alignfaces 1.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,524 @@
1
+ import math
2
+
3
+ import numpy as np
4
+ import cv2 # Faster Fourier transforms than NumPy and Scikit-Image
5
+
6
+ # References:
7
+ #
8
+ # Peter Kovesi, "Image Features From Phase Congruency". Videre: A
9
+ # Journal of Computer Vision Research. MIT Press. Volume 1, Number 3,
10
+ # Summer 1999 http://mitpress.mit.edu/e-journals/Videre/001/v13.html
11
+ #
12
+ # Peter Kovesi, "Phase Congruency Detects Corners and
13
+ # Edges". Proceedings DICTA 2003, Sydney Dec 10-12
14
+
15
+ # Copyright (c) 1996-2017 Peter Kovesi
16
+ # Centre for Exploration Targeting
17
+ # The University of Western Australia
18
+ # peter.kovesi at uwa edu au
19
+ #
20
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
21
+ # of this software and associated documentation files (the "Software"), to deal
22
+ # in the Software without restriction, subject to the following conditions:
23
+ #
24
+ # The above copyright notice and this permission notice shall be included in
25
+ # all copies or substantial portions of the Software.
26
+ #
27
+ # The Software is provided "as is", without warranty of any kind.
28
+
29
+ # Usage in UpToBrowFit.py
30
+ #
31
+ # from phasecong3 import filtered_images_centered_on_critical_band_and_wavelet_bank
32
+ #
33
+ # output = filtered_images_centered_on_critical_band_and_wavelet_bank(face, foCpf, facesPerImage, NumberScales, NumberAngles)
34
+ #
35
+ # NumberScales should be odd (choose 3 to match wavelet features used for correlation experiments)
36
+ # NumberAngles (choose 6 to match ...)
37
+
38
+ def filtered_images_centered_on_critical_band_and_wavelet_bank(InputImage, CriticalBandCyclesPerObject, ObjectsPerImage, NumberScales, NumberAngles):
39
+ nrows, ncols = InputImage.shape
40
+
41
+ # Matrix of radii
42
+ y, x = np.mgrid[0:nrows, 0:ncols]
43
+ #cy = int(math.ceil((nrows-1)/2))
44
+ #cx = int(math.ceil((ncols-1)/2))
45
+ cy = math.floor(nrows/2)
46
+ cx = math.floor(ncols/2)
47
+ y = y - cy
48
+ x = x - cx
49
+ radius = np.sqrt(x**2 + y**2)
50
+ radius[cy, cx] = 1
51
+
52
+ # Matrix values contain polar angle.
53
+ # (note -ve y is used to give +ve anti-clockwise angles)
54
+ theta = np.arctan2(-y, x)
55
+ sintheta = np.sin(theta)
56
+ costheta = np.cos(theta)
57
+
58
+ # Initialise set of annular bandpass filters
59
+ # Here I use the method of scale selection from the code I used to generate
60
+ # stimuli for my latest experiments (spatial feature scaling):
61
+ # /Users/carl/Studies/Face_Projects/features_wavelet
62
+ #NumberScales = 3 # should be odd
63
+ mult = 1.66 # see Peter Kovesi's plotgaborfilters.m
64
+ annularBandpassFilters = np.empty((nrows,ncols,NumberScales))
65
+ p = np.arange(NumberScales) - math.floor(NumberScales/2)
66
+ fSetCpo = CriticalBandCyclesPerObject*mult**p
67
+ fSetCpi = fSetCpo * ObjectsPerImage
68
+
69
+ # Number of filter orientations.
70
+ #NumberAngles = 6
71
+ """ Ratio of angular interval between filter orientations and the standard deviation
72
+ of the angular Gaussian function used to construct filters in the freq. plane.
73
+ """
74
+ dThetaOnSigma = 1.3
75
+ filterOrient = np.arange(start=0, stop=math.pi - math.pi / NumberAngles, step = math.pi / NumberAngles)
76
+
77
+ # The standard deviation of the angular Gaussian function used to construct filters in the frequency plane.
78
+ thetaSigma = math.pi / NumberAngles / dThetaOnSigma;
79
+
80
+ BandpassFilters = np.empty((nrows,ncols,NumberScales,NumberAngles))
81
+ evenWavelets = np.empty((nrows,ncols,NumberScales,NumberAngles))
82
+ oddWavelets = np.empty((nrows,ncols,NumberScales,NumberAngles))
83
+
84
+ # The following implements the log-gabor transfer function
85
+ """ From http://www.peterkovesi.com/matlabfns/phase_congruency/Docs/convexpl.html
86
+ The filter bandwidth is set by specifying the ratio of the standard deviation
87
+ of the Gaussian describing the log Gabor filter's transfer function in the
88
+ log-frequency domain to the filter center frequency. This is set by the parameter
89
+ sigmaOnf . The smaller sigmaOnf is the larger the bandwidth of the filter.
90
+ I have not worked out an expression relating sigmaOnf to bandwidth, but
91
+ empirically a sigmaOnf value of 0.75 will result in a filter with a bandwidth
92
+ of approximately 1 octave and a value of 0.55 will result in a bandwidth of
93
+ roughly 2 octaves.
94
+ """
95
+ # sigmaOnf = 0.74 # approximately 1 octave
96
+ sigmaOnf = 0.55 # approximately 2 octaves
97
+ """ From Wilson, Loffler and Wilkinson (2002 Vision Research):
98
+ The bandpass filtering alluded to above was used because of ubiquitous evidence
99
+ that face discrimination is optimal within a 2.0 octave (at half amplitude)
100
+ bandwidth centered upon 8–13 cycles per face width (Costen et al., 1996;
101
+ Fiorentini et al., 1983; Gold et al., 1999; Hayes et al., 1986; Näsänen, 1999).
102
+ We therefore chose a radially symmetric filter with a peak frequency of 10.0
103
+ cycles per mean face width and a 2.0 octave bandwidth described by a difference
104
+ of Gaussians (DOG):"""
105
+
106
+ plotColors = ['b','r','k']
107
+ for i in np.arange(3):
108
+ logGabor = np.exp( (-(np.log(radius/fSetCpi[i]))**2) / (2 * math.log(sigmaOnf)**2) )
109
+ logGabor[cy, cx] = 0 # Set the value at the 0 frequency point
110
+ # of the filter back to zero
111
+ # (undo the radius fudge).
112
+
113
+ # Lowpass filter to remove high frequency 'garbage'
114
+ cutoff = 0.4
115
+ filterorder = 10 # filter 'sharpness'
116
+ normradius = radius / (abs(x).max()*2)
117
+ lowpassbutterworth = 1.0 / (1.0 + (normradius / cutoff)**(2*filterorder))
118
+ annularBandpassFilters[:,:,i] = logGabor * lowpassbutterworth
119
+
120
+ fgain = annularBandpassFilters[cy,cx+1:,i]
121
+ for ai in np.arange(NumberAngles):
122
+ angl = filterOrient[ai]
123
+ """ For each point in the filter matrix calculate the angular distance from the
124
+ specified filter orientation. To overcome the angular wrap-around problem
125
+ sine difference and cosine difference values are first computed and then
126
+ the atan2 function is used to determine angular distance.
127
+ """
128
+ ds = sintheta * math.cos(angl) - costheta * math.sin(angl); # Difference in sine.
129
+ dc = costheta * math.cos(angl) + sintheta * math.sin(angl); # Difference in cosine.
130
+ dtheta = np.abs(np.arctan2(ds,dc)); # Absolute angular distance.
131
+ spread = np.exp((-dtheta**2) / (2 * thetaSigma**2)); # Calculate the angular
132
+ # filter component.
133
+
134
+ BandpassFilters[:,:,i,ai] = spread * annularBandpassFilters[:,:,i]; # Product of the two components.
135
+ temp = np.empty((nrows, ncols, 2))
136
+ for i in range(2):
137
+ temp[:,:,i] = BandpassFilters[:,:,i,ai]
138
+ complexImage = cv2.idft(np.fft.ifftshift(temp))
139
+ evenWavelets[:,:,i,ai] = complexImage[:,:,0]
140
+ oddWavelets[:,:,i,ai] = complexImage[:,:,1]
141
+
142
+ """
143
+ Output so far:
144
+ annularBandpassFilters.
145
+
146
+ Use annularBandpassFilters[:,:,1] for contrast islands of eyes, nose and mouth.
147
+ Use annularBandpassFilters[:,:,0] for eyebrow detection.
148
+
149
+ BandpassFilters. Use shifted versions for Fourier plane filtering to select high-amplitude points.
150
+ evenWavelets & oddWavelets for reconstruction!
151
+ """
152
+
153
+ # Images filtered at center frequencies critical for recognition.
154
+ # To be thresholded for determination of local contrast islands.
155
+ # In conjunction with facial landmarks.
156
+ filteredFaces = np.empty((nrows,ncols,NumberScales))
157
+ f_cv = cv2.dft(np.float32(InputImage),flags=cv2.DFT_COMPLEX_OUTPUT)
158
+ for fi in range(NumberScales):
159
+ criticalfiltershift = np.fft.ifftshift( annularBandpassFilters[:,:,fi] )
160
+ criticalfiltershift_cv = np.empty((nrows, ncols, 2))
161
+ for i in range(2):
162
+ criticalfiltershift_cv[:,:,i] = criticalfiltershift
163
+
164
+ # TEST - according to my notes (fourier_demo.py) should be [:,:,1]
165
+ filteredFaces[:,:,fi] = cv2.idft( criticalfiltershift_cv * f_cv)[:,:,0]
166
+
167
+ return filteredFaces
168
+
169
+
170
+ # based on phasecong3.m
171
+ def phase_congruency(InputImage, NumberScales, NumberAngles):
172
+
173
+ # nscale 4 - Number of wavelet scales, try values 3-6
174
+ # norient 6 - Number of filter orientations.
175
+ # minWaveLength 3 - Wavelength of smallest scale filter.
176
+ # mult 2.1 - Scaling factor between successive filters.
177
+ # sigmaOnf 0.55 - Ratio of the standard deviation of the Gaussian
178
+ # describing the log Gabor filter's transfer function
179
+ # in the frequency domain to the filter center frequency.
180
+ # k 2.0 - No of standard deviations of the noise energy beyond
181
+ # the mean at which we set the noise threshold point.
182
+ # You may want to vary this up to a value of 10 or
183
+ # 20 for noisy images
184
+ # cutOff 0.5 - The fractional measure of frequency spread
185
+ # below which phase congruency values get penalized.
186
+ # g 10 - Controls the sharpness of the transition in
187
+ # the sigmoid function used to weight phase
188
+ # congruency for frequency spread.
189
+ # noiseMethod -1 - Parameter specifies method used to determine
190
+ # noise statistics.
191
+ # -1 use median of smallest scale filter responses
192
+ # -2 use mode of smallest scale filter responses
193
+ # 0+ use noiseMethod value as the fixed noise threshold
194
+ minWaveLength = 3
195
+ mult = 2.1
196
+ sigmaOnf = 0.55
197
+ k = 2.0
198
+ cutOff = 0.5
199
+ g = 10
200
+ noiseMethod = -1
201
+
202
+
203
+ epsilon = .0001 # Used to prevent division by zero.
204
+
205
+ # [rows,cols] = size(im);
206
+ # imagefft = fft2(im); % Fourier transform of image
207
+ #
208
+ # zero = zeros(rows,cols);
209
+ # EO = cell(nscale, norient); % Array of convolution results.
210
+ # PC = cell(norient,1);
211
+ # covx2 = zero; % Matrices for covariance data
212
+ # covy2 = zero;
213
+ # covxy = zero;
214
+ #
215
+ # EnergyV = zeros(rows,cols,3); % Matrix for accumulating total energy
216
+ # % vector, used for feature orientation
217
+ # % and type calculation
218
+ #
219
+ # pcSum = zeros(rows,cols);
220
+
221
+ f_cv = cv2.dft(np.float32(InputImage),flags=cv2.DFT_COMPLEX_OUTPUT)
222
+
223
+ #------------------------------
224
+ nrows, ncols = InputImage.shape
225
+ zero = np.zeros((nrows,ncols))
226
+ EO = np.zeros((nrows,ncols,NumberScales,NumberAngles),dtype=complex)
227
+ PC = np.zeros((nrows,ncols,NumberAngles))
228
+ covx2 = np.zeros((nrows,ncols))
229
+ covy2 = np.zeros((nrows,ncols))
230
+ covxy = np.zeros((nrows,ncols))
231
+ EnergyV = np.zeros((nrows,ncols,3))
232
+ pcSum = np.zeros((nrows,ncols))
233
+
234
+
235
+
236
+ # Matrix of radii
237
+ cy = math.floor(nrows/2)
238
+ cx = math.floor(ncols/2)
239
+ y, x = np.mgrid[0:nrows, 0:ncols]
240
+ y = (y-cy)/nrows
241
+ x = (x-cx)/ncols
242
+
243
+ # y = y - cy
244
+ # x = x - cx
245
+ radius = np.sqrt(x**2 + y**2)
246
+ radius[cy, cx] = 1
247
+
248
+ # Matrix values contain polar angle.
249
+ # (note -ve y is used to give +ve anti-clockwise angles)
250
+ theta = np.arctan2(-y, x)
251
+ sintheta = np.sin(theta)
252
+ costheta = np.cos(theta)
253
+
254
+ # Initialise set of annular bandpass filters
255
+ # Here I use the method of scale selection from the code I used to generate
256
+ # stimuli for my latest experiments (spatial feature scaling):
257
+ # /Users/carl/Studies/Face_Projects/features_wavelet
258
+ #NumberScales = 3 # should be odd
259
+ annularBandpassFilters = np.empty((nrows,ncols,NumberScales))
260
+ #p = np.arange(NumberScales) - math.floor(NumberScales/2)
261
+ #fSetCpo = CriticalBandCyclesPerObject*mult**p
262
+ #fSetCpi = fSetCpo * ObjectsPerImage
263
+
264
+ # Number of filter orientations.
265
+ #NumberAngles = 6
266
+ """ Ratio of angular interval between filter orientations and the standard deviation
267
+ of the angular Gaussian function used to construct filters in the freq. plane.
268
+ """
269
+ dThetaOnSigma = 1.3
270
+ filterOrient = np.arange(start=0, stop=math.pi - math.pi / NumberAngles, step = math.pi / NumberAngles)
271
+
272
+ # The standard deviation of the angular Gaussian function used to construct filters in the frequency plane.
273
+ thetaSigma = math.pi / NumberAngles / dThetaOnSigma;
274
+
275
+ BandpassFilters = np.empty((nrows,ncols,NumberScales,NumberAngles))
276
+ evenWavelets = np.empty((nrows,ncols,NumberScales,NumberAngles))
277
+ oddWavelets = np.empty((nrows,ncols,NumberScales,NumberAngles))
278
+
279
+ # The following implements the log-gabor transfer function
280
+ """ From http://www.peterkovesi.com/matlabfns/phase_congruency/Docs/convexpl.html
281
+ The filter bandwidth is set by specifying the ratio of the standard deviation
282
+ of the Gaussian describing the log Gabor filter's transfer function in the
283
+ log-frequency domain to the filter center frequency. This is set by the parameter
284
+ sigmaOnf . The smaller sigmaOnf is the larger the bandwidth of the filter.
285
+ I have not worked out an expression relating sigmaOnf to bandwidth, but
286
+ empirically a sigmaOnf value of 0.75 will result in a filter with a bandwidth
287
+ of approximately 1 octave and a value of 0.55 will result in a bandwidth of
288
+ roughly 2 octaves.
289
+ """
290
+ # sigmaOnf = 0.74 # approximately 1 octave
291
+ # sigmaOnf = 0.55 # approximately 2 octaves
292
+ """ From Wilson, Loffler and Wilkinson (2002 Vision Research):
293
+ The bandpass filtering alluded to above was used because of ubiquitous evidence
294
+ that face discrimination is optimal within a 2.0 octave (at half amplitude)
295
+ bandwidth centered upon 8–13 cycles per face width (Costen et al., 1996;
296
+ Fiorentini et al., 1983; Gold et al., 1999; Hayes et al., 1986; Näsänen, 1999).
297
+ We therefore chose a radially symmetric filter with a peak frequency of 10.0
298
+ cycles per mean face width and a 2.0 octave bandwidth described by a difference
299
+ of Gaussians (DOG):"""
300
+
301
+ # Lowpass filter to remove high frequency 'garbage'
302
+ filterorder = 15 # filter 'sharpness'
303
+ cutoff = .45
304
+ normradius = radius / (abs(x).max()*2)
305
+ lowpassbutterworth = 1.0 / (1.0 + (normradius / cutoff)**(2*filterorder))
306
+ #
307
+ # Note: lowpassbutterworth is currently DC centered.
308
+ #
309
+ #
310
+ #annularBandpassFilters[:,:,i] = logGabor * lowpassbutterworth
311
+ #logGabor = np.empty((nrows,ncols,NumberScales)) --> same as annularBandpassFilters
312
+ for s in np.arange(NumberScales):
313
+ wavelength = minWaveLength*mult**s
314
+ fo = 1.0/wavelength # Centre frequency of filter.
315
+ logGabor = np.exp((-(np.log(radius/fo))**2) / (2 * math.log(sigmaOnf)**2))
316
+ annularBandpassFilters[:,:,s] = logGabor*lowpassbutterworth # Apply low-pass filter
317
+ annularBandpassFilters[cy,cx,s] = 0 # Set the value at the 0 frequency point of the filter
318
+ # back to zero (undo the radius fudge).
319
+
320
+ # main loop
321
+ for o in np.arange(NumberAngles):
322
+ # Construct the angular filter spread function
323
+ angl = o*math.pi/NumberAngles # Filter angle.
324
+ # For each point in the filter matrix calculate the angular distance from
325
+ # the specified filter orientation. To overcome the angular wrap-around
326
+ # problem sine difference and cosine difference values are first computed
327
+ # and then the atan2 function is used to determine angular distance.
328
+ # ds = sintheta * cos(angl) - costheta * sin(angl); % Difference in sine.
329
+ # dc = costheta * cos(angl) + sintheta * sin(angl); % Difference in cosine.
330
+ # dtheta = abs(atan2(ds,dc)); % Absolute angular distance.
331
+
332
+ # % Scale theta so that cosine spread function has the right wavelength and clamp to pi
333
+ # dtheta = min(dtheta*norient/2,pi);
334
+ # % The spread function is cos(dtheta) between -pi and pi. We add 1,
335
+ # % and then divide by 2 so that the value ranges 0-1
336
+ # spread = (cos(dtheta)+1)/2;
337
+ #
338
+ # sumE_ThisOrient = zero; % Initialize accumulator matrices.
339
+ # sumO_ThisOrient = zero;
340
+ # sumAn_ThisOrient = zero;
341
+ # Energy = zero;
342
+ #angl = filterOrient[o]
343
+ """ For each point in the filter matrix calculate the angular distance from the
344
+ specified filter orientation. To overcome the angular wrap-around problem
345
+ sine difference and cosine difference values are first computed and then
346
+ the atan2 function is used to determine angular distance.
347
+ """
348
+ ds = sintheta * math.cos(angl) - costheta * math.sin(angl) # Difference in sine.
349
+ dc = costheta * math.cos(angl) + sintheta * math.sin(angl) # Difference in cosine.
350
+ dtheta = np.abs(np.arctan2(ds,dc)) # Absolute angular distance.
351
+
352
+ # Scale theta so that cosine spread function has the right wavelength
353
+ # and clamp to pi
354
+ dtheta = np.minimum(dtheta*NumberAngles/2, math.pi)
355
+
356
+ #spread = np.exp((-dtheta**2) / (2 * thetaSigma**2)); # Calculate the angular
357
+ # filter component.
358
+ # The spread function is cos(dtheta) between -pi and pi. We add 1,
359
+ # and then divide by 2 so that the value ranges 0-1
360
+ spread = (np.cos(dtheta)+1)/2
361
+
362
+ sumE_ThisOrient = np.zeros((nrows,ncols)) # Initialize accumulator matrices.
363
+ sumO_ThisOrient = np.zeros((nrows,ncols))
364
+ sumAn_ThisOrient = np.zeros((nrows,ncols))
365
+ Energy = np.zeros((nrows,ncols))
366
+
367
+ maxAn = []
368
+ for s in np.arange(NumberScales):
369
+ filter = annularBandpassFilters[:,:,s] * spread # Multiply radial and angular
370
+ # components to get the filter.
371
+
372
+ criticalfiltershift = np.fft.ifftshift( filter )
373
+ criticalfiltershift_cv = np.empty((nrows, ncols, 2))
374
+ for ip in range(2):
375
+ criticalfiltershift_cv[:,:,ip] = criticalfiltershift
376
+
377
+ # Convolve image with even and odd filters returning the result in EO
378
+ MatrixEO = cv2.idft( criticalfiltershift_cv * f_cv )
379
+ EO[:,:,s,o] = MatrixEO[:,:,1] + 1j*MatrixEO[:,:,0]
380
+
381
+ An = cv2.magnitude(MatrixEO[:,:,0], MatrixEO[:,:,1]) # Amplitude of even & odd filter response.
382
+
383
+ sumAn_ThisOrient = sumAn_ThisOrient + An # Sum of amplitude responses.
384
+ sumE_ThisOrient = sumE_ThisOrient + MatrixEO[:,:,1] # Sum of even filter convolution results.
385
+ sumO_ThisOrient = sumO_ThisOrient + MatrixEO[:,:,0] # Sum of odd filter convolution results.
386
+
387
+ # At the smallest scale estimate noise characteristics from the
388
+ # distribution of the filter amplitude responses stored in sumAn.
389
+ # tau is the Rayleigh parameter that is used to describe the
390
+ # distribution.
391
+ if s == 0:
392
+ # if noiseMethod == -1 # Use median to estimate noise statistics
393
+ tau = np.median(sumAn_ThisOrient) / math.sqrt(math.log(4))
394
+ # elseif noiseMethod == -2 # Use mode to estimate noise statistics
395
+ # tau = rayleighmode(sumAn_ThisOrient(:));
396
+ # end
397
+ maxAn = An
398
+ else:
399
+ # Record maximum amplitude of components across scales. This is needed
400
+ # to determine the frequency spread weighting.
401
+ maxAn = np.maximum(maxAn,An)
402
+ # end
403
+
404
+ # complete scale loop
405
+ # next section within mother (orientation) loop
406
+ #
407
+ # Accumulate total 3D energy vector data, this will be used to
408
+ # determine overall feature orientation and feature phase/type
409
+ EnergyV[:,:,0] = EnergyV[:,:,0] + sumE_ThisOrient
410
+ EnergyV[:,:,1] = EnergyV[:,:,1] + math.cos(angl)*sumO_ThisOrient
411
+ EnergyV[:,:,2] = EnergyV[:,:,2] + math.sin(angl)*sumO_ThisOrient
412
+
413
+ # Get weighted mean filter response vector, this gives the weighted mean
414
+ # phase angle.
415
+ XEnergy = np.sqrt(sumE_ThisOrient**2 + sumO_ThisOrient**2) + epsilon
416
+ MeanE = sumE_ThisOrient / XEnergy
417
+ MeanO = sumO_ThisOrient / XEnergy
418
+
419
+ # Now calculate An(cos(phase_deviation) - | sin(phase_deviation)) | by
420
+ # using dot and cross products between the weighted mean filter response
421
+ # vector and the individual filter response vectors at each scale. This
422
+ # quantity is phase congruency multiplied by An, which we call energy.
423
+
424
+ for s in np.arange(NumberScales):
425
+ # Extract even and odd convolution results.
426
+ E = EO[:,:,s,o].real
427
+ O = EO[:,:,s,o].imag
428
+
429
+ Energy = Energy + E*MeanE + O*MeanO - np.abs(E*MeanO - O*MeanE)
430
+
431
+ ## Automatically determine noise threshold
432
+ #
433
+ # Assuming the noise is Gaussian the response of the filters to noise will
434
+ # form Rayleigh distribution. We use the filter responses at the smallest
435
+ # scale as a guide to the underlying noise level because the smallest scale
436
+ # filters spend most of their time responding to noise, and only
437
+ # occasionally responding to features. Either the median, or the mode, of
438
+ # the distribution of filter responses can be used as a robust statistic to
439
+ # estimate the distribution mean and standard deviation as these are related
440
+ # to the median or mode by fixed constants. The response of the larger
441
+ # scale filters to noise can then be estimated from the smallest scale
442
+ # filter response according to their relative bandwidths.
443
+ #
444
+ # This code assumes that the expected reponse to noise on the phase congruency
445
+ # calculation is simply the sum of the expected noise responses of each of
446
+ # the filters. This is a simplistic overestimate, however these two
447
+ # quantities should be related by some constant that will depend on the
448
+ # filter bank being used. Appropriate tuning of the parameter 'k' will
449
+ # allow you to produce the desired output.
450
+
451
+ # if noiseMethod >= 0: % We are using a fixed noise threshold
452
+ # T = noiseMethod; % use supplied noiseMethod value as the threshold
453
+ # else:
454
+ # Estimate the effect of noise on the sum of the filter responses as
455
+ # the sum of estimated individual responses (this is a simplistic
456
+ # overestimate). As the estimated noise response at succesive scales
457
+ # is scaled inversely proportional to bandwidth we have a simple
458
+ # geometric sum.
459
+ totalTau = tau * (1 - (1/mult)**NumberScales)/(1-(1/mult))
460
+
461
+ # Calculate mean and std dev from tau using fixed relationship
462
+ # between these parameters and tau. See
463
+ # http://mathworld.wolfram.com/RayleighDistribution.html
464
+ EstNoiseEnergyMean = totalTau*math.sqrt(math.pi/2) # Expected mean and std
465
+ EstNoiseEnergySigma = totalTau*math.sqrt((4-math.pi)/2) # values of noise energy
466
+
467
+ T = EstNoiseEnergyMean + k*EstNoiseEnergySigma # Noise threshold
468
+ # end
469
+
470
+ # Apply noise threshold, this is effectively wavelet denoising via
471
+ # soft thresholding.
472
+ Energy = np.maximum(Energy - T, 0)
473
+
474
+ # Form weighting that penalizes frequency distributions that are
475
+ # particularly narrow. Calculate fractional 'width' of the frequencies
476
+ # present by taking the sum of the filter response amplitudes and dividing
477
+ # by the maximum amplitude at each point on the image. If
478
+ # there is only one non-zero component width takes on a value of 0, if
479
+ # all components are equal width is 1.
480
+ width = (sumAn_ThisOrient/(maxAn + epsilon) - 1) / (NumberScales-1)
481
+
482
+ # Now calculate the sigmoidal weighting function for this orientation.
483
+ weight = 1.0 / (1 + np.exp( (cutOff - width)*g))
484
+
485
+ # Apply weighting to energy and then calculate phase congruency
486
+ PC[:,:,o] = weight*Energy/sumAn_ThisOrient # Phase congruency for this orientatio
487
+
488
+ pcSum = pcSum + PC[:,:,o]
489
+
490
+ # Build up covariance data for every point
491
+ covx = PC[:,:,o]*math.cos(angl)
492
+ covy = PC[:,:,o]*math.sin(angl)
493
+ covx2 = covx2 + covx**2
494
+ covy2 = covy2 + covy**2
495
+ covxy = covxy + covx*covy
496
+ # above everyting within orientaiton loop
497
+ # ------------------------------------------------------------------------
498
+ # current work
499
+ # Edge and Corner calculations
500
+ # The following is optimised code to calculate principal vector
501
+ # of the phase congruency covariance data and to calculate
502
+ # the minimumum and maximum moments - these correspond to
503
+ # the singular values.
504
+
505
+ # First normalise covariance values by the number of orientations/2
506
+ covx2 = covx2/(NumberAngles/2)
507
+ covy2 = covy2/(NumberAngles/2)
508
+ covxy = 4*covxy/NumberAngles # This gives us 2*covxy/(norient/2)
509
+ denom = np.sqrt(covxy**2 + (covx2-covy2)**2)+epsilon
510
+ M = (covy2+covx2 + denom)/2 # Maximum moment
511
+ m = (covy2+covx2 - denom)/2 # ... and minimum moment
512
+
513
+ # Orientation and feature phase/type computation
514
+ ORM = np.arctan2(EnergyV[:,:,2], EnergyV[:,:,1])
515
+ ORM[ORM<0] = ORM[ORM<0]+math.pi # Wrap angles -pi..0 to 0..pi
516
+ ORM = np.round(ORM*180/math.pi) # Orientation in degrees between 0 and 180
517
+
518
+ OddV = np.sqrt(EnergyV[:,:,1]**2 + EnergyV[:,:,2]**2)
519
+ featType = np.arctan2(EnergyV[:,:,0], OddV) # Feature phase pi/2 <-> white line,
520
+ # 0 <-> step, -pi/2 <-> black line
521
+ # ------------------------------------------------------------------------
522
+
523
+ #return M, m, ORM, EO, T, annularBandpassFilters, lowpassbutterworth
524
+ return M, m, EO