alita-sdk 0.3.232__py3-none-any.whl → 0.3.234__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -31,6 +31,7 @@ class ConfluenceConfiguration(BaseModel):
31
31
  }
32
32
  }
33
33
  )
34
+ base_url: str = Field(description="Confluence URL")
34
35
  username: Optional[str] = Field(description="Confluence Username", default=None)
35
36
  api_key: Optional[SecretStr] = Field(description="Confluence API Key", default=None)
36
- token: Optional[SecretStr] = Field(description="Confluence Token", default=None)
37
+ token: Optional[SecretStr] = Field(description="Confluence Token", default=None)
@@ -0,0 +1,19 @@
1
+ from pydantic import BaseModel, ConfigDict, Field, SecretStr
2
+
3
+
4
+ class EmbeddingConfiguration(BaseModel):
5
+ model_config = ConfigDict(
6
+ json_schema_extra={
7
+ "metadata": {
8
+ "label": "Embedding Vector Storage",
9
+ "icon_url": None,
10
+ "section": "vectorstorage",
11
+ "type": "embedding"
12
+ }
13
+ }
14
+ )
15
+ embedding_model: str = Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.",
16
+ default="HuggingFaceEmbeddings")
17
+ embedding_model_params: dict = Field(
18
+ description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}",
19
+ default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})
@@ -15,11 +15,11 @@ class SlackConfiguration(BaseModel):
15
15
  "subsections": [
16
16
  {
17
17
  "name": "Bot Token",
18
- "fields": ["bot_token"]
18
+ "fields": ["name"]
19
19
  },
20
20
  {
21
21
  "name": "User Token",
22
- "fields": ["user_token"]
22
+ "fields": ["slack_token"]
23
23
  }
24
24
  ]
25
25
  },
@@ -16,5 +16,6 @@ class TestRailConfiguration(BaseModel):
16
16
  }
17
17
  }
18
18
  )
19
- email: Optional[str] = Field(description="TestRail Email", default=None)
20
- password: Optional[SecretStr] = Field(description="TestRail Password", default=None)
19
+ url: str = Field(description="Testrail URL")
20
+ email: str = Field(description="TestRail Email")
21
+ password: SecretStr = Field(description="TestRail Password")
@@ -231,13 +231,13 @@ class VectorStoreWrapper(BaseToolApiWrapper):
231
231
  tool_name="_clean_collection"
232
232
  )
233
233
 
234
- def _get_indexed_data(self):
234
+ def _get_indexed_data(self, collection_name: str):
235
235
  """ Get all indexed data from vectorstore for non-code content """
236
- return self.vector_adapter.get_indexed_data(self)
236
+ return self.vector_adapter.get_indexed_data(self, collection_name)
237
237
 
238
- def _get_code_indexed_data(self) -> Dict[str, Dict[str, Any]]:
238
+ def _get_code_indexed_data(self, collection_suffix: str) -> Dict[str, Dict[str, Any]]:
239
239
  """ Get all indexed data from vectorstore for code content """
240
- return self.vector_adapter.get_code_indexed_data(self)
240
+ return self.vector_adapter.get_code_indexed_data(self, collection_suffix)
241
241
 
242
242
  def _add_to_collection(self, entry_id, new_collection_value):
243
243
  """Add a new collection name to the `collection` key in the `metadata` column."""
@@ -255,7 +255,7 @@ class VectorStoreWrapper(BaseToolApiWrapper):
255
255
  ) -> List[Any]:
256
256
  """Generic duplicate reduction logic for documents."""
257
257
  self._log_data(log_msg, tool_name="index_documents")
258
- indexed_data = get_indexed_data()
258
+ indexed_data = get_indexed_data(collection_suffix)
259
259
  indexed_keys = set(indexed_data.keys())
260
260
  if not indexed_keys:
261
261
  self._log_data("Vectorstore is empty, indexing all incoming documents", tool_name="index_documents")
@@ -6,6 +6,7 @@ from pydantic import BaseModel, Field, create_model
6
6
  import requests
7
7
 
8
8
  from ....configurations.ado import AdoReposConfiguration
9
+ from ....configurations.embedding import EmbeddingConfiguration
9
10
  from ....configurations.pgvector import PgVectorConfiguration
10
11
  from ...base.tool import BaseAction
11
12
  from .repos_wrapper import ReposApiWrapper
@@ -54,11 +55,8 @@ class AzureDevOpsReposToolkit(BaseToolkit):
54
55
  # indexer settings
55
56
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
56
57
  # embedder settings
57
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.",
58
- default="HuggingFaceEmbeddings")),
59
- embedding_model_params=(dict, Field(
60
- description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}",
61
- default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
58
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
59
+ json_schema_extra={'configuration_types': ['embedding']})),
62
60
 
63
61
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
64
62
  __config__={'json_schema_extra': {'metadata':
@@ -5,6 +5,7 @@ from pydantic import create_model, BaseModel, Field
5
5
 
6
6
  import requests
7
7
  from ....configurations.ado import AdoConfiguration
8
+ from ....configurations.embedding import EmbeddingConfiguration
8
9
  from ....configurations.pgvector import PgVectorConfiguration
9
10
  from .test_plan_wrapper import TestPlanApiWrapper
10
11
  from ...base.tool import BaseAction
@@ -31,11 +32,9 @@ class AzureDevOpsPlansToolkit(BaseToolkit):
31
32
  # indexer settings
32
33
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
33
34
  # embedder settings
34
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.",
35
- default="HuggingFaceEmbeddings")),
36
- embedding_model_params=(dict, Field(
37
- description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}",
38
- default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
35
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
36
+ json_schema_extra={'configuration_types': [
37
+ 'embedding']})),
39
38
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
40
39
  __config__={'json_schema_extra': {'metadata':
41
40
  {
@@ -5,6 +5,7 @@ from pydantic import create_model, BaseModel, Field
5
5
 
6
6
  import requests
7
7
  from ....configurations.ado import AdoConfiguration
8
+ from ....configurations.embedding import EmbeddingConfiguration
8
9
  from ....configurations.pgvector import PgVectorConfiguration
9
10
  from ...base.tool import BaseAction
10
11
  from ...utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
@@ -31,11 +32,9 @@ class AzureDevOpsWikiToolkit(BaseToolkit):
31
32
  # indexer settings
32
33
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
33
34
  # embedder settings
34
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.",
35
- default="HuggingFaceEmbeddings")),
36
- embedding_model_params=(dict, Field(
37
- description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}",
38
- default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
35
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
36
+ json_schema_extra={'configuration_types': [
37
+ 'embedding']})),
39
38
  selected_tools=(List[Literal[tuple(selected_tools)]],
40
39
  Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
41
40
  __config__={
@@ -5,6 +5,7 @@ from pydantic import create_model, BaseModel, Field
5
5
 
6
6
  import requests
7
7
  from ....configurations.ado import AdoConfiguration
8
+ from ....configurations.embedding import EmbeddingConfiguration
8
9
  from ....configurations.pgvector import PgVectorConfiguration
9
10
  from ...base.tool import BaseAction
10
11
  from ...utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
@@ -32,11 +33,9 @@ class AzureDevOpsWorkItemsToolkit(BaseToolkit):
32
33
  # indexer settings
33
34
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
34
35
  # embedder settings
35
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.",
36
- default="HuggingFaceEmbeddings")),
37
- embedding_model_params=(dict, Field(
38
- description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}",
39
- default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
36
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
37
+ json_schema_extra={'configuration_types': [
38
+ 'embedding']})),
40
39
  __config__={
41
40
  'json_schema_extra': {
42
41
  'metadata': {
@@ -9,6 +9,7 @@ from langchain_core.tools import BaseTool
9
9
  from pydantic import BaseModel, Field, ConfigDict, create_model
10
10
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
11
11
  from ...configurations.bitbucket import BitbucketConfiguration
12
+ from ...configurations.embedding import EmbeddingConfiguration
12
13
  from ...configurations.pgvector import PgVectorConfiguration
13
14
  import requests
14
15
 
@@ -58,8 +59,9 @@ class AlitaBitbucketToolkit(BaseToolkit):
58
59
  bitbucket_configuration=(Optional[BitbucketConfiguration], Field(description="Bitbucket Configuration", json_schema_extra={'configuration_types': ['bitbucket']})),
59
60
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", default={'configuration_types': ['pgvector']})),
60
61
  # embedder settings
61
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
62
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
62
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
63
+ json_schema_extra={'configuration_types': [
64
+ 'embedding']})),
63
65
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
64
66
  __config__=ConfigDict(json_schema_extra=
65
67
  {
@@ -6,6 +6,7 @@ from ..base.tool import BaseAction
6
6
  from pydantic import create_model, BaseModel, ConfigDict, Field
7
7
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, parse_list, check_connection_response
8
8
  from ...configurations.confluence import ConfluenceConfiguration
9
+ from ...configurations.embedding import EmbeddingConfiguration
9
10
  from ...configurations.pgvector import PgVectorConfiguration
10
11
  import requests
11
12
 
@@ -66,7 +67,6 @@ class ConfluenceToolkit(BaseToolkit):
66
67
 
67
68
  model = create_model(
68
69
  name,
69
- base_url=(str, Field(description="Confluence URL", json_schema_extra={'configuration': True, 'configuration_title': True})),
70
70
  space=(str, Field(description="Space", json_schema_extra={'toolkit_name': True,
71
71
  'max_toolkit_length': ConfluenceToolkit.toolkit_max_length})),
72
72
  cloud=(bool, Field(description="Hosting Option", json_schema_extra={'configuration': True})),
@@ -82,8 +82,10 @@ class ConfluenceToolkit(BaseToolkit):
82
82
  max_retry_seconds=(int, Field(description="Max retry, sec", default=60)),
83
83
  confluence_configuration=(Optional[ConfluenceConfiguration], Field(description="Confluence Configuration", json_schema_extra={'configuration_types': ['confluence']})),
84
84
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
85
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
86
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
85
+ # embedder settings
86
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
87
+ json_schema_extra={'configuration_types': [
88
+ 'embedding']})),
87
89
 
88
90
  selected_tools=(List[Literal[tuple(selected_tools)]],
89
91
  Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
@@ -118,7 +118,7 @@ BaseIndexDataParams = create_model(
118
118
  description="Optional step size for progress reporting during indexing")),
119
119
  clean_index=(Optional[bool], Field(default=False,
120
120
  description="Optional flag to enforce clean existing index before indexing new data")),
121
- chunking_tool=(Literal['','markdown', 'statistical', 'proposal'], Field(description="Name of chunking tool", default=None)),
121
+ chunking_tool=(Literal[None,'markdown', 'statistical', 'proposal'], Field(description="Name of chunking tool", default=None)),
122
122
  chunking_config=(Optional[dict], Field(description="Chunking tool configuration", default_factory=dict)),
123
123
  )
124
124
 
@@ -397,7 +397,7 @@ class BaseVectorStoreToolApiWrapper(BaseToolApiWrapper):
397
397
  reranking_config=reranking_config,
398
398
  extended_search=extended_search
399
399
  )
400
- return f"Found {len(found_docs)} documents matching the query\n{json.dumps(found_docs, indent=4)}" if found_docs else "No documents found matching the query."
400
+ return found_docs if found_docs else f"No documents found by query '{query}' and filter '{filter}'"
401
401
 
402
402
  def stepback_search_index(self,
403
403
  query: str,
@@ -6,6 +6,7 @@ from pydantic import BaseModel, ConfigDict, Field, create_model, SecretStr
6
6
  from ..base.tool import BaseAction
7
7
  from .api_wrapper import FigmaApiWrapper, GLOBAL_LIMIT
8
8
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
9
+ from ...configurations.embedding import EmbeddingConfiguration
9
10
  from ...configurations.pgvector import PgVectorConfiguration
10
11
 
11
12
  name = "figma"
@@ -58,8 +59,9 @@ class FigmaToolkit(BaseToolkit):
58
59
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
59
60
 
60
61
  # embedder settings
61
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
62
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
62
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
63
+ json_schema_extra={'configuration_types': [
64
+ 'embedding']})),
63
65
  __config__=ConfigDict(
64
66
  json_schema_extra={
65
67
  "metadata": {
@@ -7,6 +7,7 @@ from .api_wrapper import AlitaGitHubAPIWrapper
7
7
  from .tool import GitHubAction
8
8
 
9
9
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
10
+ from ...configurations.embedding import EmbeddingConfiguration
10
11
  from ...configurations.github import GithubConfiguration
11
12
  from ...configurations.pgvector import PgVectorConfiguration
12
13
 
@@ -66,9 +67,10 @@ class AlitaGitHubToolkit(BaseToolkit):
66
67
  'max_toolkit_length': AlitaGitHubToolkit.toolkit_max_length})),
67
68
  active_branch=(Optional[str], Field(description="Active branch", default="main")),
68
69
  base_branch=(Optional[str], Field(description="Github Base branch", default="main")),
69
- # indexer settings
70
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
71
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
70
+ # embedder settings
71
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
72
+ json_schema_extra={'configuration_types': [
73
+ 'embedding']})),
72
74
  selected_tools=(List[Literal[tuple(selected_tools)]],
73
75
  Field(default=[], json_schema_extra={'args_schemas': selected_tools}))
74
76
  )
@@ -8,6 +8,7 @@ from pydantic.fields import Field
8
8
 
9
9
  from .api_wrapper import GitLabAPIWrapper
10
10
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
11
+ from ...configurations.embedding import EmbeddingConfiguration
11
12
  from ...configurations.gitlab import GitlabConfiguration
12
13
  from ...configurations.pgvector import PgVectorConfiguration
13
14
 
@@ -51,8 +52,9 @@ class AlitaGitlabToolkit(BaseToolkit):
51
52
  # indexer settings
52
53
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
53
54
  # embedder settings
54
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
55
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
55
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
56
+ json_schema_extra={'configuration_types': [
57
+ 'embedding']})),
56
58
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
57
59
  __config__=ConfigDict(json_schema_extra={
58
60
  'metadata': {
@@ -6,6 +6,7 @@ from pydantic import create_model, BaseModel, ConfigDict, Field
6
6
  import requests
7
7
 
8
8
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, parse_list, check_connection_response
9
+ from ...configurations.embedding import EmbeddingConfiguration
9
10
  from ...configurations.jira import JiraConfiguration
10
11
  from ...configurations.pgvector import PgVectorConfiguration
11
12
 
@@ -86,8 +87,9 @@ class JiraToolkit(BaseToolkit):
86
87
  jira_configuration=(Optional[JiraConfiguration], Field(description="Jira Configuration", json_schema_extra={'configuration_types': ['jira']})),
87
88
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
88
89
  # embedder settings
89
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
90
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
90
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
91
+ json_schema_extra={'configuration_types': [
92
+ 'embedding']})),
91
93
 
92
94
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
93
95
  __config__=ConfigDict(json_schema_extra={
@@ -55,7 +55,14 @@ class SlackToolkit(BaseToolkit):
55
55
  channel_id=(Optional[str], Field(default=None, description="Channel ID", json_schema_extra={'configuration': True})),
56
56
  selected_tools=(List[Literal[tuple(selected_tools)]],
57
57
  Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
58
- __config__={'json_schema_extra': {'metadata': {"label": "Slack", "icon_url": "slack-icon.svg"}}}
58
+ __config__={'json_schema_extra': {
59
+ 'metadata': {
60
+ "label": "Slack",
61
+ "icon_url": "slack-icon.svg",
62
+ "categories": ["communication"],
63
+ "extra_categories": ["slack", "chat", "messaging", "collaboration"],
64
+ }
65
+ }}
59
66
  )
60
67
  model.check_connection = check_connection
61
68
  return model
@@ -7,6 +7,7 @@ import requests
7
7
  from .api_wrapper import TestrailAPIWrapper
8
8
  from ..base.tool import BaseAction
9
9
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length, check_connection_response
10
+ from ...configurations.embedding import EmbeddingConfiguration
10
11
  from ...configurations.testrail import TestRailConfiguration
11
12
  from ...configurations.pgvector import PgVectorConfiguration
12
13
 
@@ -39,22 +40,13 @@ class TestrailToolkit(BaseToolkit):
39
40
  TestrailToolkit.toolkit_max_length = get_max_toolkit_length(selected_tools)
40
41
  m = create_model(
41
42
  name,
42
- url=(
43
- str,
44
- Field(
45
- description="Testrail URL",
46
- json_schema_extra={
47
- "max_length": TestrailToolkit.toolkit_max_length,
48
- "configuration": True,
49
- "configuration_title": True
50
- }
51
- )
52
- ),
43
+ name=(str, Field(description="Toolkit name", json_schema_extra={
44
+ 'toolkit_name': True,
45
+ "max_length": TestrailToolkit.toolkit_max_length})),
53
46
  testrail_configuration=(Optional[TestRailConfiguration], Field(description="TestRail Configuration", json_schema_extra={'configuration_types': ['testrail']})),
54
47
  pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration", json_schema_extra={'configuration_types': ['pgvector']})),
55
48
  # embedder settings
56
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
57
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
49
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.", json_schema_extra={'configuration_types': ['embedding']})),
58
50
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
59
51
  __config__=ConfigDict(json_schema_extra={'metadata':
60
52
  {"label": "Testrail", "icon_url": "testrail-icon.svg",
@@ -78,9 +78,9 @@ def parse_file_content(file_name=None, file_content=None, is_capture_image: bool
78
78
 
79
79
  loader_object = loaders_map.get(extension)
80
80
  if not loader_object:
81
- raise ToolException(
82
- f"Not supported type ({extension}) of files entered. "
83
- f"Supported types are TXT, DOCX, PDF, PPTX, XLSX and XLS only.")
81
+ logger.warning(f"No loader found for file extension: {extension}. File: {file_path if file_path else file_name}")
82
+ return ToolException(
83
+ "Not supported type of files entered. Supported types are TXT, DOCX, PDF, PPTX, XLSX and XLS only.")
84
84
  loader_kwargs = loader_object['kwargs']
85
85
  loader_kwargs.update({
86
86
  "file_path": file_path,
@@ -39,7 +39,7 @@ class VectorStoreAdapter(ABC):
39
39
  pass
40
40
 
41
41
  @abstractmethod
42
- def get_code_indexed_data(self, vectorstore_wrapper) -> Dict[str, Dict[str, Any]]:
42
+ def get_code_indexed_data(self, vectorstore_wrapper, collection_suffix) -> Dict[str, Dict[str, Any]]:
43
43
  """Get all indexed data from vectorstore for code content"""
44
44
  pass
45
45
 
@@ -124,9 +124,10 @@ class PGVectorAdapter(VectorStoreAdapter):
124
124
  """Check if the vectorstore is a PGVector store."""
125
125
  return hasattr(vectorstore, 'session_maker') and hasattr(vectorstore, 'EmbeddingStore')
126
126
 
127
- def get_indexed_data(self, vectorstore_wrapper):
128
- """Get all indexed data from PGVector for non-code content"""
127
+ def get_indexed_data(self, vectorstore_wrapper, collection_suffix: str)-> Dict[str, Dict[str, Any]]:
128
+ """Get all indexed data from PGVector for non-code content per collection_suffix."""
129
129
  from sqlalchemy.orm import Session
130
+ from sqlalchemy import func
130
131
  from ...runtime.utils.utils import IndexerKeywords
131
132
 
132
133
  result = {}
@@ -139,6 +140,8 @@ class PGVectorAdapter(VectorStoreAdapter):
139
140
  store.EmbeddingStore.id,
140
141
  store.EmbeddingStore.document,
141
142
  store.EmbeddingStore.cmetadata
143
+ ).filter(
144
+ func.jsonb_extract_path_text(store.EmbeddingStore.cmetadata, 'collection') == collection_suffix
142
145
  ).all()
143
146
 
144
147
  # Process the retrieved data
@@ -171,19 +174,22 @@ class PGVectorAdapter(VectorStoreAdapter):
171
174
 
172
175
  return result
173
176
 
174
- def get_code_indexed_data(self, vectorstore_wrapper) -> Dict[str, Dict[str, Any]]:
175
- """Get all indexed code data from PGVector."""
177
+ def get_code_indexed_data(self, vectorstore_wrapper, collection_suffix: str) -> Dict[str, Dict[str, Any]]:
178
+ """Get all indexed code data from PGVector per collection suffix."""
176
179
  from sqlalchemy.orm import Session
180
+ from sqlalchemy import func
177
181
 
178
182
  result = {}
179
183
  try:
180
184
  vectorstore_wrapper._log_data("Retrieving already indexed code data from PGVector vectorstore",
181
185
  tool_name="index_code_data")
182
186
  store = vectorstore_wrapper.vectorstore
183
- with Session(store.session_maker.bind) as session:
187
+ with (Session(store.session_maker.bind) as session):
184
188
  docs = session.query(
185
189
  store.EmbeddingStore.id,
186
190
  store.EmbeddingStore.cmetadata
191
+ ).filter(
192
+ func.jsonb_extract_path_text(store.EmbeddingStore.cmetadata, 'collection') == collection_suffix
187
193
  ).all()
188
194
 
189
195
  for db_id, meta in docs:
@@ -319,7 +325,7 @@ class ChromaAdapter(VectorStoreAdapter):
319
325
 
320
326
  return result
321
327
 
322
- def get_code_indexed_data(self, vectorstore_wrapper) -> Dict[str, Dict[str, Any]]:
328
+ def get_code_indexed_data(self, vectorstore_wrapper, collection_suffix) -> Dict[str, Dict[str, Any]]:
323
329
  """Get all indexed code data from Chroma."""
324
330
  result = {}
325
331
  try:
@@ -8,6 +8,8 @@ from pydantic import create_model, BaseModel, Field, SecretStr
8
8
  from .api_wrapper import XrayApiWrapper
9
9
  from ..base.tool import BaseAction
10
10
  from ..utils import clean_string, get_max_toolkit_length, TOOLKIT_SPLITTER
11
+ from ...configurations.embedding import EmbeddingConfiguration
12
+ from ...configurations.pgvector import PgVectorConfiguration
11
13
 
12
14
  name = "xray_cloud"
13
15
 
@@ -46,14 +48,13 @@ class XrayToolkit(BaseToolkit):
46
48
  client_secret=(SecretStr, Field(description="Client secret", json_schema_extra={'secret': True})),
47
49
  limit=(Optional[int], Field(description="Limit", default=100)),
48
50
 
49
- # indexer settings
50
- connection_string=(Optional[SecretStr], Field(description="Connection string for vectorstore",
51
- default=None,
52
- json_schema_extra={'secret': True})),
53
-
51
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
52
+ json_schema_extra={
53
+ 'configuration_types': ['pgvector']})),
54
54
  # embedder settings
55
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
56
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
55
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
56
+ json_schema_extra={'configuration_types': [
57
+ 'embedding']})),
57
58
 
58
59
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
59
60
  __config__={'json_schema_extra':
@@ -5,6 +5,8 @@ from typing import List, Literal, Optional
5
5
  from .api_wrapper import ZephyrApiWrapper
6
6
  from ..base.tool import BaseAction
7
7
  from ..utils import clean_string, get_max_toolkit_length, TOOLKIT_SPLITTER
8
+ from ...configurations.embedding import EmbeddingConfiguration
9
+ from ...configurations.pgvector import PgVectorConfiguration
8
10
 
9
11
  name = "zephyr_enterprise"
10
12
 
@@ -37,14 +39,13 @@ class ZephyrEnterpriseToolkit(BaseToolkit):
37
39
  name,
38
40
  base_url=(str, Field(description="Zephyr Enterprise base URL", json_schema_extra={'toolkit_name': True, 'max_toolkit_length': ZephyrEnterpriseToolkit.toolkit_max_length })),
39
41
  token=(SecretStr, Field(description="API token", json_schema_extra={'secret': True})),
40
- # indexer settings
41
- connection_string=(Optional[SecretStr], Field(description="Connection string for vectorstore",
42
- default=None,
43
- json_schema_extra={'secret': True})),
44
-
42
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
43
+ json_schema_extra={
44
+ 'configuration_types': ['pgvector']})),
45
45
  # embedder settings
46
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
47
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
46
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
47
+ json_schema_extra={'configuration_types': [
48
+ 'embedding']})),
48
49
  selected_tools=(List[Literal[tuple(selected_tools)]], []),
49
50
  __config__=ConfigDict(json_schema_extra={
50
51
  'metadata': {
@@ -6,6 +6,8 @@ from pydantic import create_model, BaseModel, Field, SecretStr
6
6
  from .api_wrapper import ZephyrEssentialApiWrapper
7
7
  from ..base.tool import BaseAction
8
8
  from ..utils import clean_string, TOOLKIT_SPLITTER, get_max_toolkit_length
9
+ from ...configurations.embedding import EmbeddingConfiguration
10
+ from ...configurations.pgvector import PgVectorConfiguration
9
11
 
10
12
  name = "zephyr_essential"
11
13
 
@@ -37,14 +39,13 @@ class ZephyrEssentialToolkit(BaseToolkit):
37
39
  token=(str, Field(description="Bearer api token")),
38
40
  base_url=(Optional[str], Field(description="Zephyr Essential base url", default=None)),
39
41
  selected_tools=(List[Literal[tuple(selected_tools)]], Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
40
- # indexer settings
41
- connection_string=(Optional[SecretStr], Field(description="Connection string for vectorstore",
42
- default=None,
43
- json_schema_extra={'secret': True})),
44
-
42
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
43
+ json_schema_extra={
44
+ 'configuration_types': ['pgvector']})),
45
45
  # embedder settings
46
- embedding_model=(str, Field(description="Embedding model: i.e. 'HuggingFaceEmbeddings', etc.", default="HuggingFaceEmbeddings")),
47
- embedding_model_params=(dict, Field(description="Embedding model parameters: i.e. `{'model_name': 'sentence-transformers/all-MiniLM-L6-v2'}", default={"model_name": "sentence-transformers/all-MiniLM-L6-v2"})),
46
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
47
+ json_schema_extra={'configuration_types': [
48
+ 'embedding']})),
48
49
  __config__={'json_schema_extra': {'metadata': {"label": "Zephyr Essential", "icon_url": "zephyr.svg",
49
50
  "categories": ["test management"],
50
51
  "extra_categories": ["test automation", "test case management", "test planning"]
@@ -7,6 +7,8 @@ from pydantic import create_model, BaseModel, Field, SecretStr
7
7
  from .api_wrapper import ZephyrScaleApiWrapper
8
8
  from ..base.tool import BaseAction
9
9
  from ..utils import clean_string, get_max_toolkit_length, TOOLKIT_SPLITTER
10
+ from ...configurations.embedding import EmbeddingConfiguration
11
+ from ...configurations.pgvector import PgVectorConfiguration
10
12
 
11
13
  name = "zephyr_scale"
12
14
 
@@ -41,6 +43,13 @@ class ZephyrScaleToolkit(BaseToolkit):
41
43
  password=(Optional[SecretStr], Field(default=None, description="Password", json_schema_extra={'secret': True})),
42
44
  cookies=(Optional[str], Field(default=None, description="Cookies", json_schema_extra={'secret': True})),
43
45
  max_results=(int, Field(default=100, description="Results count to show")),
46
+ pgvector_configuration=(Optional[PgVectorConfiguration], Field(description="PgVector Configuration",
47
+ json_schema_extra={
48
+ 'configuration_types': ['pgvector']})),
49
+ # embedder settings
50
+ embedding_configuration=(Optional[EmbeddingConfiguration], Field(description="Embedding configuration.",
51
+ json_schema_extra={'configuration_types': [
52
+ 'embedding']})),
44
53
  selected_tools=(List[Literal[tuple(selected_tools)]],
45
54
  Field(default=[], json_schema_extra={'args_schemas': selected_tools})),
46
55
  __config__={
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: alita_sdk
3
- Version: 0.3.232
3
+ Version: 0.3.234
4
4
  Summary: SDK for building langchain agents using resources from Alita
5
5
  Author-email: Artem Rozumenko <artyom.rozumenko@gmail.com>, Mikalai Biazruchka <mikalai_biazruchka@epam.com>, Roman Mitusov <roman_mitusov@epam.com>, Ivan Krakhmaliuk <lifedjik@gmail.com>, Artem Dubrovskiy <ad13box@gmail.com>
6
6
  License-Expression: Apache-2.0
@@ -6,8 +6,9 @@ alita_sdk/configurations/ado.py,sha256=rVi-HnKuBsXadVNpBlXoeYvfydL2OxJqqyQ9K9bf7
6
6
  alita_sdk/configurations/azure_search.py,sha256=CLbIkOnWlr9tjySV9GsR6D12bnDX9ifLR9xTMmKH_H0,777
7
7
  alita_sdk/configurations/bigquery.py,sha256=NlyfUm7jMmiDcPSbpHhrpYy7wgbSTdP_cdti_hxRtV0,888
8
8
  alita_sdk/configurations/bitbucket.py,sha256=wSmvFwGuiSTaRg4DTSVJNrj1J_6VlY2Tci3s28mXfPk,1156
9
- alita_sdk/configurations/confluence.py,sha256=9dUQ-ZE4LnHUrcNw9iFS3vzxwudHVB0RYpqBKTZFENw,1368
9
+ alita_sdk/configurations/confluence.py,sha256=LFFjhp0whiWcAN-2DnOVSUnQmjURBmV4C4iDyKs7vys,1423
10
10
  alita_sdk/configurations/delta_lake.py,sha256=MTVsX6stX6D1uEfFMgbb3fYBJRqCrB6cktfUKc9S9ho,1101
11
+ alita_sdk/configurations/embedding.py,sha256=mKQRFqYFKfo1MUYUC7Arqv65q4ppCVbDN0Lf4A7ib4Q,781
11
12
  alita_sdk/configurations/github.py,sha256=GSj6sA4f6SfW0ZpoHXKi5FzbPDC6wE1AlscwWqIPj14,1832
12
13
  alita_sdk/configurations/gitlab.py,sha256=zCI4RDZ3UZFLMWPcAYwuGosUbb-piTwtQjuY4QCJWBk,1031
13
14
  alita_sdk/configurations/jira.py,sha256=B44oNZtt2ECL0QUcFpO2NpDEACn0jl46j7aWhpd2P1s,1331
@@ -15,8 +16,8 @@ alita_sdk/configurations/pgvector.py,sha256=P-Q07ocIg4CXN_7hUBDM6r9gN62XS1N2jyP7
15
16
  alita_sdk/configurations/postman.py,sha256=srup-SaimnSHO8UW1jr05sfUBqd_zKdVc5hs4PLSup4,993
16
17
  alita_sdk/configurations/qtest.py,sha256=u1kkhOJJ-oT5YsjAO8pS5F6pLdQV0yiZzcPf9qazMaE,639
17
18
  alita_sdk/configurations/service_now.py,sha256=na3gBBBLFNBbsk-AW08h8dd60HC5UvNSlxWwc_6w1U4,1141
18
- alita_sdk/configurations/slack.py,sha256=JPdcI7v7PrrHNO5uTY5M10tFPw4tGxjyZKmld4Owc20,1256
19
- alita_sdk/configurations/testrail.py,sha256=K8J3PmYVeDMWuIcgRDqFzbbgzXRXs78SP6H6VNq_aqQ,724
19
+ alita_sdk/configurations/slack.py,sha256=l4D_rYgRsKak6Kx7l0WoxCzWaWf1---FlKY6y2ZWGYk,1252
20
+ alita_sdk/configurations/testrail.py,sha256=k0fPmHBIrWAfEKhrDdB9Rdirw-UFHFoXkRePyrsqcWI,725
20
21
  alita_sdk/runtime/__init__.py,sha256=4W0UF-nl3QF2bvET5lnah4o24CoTwSoKXhuN0YnwvEE,828
21
22
  alita_sdk/runtime/clients/__init__.py,sha256=BdehU5GBztN1Qi1Wul0cqlU46FxUfMnI6Vq2Zd_oq1M,296
22
23
  alita_sdk/runtime/clients/artifact.py,sha256=H3pJAh5G-zWVyJ6YbqHGk4jA8U6HfacQduiTivpJZ3Y,3210
@@ -100,7 +101,7 @@ alita_sdk/runtime/tools/pgvector_search.py,sha256=NN2BGAnq4SsDHIhUcFZ8d_dbEOM8Qw
100
101
  alita_sdk/runtime/tools/prompt.py,sha256=nJafb_e5aOM1Rr3qGFCR-SKziU9uCsiP2okIMs9PppM,741
101
102
  alita_sdk/runtime/tools/router.py,sha256=wCvZjVkdXK9dMMeEerrgKf5M790RudH68pDortnHSz0,1517
102
103
  alita_sdk/runtime/tools/tool.py,sha256=lE1hGi6qOAXG7qxtqxarD_XMQqTghdywf261DZawwno,5631
103
- alita_sdk/runtime/tools/vectorstore.py,sha256=0VWmYRWgFvzGViFlhYbUk2fjkofrLlVQQg6Vnx6nxhs,33659
104
+ alita_sdk/runtime/tools/vectorstore.py,sha256=qNIDID1VjSdIfH6KTdOBL3_lnyVyfsR-fcRj4XN1jRM,33758
104
105
  alita_sdk/runtime/utils/AlitaCallback.py,sha256=E4LlSBuCHWiUq6W7IZExERHZY0qcmdjzc_rJlF2iQIw,7356
105
106
  alita_sdk/runtime/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
107
  alita_sdk/runtime/utils/constants.py,sha256=Xntx1b_uxUzT4clwqHA_U6K8y5bBqf_4lSQwXdcWrp4,13586
@@ -112,16 +113,16 @@ alita_sdk/runtime/utils/toolkit_runtime.py,sha256=MU63Fpxj0b5_r1IUUc0Q3-PN9VwL7r
112
113
  alita_sdk/runtime/utils/toolkit_utils.py,sha256=I9QFqnaqfVgN26LUr6s3XlBlG6y0CoHURnCzG7XcwVs,5311
113
114
  alita_sdk/runtime/utils/utils.py,sha256=CpEl3LCeLbhzQySz08lkKPm7Auac6IiLF7WB8wmArMI,589
114
115
  alita_sdk/tools/__init__.py,sha256=1AHqP2xyLjn92xVm70l9XIke6FkfHkLo5OoQVe4BuP8,10421
115
- alita_sdk/tools/elitea_base.py,sha256=pxcUj_z4xDy5EQDbEkBuneDBh8QdUzevDcHkCKR35v4,30361
116
+ alita_sdk/tools/elitea_base.py,sha256=PW4so3vZsVlSzGTuCR-_LkWR9P-zuw7UsTGETtdTUxc,30304
116
117
  alita_sdk/tools/ado/__init__.py,sha256=j4lt6MLWlpkIIVkHmAyVG3i_qQeQ3ZmL_g8BfMhVhVI,1289
117
118
  alita_sdk/tools/ado/utils.py,sha256=PTCludvaQmPLakF2EbCGy66Mro4-rjDtavVP-xcB2Wc,1252
118
- alita_sdk/tools/ado/repos/__init__.py,sha256=kc4ZJI3B9CDUp4q3jRSj7JZNc3fJwwMTsV40CiKO7Po,6111
119
+ alita_sdk/tools/ado/repos/__init__.py,sha256=mZqU0-9Yyw7HOt61980ndl3yPJ00Ihw2UlvWawheONU,5987
119
120
  alita_sdk/tools/ado/repos/repos_wrapper.py,sha256=nPVsS10Se52yHmZ_YXVGywCSaYLlBEYBTBlhBcDJr80,50143
120
- alita_sdk/tools/ado/test_plan/__init__.py,sha256=w-tHu1uJakZSrREx0tD8sZ3-0Lz0rrv8Uj4phTzF4wU,5429
121
+ alita_sdk/tools/ado/test_plan/__init__.py,sha256=1_Q8-utQ-Ii85BpS1vkwHOcb4Ts1WXLyb8zaz48eoOs,5392
121
122
  alita_sdk/tools/ado/test_plan/test_plan_wrapper.py,sha256=jQt8kFmdAzsopjByLTMiSnWtoqz_IUOmYkhPTVGeMnU,20265
122
- alita_sdk/tools/ado/wiki/__init__.py,sha256=ARjmIAdx-1DcNvh_WW9Z-ZuFp86RKK-gDvzStxZHL_0,5358
123
+ alita_sdk/tools/ado/wiki/__init__.py,sha256=K6Au92gFl2_NuxhFF_VaplzdEI3_oIZ3XwHcXod_giE,5321
123
124
  alita_sdk/tools/ado/wiki/ado_wrapper.py,sha256=zg6wMRar1DTp-ZRlYaQifBEnpYmTrHXskTNPdrLdy8s,14759
124
- alita_sdk/tools/ado/work_item/__init__.py,sha256=L7uYqUn1eAlJwtTiFWYdeSdc-33Am0beFdlC99DRXVY,5493
125
+ alita_sdk/tools/ado/work_item/__init__.py,sha256=1rvgE-i4UtdYxNvgIhCZoqgjcjDTXRo2Y48zmLy6KJg,5456
125
126
  alita_sdk/tools/ado/work_item/ado_wrapper.py,sha256=ubeF2m8J6CGZF_gnkTEbmW_eh6YWsk7bD2clu9FmZpY,28313
126
127
  alita_sdk/tools/advanced_jira_mining/__init__.py,sha256=pUTzECqGvYaR5qWY3JPUhrImrZgc7pCXuqSe5eWIE80,4604
127
128
  alita_sdk/tools/advanced_jira_mining/data_mining_wrapper.py,sha256=nZPtuwVWp8VeHw1B8q9kdwf-6ZvHnlXTOGdcIMDkKpw,44211
@@ -135,7 +136,7 @@ alita_sdk/tools/azure_ai/search/__init__.py,sha256=FVWNSW4LlOXKt34fVUgXut5oZcok9
135
136
  alita_sdk/tools/azure_ai/search/api_wrapper.py,sha256=E4p6HPDlwgxfT_i6cvg9rN4Vn_47CVAyNBAKLIGq3mU,7265
136
137
  alita_sdk/tools/base/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
137
138
  alita_sdk/tools/base/tool.py,sha256=-N27AodZS49vdPCgFkU-bFS9bxoPopZBnNrmwInx3d0,864
138
- alita_sdk/tools/bitbucket/__init__.py,sha256=P5YgZI7PfL3PNLi1CCVxSMc7OZpdlTkY-j_mbJV22xo,5587
139
+ alita_sdk/tools/bitbucket/__init__.py,sha256=W44kX-zEFVJNhrXfa8YsRnByR9vnFZ3EbQ1IMwLsrGQ,5622
139
140
  alita_sdk/tools/bitbucket/api_wrapper.py,sha256=OU55KjtFalYIZ4ioeBck0zjqTewB6BdwQuAS3Kud4R0,10847
140
141
  alita_sdk/tools/bitbucket/bitbucket_constants.py,sha256=UsbhQ1iEvrKoxceTFPWTYhaXS1zSxbmjs1TwY0-P4gw,462
141
142
  alita_sdk/tools/bitbucket/cloud_api_wrapper.py,sha256=VELi65tLXvszwCGQSqVfyVal0ylx9DgAmAGpRQL_Zkg,15522
@@ -203,7 +204,7 @@ alita_sdk/tools/code/linter/api_wrapper.py,sha256=wylpwhAw02Jt8L18CqBq2He5PbwIkx
203
204
  alita_sdk/tools/code/loaders/codesearcher.py,sha256=XoXXZtIQZhvjIwZlnl_4wVGHC-3saYzFo5oDR_Zh3EY,529
204
205
  alita_sdk/tools/code/sonar/__init__.py,sha256=u8wpgXJ_shToLl3G9-XEtGDor5dhmsnurIImh1-e-U0,3165
205
206
  alita_sdk/tools/code/sonar/api_wrapper.py,sha256=nNqxcWN_6W8c0ckj-Er9HkNuAdgQLoWBXh5UyzNutis,2653
206
- alita_sdk/tools/confluence/__init__.py,sha256=y4nc4NoDvzeIEZaTlYqxgo8S8JVw6RtUl9_eOFddvQo,7389
207
+ alita_sdk/tools/confluence/__init__.py,sha256=TjG_Zi-Xf_SdJf3135p5VFf6-iMzJ9BMM_giu7PBftE,7319
207
208
  alita_sdk/tools/confluence/api_wrapper.py,sha256=4WqjVeFWyFeb4-VD5v4_J69pbyjire4Op7cBSKU9EXw,85057
208
209
  alita_sdk/tools/confluence/loader.py,sha256=4bf5qrJMEiJzuZp2NlxO2XObLD1w7fxss_WyMUpe8sg,9290
209
210
  alita_sdk/tools/confluence/utils.py,sha256=Lxo6dBD0OlvM4o0JuK6qeB_4LV9BptiwJA9e1vqNcDw,435
@@ -211,16 +212,16 @@ alita_sdk/tools/custom_open_api/__init__.py,sha256=9aT5SPNPWcJC6jMZEM-3rUCXVULj_
211
212
  alita_sdk/tools/custom_open_api/api_wrapper.py,sha256=sDSFpvEqpSvXHGiBISdQQcUecfO3md-_F8hAi6p2dvg,4340
212
213
  alita_sdk/tools/elastic/__init__.py,sha256=iwnSRppRpzvJ1da2K3Glu8Uu41MhBDCYbguboLkEbW0,2818
213
214
  alita_sdk/tools/elastic/api_wrapper.py,sha256=pl8CqQxteJAGwyOhMcld-ZgtOTFwwbv42OITQVe8rM0,1948
214
- alita_sdk/tools/figma/__init__.py,sha256=281OU_aw4Y87Do09HhDSi5zL5ne9YlrsRLZQo8s1U8Q,5316
215
+ alita_sdk/tools/figma/__init__.py,sha256=B6oDmoSFxONa_74qSbdLCw_Su00KLcEMr7fH-OwZ3sE,5351
215
216
  alita_sdk/tools/figma/api_wrapper.py,sha256=Rtgt9FvR8VD0oPdYhlgvVyXLVqLTjtiOPTlwNeaV80w,20560
216
- alita_sdk/tools/github/__init__.py,sha256=CtU52t6-jd6JErWe3M2HF5XXWzFj9CqGmG7HBjUet6E,5348
217
+ alita_sdk/tools/github/__init__.py,sha256=IZwU7CCs8be4zwK1AVbv13N38cnLkzjxCH0wiCugkyY,5384
217
218
  alita_sdk/tools/github/api_wrapper.py,sha256=uDwYckdnpYRJtb0uZnDkaz2udvdDLVxuCh1tSwspsiU,8411
218
219
  alita_sdk/tools/github/github_client.py,sha256=nxnSXsDul2PPbWvYZS8TmAFFmR-5ALyakNoV5LN2D4U,86617
219
220
  alita_sdk/tools/github/graphql_client_wrapper.py,sha256=d3AGjzLGH_hdQV2V8HeAX92dJ4dlnE5OXqUlCO_PBr0,71539
220
221
  alita_sdk/tools/github/schemas.py,sha256=yFsqivfjCPRk9GxFJrL8sTz6nnjFCZ0j5DIfPtGSsvA,13852
221
222
  alita_sdk/tools/github/tool.py,sha256=Jnnv5lenV5ds8AAdyo2m8hSzyJ117HZBjzHC6T1ck-M,1037
222
223
  alita_sdk/tools/github/tool_prompts.py,sha256=y6ZW_FpUCE87Uop3WuQAZVRnzxO5t7xjBOI5bCqiluw,30194
223
- alita_sdk/tools/gitlab/__init__.py,sha256=WuaIouTnMoQF7OTsfm7GblWW60Yf2IbUyQxjFHpK3ck,5127
224
+ alita_sdk/tools/gitlab/__init__.py,sha256=FkmYj2EQLTSwpTmEbTIKRonZ-cfJC0HJDRX8P0aYYlY,5162
224
225
  alita_sdk/tools/gitlab/api_wrapper.py,sha256=KYCRO2pF8EPTLhWuEj64XsHPCYSucsf8S3R_ofJttrA,22301
225
226
  alita_sdk/tools/gitlab/tools.py,sha256=vOGTlSaGaFmWn6LS6YFP-FuTqUPun9vnv1VrUcUHAZQ,16500
226
227
  alita_sdk/tools/gitlab/utils.py,sha256=Z2XiqIg54ouqqt1to-geFybmkCb1I6bpE91wfnINH1I,2320
@@ -236,7 +237,7 @@ alita_sdk/tools/google/bigquery/schemas.py,sha256=Gb8KQZSoRkmjXiz21dTC95c1MHEHFc
236
237
  alita_sdk/tools/google/bigquery/tool.py,sha256=Esf9Hsp8I0e7-5EdkFqQ-bid0cfrg-bfSoHoW_IIARo,1027
237
238
  alita_sdk/tools/google_places/__init__.py,sha256=mHKc7u9P2gqGDzqqJNQC9qiZYEm5gncnM_1XjtrM17o,3152
238
239
  alita_sdk/tools/google_places/api_wrapper.py,sha256=7nZly6nk4f4Tm7s2MVdnnwlb-1_WHRrDhyjDiqoyPjA,4674
239
- alita_sdk/tools/jira/__init__.py,sha256=CuE3LPxFuTtdel9YR7RS37wZzvxniPVCY6pDu4cBAdk,6927
240
+ alita_sdk/tools/jira/__init__.py,sha256=LQlU_PeoE2tUxWxq6ce8BduZfF6pdRJ60pOXYwK4m7Y,6962
240
241
  alita_sdk/tools/jira/api_wrapper.py,sha256=gZXEtOZtWvINHipHPj8Dg6uNyYKZariLo4Bs3_wLJrA,75932
241
242
  alita_sdk/tools/keycloak/__init__.py,sha256=0WB9yXMUUAHQRni1ghDEmd7GYa7aJPsTVlZgMCM9cQ0,3050
242
243
  alita_sdk/tools/keycloak/api_wrapper.py,sha256=cOGr0f3S3-c6tRDBWI8wMnetjoNSxiV5rvC_0VHb8uw,3100
@@ -293,20 +294,20 @@ alita_sdk/tools/sharepoint/__init__.py,sha256=ZoqNrKPqswuwTg2jTj8_jHlNUSCZQUiK1O
293
294
  alita_sdk/tools/sharepoint/api_wrapper.py,sha256=YCD0DkdgTyrDs4cSOO_LQjTVfmoA8U_keGGJlefxSTo,9083
294
295
  alita_sdk/tools/sharepoint/authorization_helper.py,sha256=n-nL5dlBoLMK70nHu7P2RYCb8C6c9HMA_gEaw8LxuhE,2007
295
296
  alita_sdk/tools/sharepoint/utils.py,sha256=fZ1YzAu5CTjKSZeslowpOPH974902S8vCp1Wu7L44LM,446
296
- alita_sdk/tools/slack/__init__.py,sha256=Z0gzBVHHISd3EO7bo6A0WJf-fU178s-7F8bBKkwLn-E,3801
297
+ alita_sdk/tools/slack/__init__.py,sha256=srHQyTomfV1I4eTa8m4xjEiG4PrwxfTfmnC9hAd-gRs,4032
297
298
  alita_sdk/tools/slack/api_wrapper.py,sha256=5VrV7iSGno8ZcDzEHdGPNhInhtODGPPvAzoZ9W9iQWE,14009
298
299
  alita_sdk/tools/sql/__init__.py,sha256=9Lh8YHKO8zD5eeolpR4O9swTUsjpXj9LVDn8fM-T5IM,3506
299
300
  alita_sdk/tools/sql/api_wrapper.py,sha256=Rky0_CX9HWDQ2mClHGAgP3LHjYVX4iymPuilZMtaDlQ,3687
300
301
  alita_sdk/tools/sql/models.py,sha256=AKJgSl_kEEz4fZfw3kbvdGHXaRZ-yiaqfJOB6YOj3i0,641
301
302
  alita_sdk/tools/testio/__init__.py,sha256=qi12wyJXN02hrUXg08CbijcCL5pi30JMbJfiXjn1Zr0,2646
302
303
  alita_sdk/tools/testio/api_wrapper.py,sha256=BvmL5h634BzG6p7ajnQLmj-uoAw1gjWnd4FHHu1h--Q,21638
303
- alita_sdk/tools/testrail/__init__.py,sha256=577XVaOAoXG3mDkojCsy5XCUlxCsdJf_2-_5U-afkOo,4961
304
+ alita_sdk/tools/testrail/__init__.py,sha256=H3vLFaVtXzhuhFMjldmDykrlLC-njXIDlrudhcBCJcc,4643
304
305
  alita_sdk/tools/testrail/api_wrapper.py,sha256=Aax0jspgidXYNxLIw6qTWu3dO2JOIS0ALIqsCzQuFbQ,32087
305
306
  alita_sdk/tools/utils/__init__.py,sha256=155xepXPr4OEzs2Mz5YnjXcBpxSv1X2eznRUVoPtyK0,3268
306
- alita_sdk/tools/utils/content_parser.py,sha256=yi1IDLreqfM41w-PnoFEvVLtSV50qpNvKshJwbDTgqs,7172
307
- alita_sdk/tools/vector_adapters/VectorStoreAdapter.py,sha256=kB6KYN4IRisyNc3U4SYJ4PdOoPKH1wrRvRwvdrjZ0OQ,16850
307
+ alita_sdk/tools/utils/content_parser.py,sha256=Azm-eUr_hOc55BxdQVxMNpWQTLOQjoAq-fyiuOXhrO0,7264
308
+ alita_sdk/tools/vector_adapters/VectorStoreAdapter.py,sha256=a6FAsiix_EvATIKUf5YT6vHh5LDyJ5uSP3LJqoxFo04,17367
308
309
  alita_sdk/tools/vector_adapters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
309
- alita_sdk/tools/xray/__init__.py,sha256=OYa1wveTm-lAhsJaGXMnwOrDQWl6ch--NjNLBeR63eM,4331
310
+ alita_sdk/tools/xray/__init__.py,sha256=g8f1JoNwbYEIs35l6o7t-9mctCjkaiLJMYmaLVbOqxU,4447
310
311
  alita_sdk/tools/xray/api_wrapper.py,sha256=A8PJmY2k7TowaD_vk6ZxkMnSUoZUt9A6g4TJrZfNTAw,32225
311
312
  alita_sdk/tools/yagmail/__init__.py,sha256=c4Qn3em0tLxzRmFKpzbBgY9W2EnOoKf0azoDJHng5CY,2208
312
313
  alita_sdk/tools/yagmail/yagmail_wrapper.py,sha256=SKoGVd1X4Ew3ad5tOdtPoY00M6jStNdT3q7GXEjQc5g,1952
@@ -314,19 +315,19 @@ alita_sdk/tools/zephyr/Zephyr.py,sha256=ODZbg9Aw0H0Rbv-HcDXLI4KHbPiLDHoteDofshw9
314
315
  alita_sdk/tools/zephyr/__init__.py,sha256=8B2Ibz5QTmB5WkV0q8Sq4kuj92FFaFWZLrT877zRRLg,2897
315
316
  alita_sdk/tools/zephyr/api_wrapper.py,sha256=lJCYPG03ej0qgdpLflnS7LFB4HSAfGzIvTjAJt07CQs,6244
316
317
  alita_sdk/tools/zephyr/rest_client.py,sha256=7vSD3oYIX-3KbAFed-mphSQif_VRuXrq5O07ryNQ7Pk,6208
317
- alita_sdk/tools/zephyr_enterprise/__init__.py,sha256=XAWLj4WgMpEz3xnP8VW1lzHVW48K3CxIXdgeubjMvaw,3885
318
+ alita_sdk/tools/zephyr_enterprise/__init__.py,sha256=CsTiwTwIlDVFO3ouE0P6tWr2x5clvVXy7IoGvVXOQL0,4001
318
319
  alita_sdk/tools/zephyr_enterprise/api_wrapper.py,sha256=p9EpkO5tif3JJzprz2_VuLsQ1yET7TwwBfPOKJGwt9c,11215
319
320
  alita_sdk/tools/zephyr_enterprise/zephyr_enterprise.py,sha256=hV9LIrYfJT6oYp-ZfQR0YHflqBFPsUw2Oc55HwK0H48,6809
320
- alita_sdk/tools/zephyr_essential/__init__.py,sha256=-VS-smytUSjqNLLi6HmqbsU3NfmNFTrzPjzNiEtOi5c,3628
321
+ alita_sdk/tools/zephyr_essential/__init__.py,sha256=Ws3KVjU5MPZzqfeKmnn-m1p7_TqaCrJMpDYyY5olpH0,3744
321
322
  alita_sdk/tools/zephyr_essential/api_wrapper.py,sha256=TpNov35XPgjM9eymCEFqv22mbpdVvLMBTb9WVqUcvNA,36795
322
323
  alita_sdk/tools/zephyr_essential/client.py,sha256=bfNcUKNqj9MFWTludGbbqD4qZlxrBaC2JtWsCfZMqSY,9722
323
- alita_sdk/tools/zephyr_scale/__init__.py,sha256=2NTcdrfkx4GSegqyXhsPLsEpc4FlACuDy85b0fk6cAo,4572
324
+ alita_sdk/tools/zephyr_scale/__init__.py,sha256=bk7u0JbVf3FLyhvp3IYfMX_lvpQQaT-DQE8085P23J8,5391
324
325
  alita_sdk/tools/zephyr_scale/api_wrapper.py,sha256=JAeWf-RXohsxheUpT0iMDClc_izj-zxMwafXCW4jtC0,78015
325
326
  alita_sdk/tools/zephyr_squad/__init__.py,sha256=0AI_j27xVO5Gk5HQMFrqPTd4uvuVTpiZUicBrdfEpKg,2796
326
327
  alita_sdk/tools/zephyr_squad/api_wrapper.py,sha256=kmw_xol8YIYFplBLWTqP_VKPRhL_1ItDD0_vXTe_UuI,14906
327
328
  alita_sdk/tools/zephyr_squad/zephyr_squad_cloud_client.py,sha256=R371waHsms4sllHCbijKYs90C-9Yu0sSR3N4SUfQOgU,5066
328
- alita_sdk-0.3.232.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
329
- alita_sdk-0.3.232.dist-info/METADATA,sha256=HMHMoJWO6wQ3h3u5c-p_27RlppcpFUaw9BDyOL7Y9_c,18896
330
- alita_sdk-0.3.232.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
331
- alita_sdk-0.3.232.dist-info/top_level.txt,sha256=0vJYy5p_jK6AwVb1aqXr7Kgqgk3WDtQ6t5C-XI9zkmg,10
332
- alita_sdk-0.3.232.dist-info/RECORD,,
329
+ alita_sdk-0.3.234.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
330
+ alita_sdk-0.3.234.dist-info/METADATA,sha256=xUR95e1hi0KY25cAhlWLHKOKcs70RlQky1GylG-K_Lo,18896
331
+ alita_sdk-0.3.234.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
332
+ alita_sdk-0.3.234.dist-info/top_level.txt,sha256=0vJYy5p_jK6AwVb1aqXr7Kgqgk3WDtQ6t5C-XI9zkmg,10
333
+ alita_sdk-0.3.234.dist-info/RECORD,,