),
44
-
42
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
43
+ json_schema_extra={
44
+ 'configuration_types': ['pgvector']})),
45
45
  # embedder settings
46
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
47
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
46
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
47
+ json_schema_extra={'configuration_types': [
48
+ 'embedding']})),
48
49
  __config__={'json_schema_extra': {'metadata': {"label": "Zephyr Essential", "icon_url": "zephyr.svg",
49
50
  "categories": ["test management"],
50
51
  "extra_categories": ["test automation", "test case management", "test planning"]
@@ -7,6 +7,8 @@ from pydantic import create_model, BaseModel, Field, SecretStr
7
7
  from .api_wrapper import ZephyrScaleApiWrapper
8
8
  from ..base.tool import BaseAction
9
9
  from ..utils import clean_string, get_max_toolkit_length, TOOLKIT_SPLITTER
10
+ from ...configurations.embedding import EmbeddingConfiguration
11
+ from ...configurations.pgvector import PgVectorConfiguration
10
12
 
11
13
  name = "zephyr_scale"
12
14
 
@@ -41,6 +43,13 @@ class ZephyrScaleToolkit(BaseToolkit):
41
43
  password=(Optional[SecretStr], Field(default=None, description="Password", json_schema_extra={'secret': True})),
42
44
  cookies=(Optional[str], Field(default=None, description="Cookies", json_schema_extra={'secret': True})),
43
45
  max_results=(int, Field(default=100, description="Results count to show")),
46
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
47
+ json_schema_extra={
48
+ 'configuration_types': ['pgvector']})),
49
+ # embedder settings
50
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
51
+ json_schema_extra={'configuration_types': [
52
+ 'embedding']})),
44
53
  selected_tools=(List[Literal[tuple(selected_tools)]],
45
54
  Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
46
55
  __config__={
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: alita_sdk
3
- Version: 0.3.233
3
+ Version: 0.3.234
4
4
  Summary: SDK for building langchain agents using resources from Alita
5
5
  Author-email: Artem Rozumenko <artyom.rozumenko@gmail.com>, Mikalai Biazruchka <mikalai_biazruchka@epam.com>, Roman Mitusov <roman_mitusov@epam.com>, Ivan Krakhmaliuk <lifedjik@gmail.com>, Artem Dubrovskiy <ad13box@gmail.com>
6
6
  License-Expression: Apache-2.0
@@ -8,6 +8,7 @@ alita_sdk/configurations/bigquery.py,sha256=NlyfUm7jMmiDcPSbpHhrpYy7wgbSTdP_cdti
8
8
  alita_sdk/configurations/bitbucket.py,sha256=wSmvFwGuiSTaRg4DTSVJNrj1J_6VlY2Tci3s28mXfPk,1156
9
9
  alita_sdk/configurations/confluence.py,sha256=LFFjhp0whiWcAN-2DnOVSUnQmjURBmV4C4iDyKs7vys,1423
10
10
  alita_sdk/configurations/delta_lake.py,sha256=MTVsX6stX6D1uEfFMgbb3fYBJRqCrB6cktfUKc9S9ho,1101
11
+ alita_sdk/configurations/embedding.py,sha256=mKQRFqYFKfo1MUYUC7Arqv65q4ppCVbDN0Lf4A7ib4Q,781
11
12
  alita_sdk/configurations/github.py,sha256=GSj6sA4f6SfW0ZpoHXKi5FzbPDC6wE1AlscwWqIPj14,1832
12
13
  alita_sdk/configurations/gitlab.py,sha256=zCI4RDZ3UZFLMWPcAYwuGosUbb-piTwtQjuY4QCJWBk,1031
13
14
  alita_sdk/configurations/jira.py,sha256=B44oNZtt2ECL0QUcFpO2NpDEACn0jl46j7aWhpd2P1s,1331
@@ -16,7 +17,7 @@ alita_sdk/configurations/postman.py,sha256=srup-SaimnSHO8UW1jr05sfUBqd_zKdVc5hs4
16
17
  alita_sdk/configurations/qtest.py,sha256=u1kkhOJJ-oT5YsjAO8pS5F6pLdQV0yiZzcPf9qazMaE,639
17
18
  alita_sdk/configurations/service_now.py,sha256=na3gBBBLFNBbsk-AW08h8dd60HC5UvNSlxWwc_6w1U4,1141
18
19
  alita_sdk/configurations/slack.py,sha256=l4D_rYgRsKak6Kx7l0WoxCzWaWf1---FlKY6y2ZWGYk,1252
19
- alita_sdk/configurations/testrail.py,sha256=K8J3PmYVeDMWuIcgRDqFzbbgzXRXs78SP6H6VNq_aqQ,724
20
+ alita_sdk/configurations/testrail.py,sha256=k0fPmHBIrWAfEKhrDdB9Rdirw-UFHFoXkRePyrsqcWI,725
20
21
  alita_sdk/runtime/__init__.py,sha256=4W0UF-nl3QF2bvET5lnah4o24CoTwSoKXhuN0YnwvEE,828
21
22
  alita_sdk/runtime/clients/__init__.py,sha256=BdehU5GBztN1Qi1Wul0cqlU46FxUfMnI6Vq2Zd_oq1M,296
22
23
  alita_sdk/runtime/clients/artifact.py,sha256=H3pJAh5G-zWVyJ6YbqHGk4jA8U6HfacQduiTivpJZ3Y,3210
@@ -112,16 +113,16 @@ alita_sdk/runtime/utils/toolkit_runtime.py,sha256=MU63Fpxj0b5_r1IUUc0Q3-PN9VwL7r
112
113
  alita_sdk/runtime/utils/toolkit_utils.py,sha256=I9QFqnaqfVgN26LUr6s3XlBlG6y0CoHURnCzG7XcwVs,5311
113
114
  alita_sdk/runtime/utils/utils.py,sha256=CpEl3LCeLbhzQySz08lkKPm7Auac6IiLF7WB8wmArMI,589
114
115
  alita_sdk/tools/__init__.py,sha256=1AHqP2xyLjn92xVm70l9XIke6FkfHkLo5OoQVe4BuP8,10421
115
- alita_sdk/tools/elitea_base.py,sha256=WeYunN9QqXx2EZB0GwYiSxjTJs0djO8iSwPorZZuaOE,30302
116
+ alita_sdk/tools/elitea_base.py,sha256=PW4so3vZsVlSzGTuCR-_LkWR9P-zuw7UsTGETtdTUxc,30304
116
117
  alita_sdk/tools/ado/__init__.py,sha256=j4lt6MLWlpkIIVkHmAyVG3i_qQeQ3ZmL_g8BfMhVhVI,1289
117
118
  alita_sdk/tools/ado/utils.py,sha256=PTCludvaQmPLakF2EbCGy66Mro4-rjDtavVP-xcB2Wc,1252
118
- alita_sdk/tools/ado/repos/__init__.py,sha256=kc4ZJI3B9CDUp4q3jRSj7JZNc3fJwwMTsV40CiKO7Po,6111
119
+ alita_sdk/tools/ado/repos/__init__.py,sha256=mZqU0-9Yyw7HOt61980ndl3yPJ00Ihw2UlvWawheONU,5987
119
120
  alita_sdk/tools/ado/repos/repos_wrapper.py,sha256=nPVsS10Se52yHmZ_YXVGywCSaYLlBEYBTBlhBcDJr80,50143
120
- alita_sdk/tools/ado/test_plan/__init__.py,sha256=w-tHu1uJakZSrREx0tD8sZ3-0Lz0rrv8Uj4phTzF4wU,5429
121
+ alita_sdk/tools/ado/test_plan/__init__.py,sha256=1_Q8-utQ-Ii85BpS1vkwHOcb4Ts1WXLyb8zaz48eoOs,5392
121
122
  alita_sdk/tools/ado/test_plan/test_plan_wrapper.py,sha256=jQt8kFmdAzsopjByLTMiSnWtoqz_IUOmYkhPTVGeMnU,20265
122
- alita_sdk/tools/ado/wiki/__init__.py,sha256=ARjmIAdx-1DcNvh_WW9Z-ZuFp86RKK-gDvzStxZHL_0,5358
123
+ alita_sdk/tools/ado/wiki/__init__.py,sha256=K6Au92gFl2_NuxhFF_VaplzdEI3_oIZ3XwHcXod_giE,5321
123
124
  alita_sdk/tools/ado/wiki/ado_wrapper.py,sha256=zg6wMRar1DTp-ZRlYaQifBEnpYmTrHXskTNPdrLdy8s,14759
124
- alita_sdk/tools/ado/work_item/__init__.py,sha256=L7uYqUn1eAlJwtTiFWYdeSdc-33Am0beFdlC99DRXVY,5493
125
+ alita_sdk/tools/ado/work_item/__init__.py,sha256=1rvgE-i4UtdYxNvgIhCZoqgjcjDTXRo2Y48zmLy6KJg,5456
125
126
  alita_sdk/tools/ado/work_item/ado_wrapper.py,sha256=ubeF2m8J6CGZF_gnkTEbmW_eh6YWsk7bD2clu9FmZpY,28313
126
127
  alita_sdk/tools/advanced_jira_mining/__init__.py,sha256=pUTzECqGvYaR5qWY3JPUhrImrZgc7pCXuqSe5eWIE80,4604
127
128
  alita_sdk/tools/advanced_jira_mining/data_mining_wrapper.py,sha256=nZPtuwVWp8VeHw1B8q9kdwf-6ZvHnlXTOGdcIMDkKpw,44211
@@ -135,7 +136,7 @@ alita_sdk/tools/azure_ai/search/__init__.py,sha256=FVWNSW4LlOXKt34fVUgXut5oZcok9
135
136
  alita_sdk/tools/azure_ai/search/api_wrapper.py,sha256=E4p6HPDlwgxfT_i6cvg9rN4Vn_47CVAyNBAKLIGq3mU,7265
136
137
  alita_sdk/tools/base/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
137
138
  alita_sdk/tools/base/tool.py,sha256=-N27AodZS49vdPCgFkU-bFS9bxoPopZBnNrmwInx3d0,864
138
- alita_sdk/tools/bitbucket/__init__.py,sha256=P5YgZI7PfL3PNLi1CCVxSMc7OZpdlTkY-j_mbJV22xo,5587
139
+ alita_sdk/tools/bitbucket/__init__.py,sha256=W44kX-zEFVJNhrXfa8YsRnByR9vnFZ3EbQ1IMwLsrGQ,5622
139
140
  alita_sdk/tools/bitbucket/api_wrapper.py,sha256=OU55KjtFalYIZ4ioeBck0zjqTewB6BdwQuAS3Kud4R0,10847
140
141
  alita_sdk/tools/bitbucket/bitbucket_constants.py,sha256=UsbhQ1iEvrKoxceTFPWTYhaXS1zSxbmjs1TwY0-P4gw,462
141
142
  alita_sdk/tools/bitbucket/cloud_api_wrapper.py,sha256=VELi65tLXvszwCGQSqVfyVal0ylx9DgAmAGpRQL_Zkg,15522
@@ -203,7 +204,7 @@ alita_sdk/tools/code/linter/api_wrapper.py,sha256=wylpwhAw02Jt8L18CqBq2He5PbwIkx
203
204
  alita_sdk/tools/code/loaders/codesearcher.py,sha256=XoXXZtIQZhvjIwZlnl_4wVGHC-3saYzFo5oDR_Zh3EY,529
204
205
  alita_sdk/tools/code/sonar/__init__.py,sha256=u8wpgXJ_shToLl3G9-XEtGDor5dhmsnurIImh1-e-U0,3165
205
206
  alita_sdk/tools/code/sonar/api_wrapper.py,sha256=nNqxcWN_6W8c0ckj-Er9HkNuAdgQLoWBXh5UyzNutis,2653
206
- alita_sdk/tools/confluence/__init__.py,sha256=B8JiTA-iUN8G21nAb3HyXwbA05ZjNzvjhb0vmymjna4,7252
207
+ alita_sdk/tools/confluence/__init__.py,sha256=TjG_Zi-Xf_SdJf3135p5VFf6-iMzJ9BMM_giu7PBftE,7319
207
208
  alita_sdk/tools/confluence/api_wrapper.py,sha256=4WqjVeFWyFeb4-VD5v4_J69pbyjire4Op7cBSKU9EXw,85057
208
209
  alita_sdk/tools/confluence/loader.py,sha256=4bf5qrJMEiJzuZp2NlxO2XObLD1w7fxss_WyMUpe8sg,9290
209
210
  alita_sdk/tools/confluence/utils.py,sha256=Lxo6dBD0OlvM4o0JuK6qeB_4LV9BptiwJA9e1vqNcDw,435
@@ -211,16 +212,16 @@ alita_sdk/tools/custom_open_api/__init__.py,sha256=9aT5SPNPWcJC6jMZEM-3rUCXVULj_
211
212
  alita_sdk/tools/custom_open_api/api_wrapper.py,sha256=sDSFpvEqpSvXHGiBISdQQcUecfO3md-_F8hAi6p2dvg,4340
212
213
  alita_sdk/tools/elastic/__init__.py,sha256=iwnSRppRpzvJ1da2K3Glu8Uu41MhBDCYbguboLkEbW0,2818
213
214
  alita_sdk/tools/elastic/api_wrapper.py,sha256=pl8CqQxteJAGwyOhMcld-ZgtOTFwwbv42OITQVe8rM0,1948
214
- alita_sdk/tools/figma/__init__.py,sha256=281OU_aw4Y87Do09HhDSi5zL5ne9YlrsRLZQo8s1U8Q,5316
215
+ alita_sdk/tools/figma/__init__.py,sha256=B6oDmoSFxONa_74qSbdLCw_Su00KLcEMr7fH-OwZ3sE,5351
215
216
  alita_sdk/tools/figma/api_wrapper.py,sha256=Rtgt9FvR8VD0oPdYhlgvVyXLVqLTjtiOPTlwNeaV80w,20560
216
- alita_sdk/tools/github/__init__.py,sha256=CtU52t6-jd6JErWe3M2HF5XXWzFj9CqGmG7HBjUet6E,5348
217
+ alita_sdk/tools/github/__init__.py,sha256=IZwU7CCs8be4zwK1AVbv13N38cnLkzjxCH0wiCugkyY,5384
217
218
  alita_sdk/tools/github/api_wrapper.py,sha256=uDwYckdnpYRJtb0uZnDkaz2udvdDLVxuCh1tSwspsiU,8411
218
219
  alita_sdk/tools/github/github_client.py,sha256=nxnSXsDul2PPbWvYZS8TmAFFmR-5ALyakNoV5LN2D4U,86617
219
220
  alita_sdk/tools/github/graphql_client_wrapper.py,sha256=d3AGjzLGH_hdQV2V8HeAX92dJ4dlnE5OXqUlCO_PBr0,71539
220
221
  alita_sdk/tools/github/schemas.py,sha256=yFsqivfjCPRk9GxFJrL8sTz6nnjFCZ0j5DIfPtGSsvA,13852
221
222
  alita_sdk/tools/github/tool.py,sha256=Jnnv5lenV5ds8AAdyo2m8hSzyJ117HZBjzHC6T1ck-M,1037
222
223
  alita_sdk/tools/github/tool_prompts.py,sha256=y6ZW_FpUCE87Uop3WuQAZVRnzxO5t7xjBOI5bCqiluw,30194
223
- alita_sdk/tools/gitlab/__init__.py,sha256=WuaIouTnMoQF7OTsfm7GblWW60Yf2IbUyQxjFHpK3ck,5127
224
+ alita_sdk/tools/gitlab/__init__.py,sha256=FkmYj2EQLTSwpTmEbTIKRonZ-cfJC0HJDRX8P0aYYlY,5162
224
225
  alita_sdk/tools/gitlab/api_wrapper.py,sha256=KYCRO2pF8EPTLhWuEj64XsHPCYSucsf8S3R_ofJttrA,22301
225
226
  alita_sdk/tools/gitlab/tools.py,sha256=vOGTlSaGaFmWn6LS6YFP-FuTqUPun9vnv1VrUcUHAZQ,16500
226
227
  alita_sdk/tools/gitlab/utils.py,sha256=Z2XiqIg54ouqqt1to-geFybmkCb1I6bpE91wfnINH1I,2320
@@ -236,7 +237,7 @@ alita_sdk/tools/google/bigquery/schemas.py,sha256=Gb8KQZSoRkmjXiz21dTC95c1MHEHFc
236
237
  alita_sdk/tools/google/bigquery/tool.py,sha256=Esf9Hsp8I0e7-5EdkFqQ-bid0cfrg-bfSoHoW_IIARo,1027
237
238
  alita_sdk/tools/google_places/__init__.py,sha256=mHKc7u9P2gqGDzqqJNQC9qiZYEm5gncnM_1XjtrM17o,3152
238
239
  alita_sdk/tools/google_places/api_wrapper.py,sha256=7nZly6nk4f4Tm7s2MVdnnwlb-1_WHRrDhyjDiqoyPjA,4674
239
- alita_sdk/tools/jira/__init__.py,sha256=CuE3LPxFuTtdel9YR7RS37wZzvxniPVCY6pDu4cBAdk,6927
240
+ alita_sdk/tools/jira/__init__.py,sha256=LQlU_PeoE2tUxWxq6ce8BduZfF6pdRJ60pOXYwK4m7Y,6962
240
241
  alita_sdk/tools/jira/api_wrapper.py,sha256=gZXEtOZtWvINHipHPj8Dg6uNyYKZariLo4Bs3_wLJrA,75932
241
242
  alita_sdk/tools/keycloak/__init__.py,sha256=0WB9yXMUUAHQRni1ghDEmd7GYa7aJPsTVlZgMCM9cQ0,3050
242
243
  alita_sdk/tools/keycloak/api_wrapper.py,sha256=cOGr0f3S3-c6tRDBWI8wMnetjoNSxiV5rvC_0VHb8uw,3100
@@ -300,13 +301,13 @@ alita_sdk/tools/sql/api_wrapper.py,sha256=Rky0_CX9HWDQ2mClHGAgP3LHjYVX4iymPuilZM
300
301
  alita_sdk/tools/sql/models.py,sha256=AKJgSl_kEEz4fZfw3kbvdGHXaRZ-yiaqfJOB6YOj3i0,641
301
302
  alita_sdk/tools/testio/__init__.py,sha256=qi12wyJXN02hrUXg08CbijcCL5pi30JMbJfiXjn1Zr0,2646
302
303
  alita_sdk/tools/testio/api_wrapper.py,sha256=BvmL5h634BzG6p7ajnQLmj-uoAw1gjWnd4FHHu1h--Q,21638
303
- alita_sdk/tools/testrail/__init__.py,sha256=577XVaOAoXG3mDkojCsy5XCUlxCsdJf_2-_5U-afkOo,4961
304
+ alita_sdk/tools/testrail/__init__.py,sha256=H3vLFaVtXzhuhFMjldmDykrlLC-njXIDlrudhcBCJcc,4643
304
305
  alita_sdk/tools/testrail/api_wrapper.py,sha256=Aax0jspgidXYNxLIw6qTWu3dO2JOIS0ALIqsCzQuFbQ,32087
305
306
  alita_sdk/tools/utils/__init__.py,sha256=155xepXPr4OEzs2Mz5YnjXcBpxSv1X2eznRUVoPtyK0,3268
306
- alita_sdk/tools/utils/content_parser.py,sha256=yi1IDLreqfM41w-PnoFEvVLtSV50qpNvKshJwbDTgqs,7172
307
+ alita_sdk/tools/utils/content_parser.py,sha256=Azm-eUr_hOc55BxdQVxMNpWQTLOQjoAq-fyiuOXhrO0,7264
307
308
  alita_sdk/tools/vector_adapters/VectorStoreAdapter.py,sha256=a6FAsiix_EvATIKUf5YT6vHh5LDyJ5uSP3LJqoxFo04,17367
308
309
  alita_sdk/tools/vector_adapters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
309
- alita_sdk/tools/xray/__init__.py,sha256=OYa1wveTm-lAhsJaGXMnwOrDQWl6ch--NjNLBeR63eM,4331
310
+ alita_sdk/tools/xray/__init__.py,sha256=g8f1JoNwbYEIs35l6o7t-9mctCjkaiLJMYmaLVbOqxU,4447
310
311
  alita_sdk/tools/xray/api_wrapper.py,sha256=A8PJmY2k7TowaD_vk6ZxkMnSUoZUt9A6g4TJrZfNTAw,32225
311
312
  alita_sdk/tools/yagmail/__init__.py,sha256=c4Qn3em0tLxzRmFKpzbBgY9W2EnOoKf0azoDJHng5CY,2208
312
313
  alita_sdk/tools/yagmail/yagmail_wrapper.py,sha256=SKoGVd1X4Ew3ad5tOdtPoY00M6jStNdT3q7GXEjQc5g,1952
@@ -314,19 +315,19 @@ alita_sdk/tools/zephyr/Zephyr.py,sha256=ODZbg9Aw0H0Rbv-HcDXLI4KHbPiLDHoteDofshw9
314
315
  alita_sdk/tools/zephyr/__init__.py,sha256=8B2Ibz5QTmB5WkV0q8Sq4kuj92FFaFWZLrT877zRRLg,2897
315
316
  alita_sdk/tools/zephyr/api_wrapper.py,sha256=lJCYPG03ej0qgdpLflnS7LFB4HSAfGzIvTjAJt07CQs,6244
316
317
  alita_sdk/tools/zephyr/rest_client.py,sha256=7vSD3oYIX-3KbAFed-mphSQif_VRuXrq5O07ryNQ7Pk,6208
317
- alita_sdk/tools/zephyr_enterprise/__init__.py,sha256=XAWLj4WgMpEz3xnP8VW1lzHVW48K3CxIXdgeubjMvaw,3885
318
+ alita_sdk/tools/zephyr_enterprise/__init__.py,sha256=CsTiwTwIlDVFO3ouE0P6tWr2x5clvVXy7IoGvVXOQL0,4001
318
319
  alita_sdk/tools/zephyr_enterprise/api_wrapper.py,sha256=p9EpkO5tif3JJzprz2_VuLsQ1yET7TwwBfPOKJGwt9c,11215
319
320
  alita_sdk/tools/zephyr_enterprise/zephyr_enterprise.py,sha256=hV9LIrYfJT6oYp-ZfQR0YHflqBFPsUw2Oc55HwK0H48,6809
320
- alita_sdk/tools/zephyr_essential/__init__.py,sha256=-VS-smytUSjqNLLi6HmqbsU3NfmNFTrzPjzNiEtOi5c,3628
321
+ alita_sdk/tools/zephyr_essential/__init__.py,sha256=Ws3KVjU5MPZzqfeKmnn-m1p7_TqaCrJMpDYyY5olpH0,3744
321
322
  alita_sdk/tools/zephyr_essential/api_wrapper.py,sha256=TpNov35XPgjM9eymCEFqv22mbpdVvLMBTb9WVqUcvNA,36795
322
323
  alita_sdk/tools/zephyr_essential/client.py,sha256=bfNcUKNqj9MFWTludGbbqD4qZlxrBaC2JtWsCfZMqSY,9722
323
- alita_sdk/tools/zephyr_scale/__init__.py,sha256=2NTcdrfkx4GSegqyXhsPLsEpc4FlACuDy85b0fk6cAo,4572
324
+ alita_sdk/tools/zephyr_scale/__init__.py,sha256=bk7u0JbVf3FLyhvp3IYfMX_lvpQQaT-DQE8085P23J8,5391
324
325
  alita_sdk/tools/zephyr_scale/api_wrapper.py,sha256=JAeWf-RXohsxheUpT0iMDClc_izj-zxMwafXCW4jtC0,78015
325
326
  alita_sdk/tools/zephyr_squad/__init__.py,sha256=0AI_j27xVO5Gk5HQMFrqPTd4uvuVTpiZUicBrdfEpKg,2796
326
327
  alita_sdk/tools/zephyr_squad/api_wrapper.py,sha256=kmw_xol8YIYFplBLWTqP_VKPRhL_1ItDD0_vXTe_UuI,14906
327
328
  alita_sdk/tools/zephyr_squad/zephyr_squad_cloud_client.py,sha256=R371waHsms4sllHCbijKYs90C-9Yu0sSR3N4SUfQOgU,5066
328
- alita_sdk-0.3.233.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
329
- alita_sdk-0.3.233.dist-info/METADATA,sha256=SnQfpYgQ6ClxxESrl0oE_3RKxWpQ-1ETR3HjiAjxqMs,18896
330
- alita_sdk-0.3.233.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
331
- alita_sdk-0.3.233.dist-info/top_level.txt,sha256=0vJYy5p_jK6AwVb1aqXr7Kgqgk3WDtQ6t5C-XI9zkmg,10
332
- alita_sdk-0.3.233.dist-info/RECORD,,
329
+ alita_sdk-0.3.234.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
330
+ alita_sdk-0.3.234.dist-info/METADATA,sha256=xUR95e1hi0KY25cAhlWLHKOKcs70RlQky1GylG-K_Lo,18896
331
+ alita_sdk-0.3.234.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
332
+ alita_sdk-0.3.234.dist-info/top_level.txt,sha256=0vJYy5p_jK6AwVb1aqXr7Kgqgk3WDtQ6t5C-XI9zkmg,10
333
+ alita_sdk-0.3.234.dist-info/RECORD,,