alayaflow 0.1.0__py3-none-any.whl → 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
alayaflow/__init__.py CHANGED
@@ -1,5 +1,5 @@
1
1
  """AlayaFlow - A desktop platform for executing LangGraph workflows with multiple executors."""
2
2
 
3
3
 
4
- __version__ = "0.1.0"
4
+ __version__ = "0.1.1"
5
5
 
alayaflow/api/__init__.py CHANGED
@@ -1,5 +1,8 @@
1
1
  from .api_singleton import APISingleton as Flow
2
+ from alayaflow.component.model import ModelProfile, GenerationConfig
2
3
 
3
4
  __all__ = [
4
5
  "Flow",
6
+ "ModelProfile",
7
+ "GenerationConfig",
5
8
  ]
@@ -4,6 +4,7 @@ from alayaflow.utils.singleton import SingletonMeta
4
4
  from alayaflow.workflow import WorkflowManager
5
5
  from alayaflow.execution import ExecutorManager, ExecutorType
6
6
  from alayaflow.common.config import settings
7
+ from alayaflow.component.model import ModelManager, ModelProfile
7
8
 
8
9
 
9
10
  class APISingleton(metaclass=SingletonMeta):
@@ -12,6 +13,7 @@ class APISingleton(metaclass=SingletonMeta):
12
13
  self.executor_manager = ExecutorManager(
13
14
  workflow_manager=self.workflow_manager
14
15
  )
16
+ self.model_manager = ModelManager()
15
17
  self._inited = False
16
18
 
17
19
  def is_inited(self) -> bool:
@@ -29,9 +31,16 @@ class APISingleton(metaclass=SingletonMeta):
29
31
  settings.langfuse_public_key = config.get("langfuse_public_key", settings.langfuse_public_key)
30
32
  settings.langfuse_secret_key = config.get("langfuse_secret_key", settings.langfuse_secret_key)
31
33
  settings.langfuse_url = config.get("langfuse_url", settings.langfuse_url)
34
+
32
35
  self._inited = True
33
36
  return self
34
37
 
38
+ def register_models(self, model_profiles: List[dict | ModelProfile]) -> None:
39
+ self._check_init()
40
+ profiles = [ModelProfile(**profile) if isinstance(profile, dict) else profile for profile in model_profiles]
41
+ for profile in profiles:
42
+ self.model_manager.register_profile(profile)
43
+
35
44
  def list_loaded_workflow_ids(self) -> List[str]:
36
45
  """列举已加载的工作流"""
37
46
  self._check_init()
@@ -66,16 +75,17 @@ class APISingleton(metaclass=SingletonMeta):
66
75
  self,
67
76
  workflow_id: str,
68
77
  version: str,
69
- input_data: dict,
70
- user_config: dict,
78
+ inputs: dict,
79
+ context: dict,
71
80
  executor_type: str | ExecutorType = ExecutorType.NAIVE
72
81
  ) -> Generator[dict, None, None]:
73
82
  """执行工作流"""
74
83
  self._check_init()
75
- yield from self.executor_manager.exec_workflow(
84
+ for event in self.executor_manager.exec_workflow(
76
85
  workflow_id=workflow_id,
77
86
  version=version,
78
- input_data=input_data,
79
- user_config=user_config,
87
+ inputs=inputs,
88
+ context=context,
80
89
  executor_type=executor_type
81
- )
90
+ ):
91
+ yield event
@@ -1,13 +1,12 @@
1
- import requests
1
+ import os
2
2
 
3
3
  from langchain_openai import ChatOpenAI
4
4
 
5
- from alayaflow.common.config import settings
6
5
 
7
6
  def mk_chat_model_deepseek():
8
7
  return ChatOpenAI(
9
8
  model="deepseek-chat",
10
- api_key="sk-4fe7cd96f5e948c79168025372e2327c",
9
+ api_key=os.getenv("DEEPSEEK_API_KEY"),
11
10
  base_url="https://api.deepseek.com/v1",
12
11
  )
13
12
 
@@ -2,13 +2,13 @@ from __future__ import annotations
2
2
 
3
3
  import json
4
4
  from enum import IntEnum
5
- from functools import cached_property
6
5
  from typing import Any, Dict, Optional
7
6
 
8
- from langchain_openai import ChatOpenAI
9
7
  from langchain_core.messages import SystemMessage, HumanMessage, AIMessage, BaseMessage
10
8
  from langchain_core.runnables import Runnable
11
9
 
10
+ from alayaflow.component.model import ModelManager
11
+
12
12
 
13
13
  class ResponseFormat(IntEnum):
14
14
  TEXT = 0
@@ -19,7 +19,7 @@ class LLMComponent:
19
19
  self,
20
20
  *,
21
21
  # ===== 模型 & prompt =====
22
- model_name: str,
22
+ model_id: str,
23
23
  system_prompt: str,
24
24
  prompt: str,
25
25
 
@@ -35,7 +35,7 @@ class LLMComponent:
35
35
  retry_json_once: bool = True,
36
36
  ):
37
37
  # —— 配置即成员变量(= Spec)——
38
- self.model_name = model_name
38
+ self.model_id = model_id
39
39
  self.system_prompt = system_prompt
40
40
  self.prompt = prompt
41
41
 
@@ -47,14 +47,8 @@ class LLMComponent:
47
47
  self.json_schema = json_schema
48
48
  self.outputs = outputs or {}
49
49
  self.retry_json_once = retry_json_once
50
-
51
-
52
- @cached_property
53
- def llm(self) -> Runnable:
54
- return ChatOpenAI(model=self.model_name, api_key="sk-4fe7cd96f5e948c79168025372e2327c", base_url="https://api.deepseek.com/v1")
55
50
 
56
51
  def _get_llm(self) -> Runnable:
57
- llm = self.llm
58
52
  bind_kwargs: Dict[str, Any] = {}
59
53
 
60
54
  if self.temperature is not None:
@@ -64,11 +58,8 @@ class LLMComponent:
64
58
  if self.max_tokens is not None:
65
59
  bind_kwargs["max_tokens"] = self.max_tokens
66
60
 
67
- if bind_kwargs:
68
- try:
69
- llm = llm.bind(**bind_kwargs)
70
- except Exception:
71
- pass
61
+ model_manager = ModelManager()
62
+ llm = model_manager.get_model(self.model_id, runtime_config=bind_kwargs)
72
63
 
73
64
  return llm
74
65
 
@@ -0,0 +1,8 @@
1
+ from .schemas import ModelProfile, GenerationConfig
2
+ from .model_manager import ModelManager
3
+
4
+ __all__ = [
5
+ "ModelProfile",
6
+ "GenerationConfig",
7
+ "ModelManager",
8
+ ]
@@ -0,0 +1,60 @@
1
+ from typing import Dict, Optional, Any, Union
2
+ from langchain_core.language_models import BaseChatModel
3
+ from langchain_openai import ChatOpenAI
4
+
5
+ from alayaflow.utils.singleton import SingletonMeta
6
+ from alayaflow.component.model.schemas import ModelProfile, GenerationConfig
7
+
8
+
9
+ class ModelManager(metaclass=SingletonMeta):
10
+ def __init__(self):
11
+ self._profiles: Dict[str, ModelProfile] = {}
12
+
13
+ def register_profile(self, profile: ModelProfile, override: bool = False) -> None:
14
+ if profile.model_id in self._profiles and not override:
15
+ raise ValueError(f"Profile with model ID {profile.model_id} already exists.")
16
+ self._profiles[profile.model_id] = profile
17
+
18
+ def get_model(
19
+ self,
20
+ model_id: str,
21
+ runtime_config: Optional[Union[GenerationConfig, Dict[str, Any]]] = None
22
+ ) -> BaseChatModel:
23
+ if model_id not in self._profiles:
24
+ raise ValueError(f"Model ID '{model_id}' not found. Please register it first.")
25
+
26
+ profile = self._profiles[model_id]
27
+
28
+ # Merge config
29
+
30
+ final_params = profile.default_config.model_dump(exclude={"extra_kwargs"})
31
+ extra_kwargs = profile.default_config.extra_kwargs.copy()
32
+
33
+ if runtime_config:
34
+ if isinstance(runtime_config, GenerationConfig):
35
+ override_dict = runtime_config.model_dump(exclude_unset=True, exclude={"extra_kwargs"})
36
+ final_params.update(override_dict)
37
+ extra_kwargs.update(runtime_config.extra_kwargs)
38
+ elif isinstance(runtime_config, dict):
39
+ final_params.update(runtime_config)
40
+
41
+ # Instantiate model
42
+
43
+ if profile.model_type == "OpenAI":
44
+ return ChatOpenAI(
45
+ model=profile.model_name,
46
+ openai_api_key=profile.api_key.get_secret_value(),
47
+ openai_api_base=profile.base_url,
48
+ # Generation parameters
49
+ temperature=final_params.get("temperature"),
50
+ max_tokens=final_params.get("max_tokens"),
51
+ top_p=final_params.get("top_p"),
52
+ frequency_penalty=final_params.get("frequency_penalty"),
53
+ presence_penalty=final_params.get("presence_penalty"),
54
+ model_kwargs=extra_kwargs
55
+ )
56
+ else:
57
+ raise ValueError(f"Unsupported model type: {profile.model_type}")
58
+
59
+ def get_profile(self, model_id: str) -> Optional[ModelProfile]:
60
+ return self._profiles.get(model_id)
@@ -0,0 +1,33 @@
1
+ from typing import Optional
2
+ from pydantic import BaseModel, Field, ConfigDict, SecretStr
3
+
4
+
5
+ class GenerationConfig(BaseModel):
6
+ model_config = ConfigDict(populate_by_name=True)
7
+
8
+ temperature: float = Field(default=0.7, ge=0.0, le=2.0, description="采样温度")
9
+ max_tokens: Optional[int] = Field(default=None, description="最大生成 Token 数")
10
+ top_p: float = Field(default=1.0, description="核采样阈值")
11
+ frequency_penalty: float = Field(default=0.0, ge=-2.0, le=2.0)
12
+ presence_penalty: float = Field(default=0.0, ge=-2.0, le=2.0)
13
+
14
+ extra_kwargs: dict = Field(default_factory=dict, description="其他参数")
15
+
16
+
17
+ class ModelProfile(BaseModel):
18
+ model_config = ConfigDict(use_enum_values=True)
19
+
20
+ # Local used fields
21
+ name: str = Field(..., description="模型名称")
22
+ model_id: str = Field(..., description="系统内部使用的唯一 ID")
23
+ model_type: str = Field(default="OpenAI", description="模型类型工厂标识")
24
+ provider_name: str = Field(default="Unknown", description="提供商名称")
25
+
26
+ # Connection Credentials
27
+ model_name: str = Field(..., description="厂商的模型名称")
28
+ base_url: str = Field(..., description="API Base URL")
29
+ api_key: SecretStr = Field(default=SecretStr(""), description="API Key")
30
+
31
+ # Default Generation Config
32
+ default_config: GenerationConfig = Field(default_factory=GenerationConfig)
33
+
@@ -8,10 +8,4 @@ class RetrieveComponent:
8
8
 
9
9
  def __call__(self, query: str, collection_name: str, limit: int = 3) -> list[str]:
10
10
  result = self.client.vdb_query([query], limit, collection_name)
11
- return result.get('documents', [[]])[0] if result.get('documents') else []
12
-
13
- if __name__ == "__main__":
14
- client = HttpAlayaMemClient("http://10.16.70.46:5555")
15
- res = client.vdb_query(messages="姓名", limit=5, collection_name="file_watcher_collection")
16
-
17
- print(res)
11
+ return result.get('documents', [[]])[0] if result.get('documents') else []
@@ -111,16 +111,16 @@ def get_config_schema() -> Type[TypedDict]:
111
111
  return WFConfig
112
112
 
113
113
 
114
- graph = create_graph(search_api_key="xxx") # 2
115
- result = graph.invoke({
116
- "query": "唐博", # 3
117
- }, config={
118
- "configurable": WFConfig(
119
- search_api_key="abc",
120
- search_url="https://xxxx",
121
- )
122
- })
123
-
124
-
125
- print(f"result: {result}")
114
+ if __name__ == "__main__":
115
+ # Example usage
116
+ graph = create_graph(search_api_key="your-api-key-here")
117
+ result = graph.invoke({
118
+ "query": "search query",
119
+ }, config={
120
+ "configurable": WFConfig(
121
+ search_api_key="your-api-key-here",
122
+ search_url="https://your-search-api-url",
123
+ )
124
+ })
125
+ print(f"result: {result}")
126
126
 
@@ -1,4 +1,4 @@
1
- from typing import Generator, Dict, Optional
1
+ from typing import Dict, Generator, Any
2
2
  from enum import Enum
3
3
 
4
4
  from alayaflow.execution.executors.base_executor import BaseExecutor
@@ -43,10 +43,10 @@ class ExecutorManager:
43
43
  self,
44
44
  workflow_id: str,
45
45
  version: str,
46
- input_data: dict,
47
- user_config: dict,
46
+ inputs: dict,
47
+ context: dict,
48
48
  executor_type: ExecutorType | str = ExecutorType.NAIVE
49
- ) -> Generator[Dict, None, None]:
49
+ ) -> Generator[Dict[str, Any], None, None]:
50
50
  if isinstance(executor_type, str):
51
51
  executor_type = ExecutorType(executor_type)
52
52
  if executor_type not in self._executor_map:
@@ -55,5 +55,5 @@ class ExecutorManager:
55
55
  f"Supported kinds: {list(self._executor_map.keys())}"
56
56
  )
57
57
  executor = self._executor_map[executor_type]
58
- yield from executor.execute_stream(workflow_id, version, input_data, user_config)
58
+ yield from executor.execute_stream(workflow_id, version, inputs, context)
59
59
 
@@ -4,6 +4,6 @@ from typing import Generator, Dict
4
4
 
5
5
  class BaseExecutor(ABC):
6
6
  @abstractmethod
7
- def execute_stream(self, workflow_id: str, version: str, input_data: dict, config: dict) -> Generator[Dict, None, None]:
7
+ def execute_stream(self, workflow_id: str, version: str, inputs: dict, context: dict) -> Generator[Dict, None, None]:
8
8
  pass
9
9
 
@@ -36,8 +36,8 @@ class NaiveExecutor(BaseExecutor):
36
36
  self,
37
37
  workflow_id: str,
38
38
  version: str,
39
- input_data: dict,
40
- user_config: dict
39
+ inputs: dict,
40
+ context: dict
41
41
  ) -> Generator[Dict, None, None]:
42
42
 
43
43
  # 1) resolve workflow
@@ -47,7 +47,7 @@ class NaiveExecutor(BaseExecutor):
47
47
  yield {"error": str(e), "workflow_id": workflow_id, "version": version}
48
48
  return
49
49
 
50
- print(f"NaiveExecutor execute_stream: {workflow_id} {version} {input_data} {user_config}")
50
+ print(f"NaiveExecutor execute_stream: {workflow_id} {version} {inputs} {context}")
51
51
 
52
52
  # TODO: Support langflow workflow
53
53
  # Only support StateGraphRunnableWorkflow now.
@@ -60,7 +60,7 @@ class NaiveExecutor(BaseExecutor):
60
60
 
61
61
  def run_async_producer():
62
62
  try:
63
- asyncio.run(self._produce_events_to_queue(runnable, input_data, user_config, event_queue))
63
+ asyncio.run(self._produce_events_to_queue(runnable, inputs, context, event_queue))
64
64
  except Exception as e:
65
65
  event_queue.put({"error": str(e), "traceback": traceback.format_exc(), "workflow_id": workflow_id, "version": version})
66
66
  finally:
@@ -95,20 +95,18 @@ class NaiveExecutor(BaseExecutor):
95
95
  yield self._serialize_event(item)
96
96
 
97
97
 
98
- async def _produce_events_to_queue(self, runnable: BaseRunnableWorkflow, input_data: dict, user_config: dict, event_queue: queue.Queue):
98
+ async def _produce_events_to_queue(self, runnable: BaseRunnableWorkflow, inputs: dict, context: dict, event_queue: queue.Queue):
99
99
  try:
100
100
  # Setup tracing
101
101
  tracing = get_tracing(settings)
102
102
  langfuse_cb = tracing.build_callback()
103
-
104
- # Merge user_config and tracing config
105
- merged_config = {
106
- "configurable": user_config
107
- }
103
+
108
104
  if langfuse_cb:
109
- merged_config.update(tracing.build_config(input_data, runnable.info, langfuse_cb))
105
+ config = tracing.build_config(inputs, runnable.info, langfuse_cb)
106
+ else:
107
+ config = {}
110
108
 
111
- async for chunk in runnable.astream_events(input_data, merged_config):
109
+ async for chunk in runnable.stream_events_async(inputs, context, config):
112
110
  event_queue.put(chunk) # Put each event immediately (real-time)
113
111
  except Exception as e:
114
112
  # If execution fails, put error event in queue
@@ -28,8 +28,8 @@ class UvExecutor(BaseExecutor):
28
28
  self,
29
29
  workflow_id: str,
30
30
  version: str,
31
- input_data: dict,
32
- user_config: dict,
31
+ inputs: dict,
32
+ context: dict,
33
33
  ) -> Generator[Dict, None, None]:
34
34
  raise NotImplementedError("uv executor not supported yet")
35
35
 
@@ -7,6 +7,6 @@ class WorkerExecutor(BaseExecutor):
7
7
  def __init__(self, workflow_manager: WorkflowManager):
8
8
  self.workflow_manager = workflow_manager
9
9
 
10
- def execute_stream(self, workflow_id: str, version: str, input_data: dict, user_config: dict) -> Generator[Dict, None, None]:
10
+ def execute_stream(self, workflow_id: str, version: str, inputs: dict, context: dict) -> Generator[Dict, None, None]:
11
11
  raise NotImplementedError("worker executor not supported yet")
12
12
 
@@ -1,5 +1,7 @@
1
1
  from abc import ABC
2
- from typing import Dict, Generator
2
+ from typing import Dict, Any, AsyncGenerator
3
+
4
+ from langgraph.graph.state import RunnableConfig
3
5
 
4
6
  from alayaflow.workflow.workflow_info import WorkflowInfo
5
7
 
@@ -11,9 +13,9 @@ class BaseRunnableWorkflow(ABC):
11
13
  def info(self) -> WorkflowInfo:
12
14
  return self._info
13
15
 
14
- def invoke(self, input_data: dict, user_config: dict) -> dict:
15
- raise NotImplementedError("invoke method must be implemented in derived classes")
16
-
17
- def astream_events(self, input_data: dict, user_config: dict) -> Generator[Dict, None, None]:
16
+ def invoke(self, inputs: dict, context: dict, config: RunnableConfig) -> dict:
18
17
  raise NotImplementedError("invoke method must be implemented in derived classes")
19
18
 
19
+ async def stream_events_async(self, inputs: dict, context: dict, config: RunnableConfig) -> AsyncGenerator[Dict[str, Any], None]:
20
+ raise NotImplementedError("stream_events_async method must be implemented in derived classes")
21
+
@@ -1,7 +1,6 @@
1
- from functools import cached_property
2
- from typing import Dict, Generator
1
+ from typing import Dict, Any, AsyncGenerator
3
2
 
4
- from langgraph.graph.state import CompiledStateGraph
3
+ from langgraph.graph.state import CompiledStateGraph, RunnableConfig
5
4
 
6
5
  from alayaflow.workflow.runnable.base_runnable_workflow import BaseRunnableWorkflow
7
6
  from alayaflow.workflow.workflow_info import WorkflowInfo
@@ -11,13 +10,20 @@ class StateGraphRunnableWorkflow(BaseRunnableWorkflow):
11
10
  super().__init__(info)
12
11
  self._graph = graph
13
12
 
14
- def invoke(self, input_data: dict, user_config: dict) -> dict:
15
- return self._graph.invoke(input_data, {
16
- "configurable": user_config
17
- })
13
+ def invoke(self, inputs: dict, context: dict, config: RunnableConfig) -> dict:
14
+ return self._graph.invoke(inputs, config, context=context)
18
15
 
19
- def astream_events(self, input_data: dict, user_config: dict) -> Generator[Dict, None, None]:
20
- return self._graph.astream_events(input_data, {
21
- "configurable": user_config
22
- })
16
+ async def stream_events_async(
17
+ self,
18
+ inputs: dict,
19
+ context: dict,
20
+ config: RunnableConfig
21
+ ) -> AsyncGenerator[Dict[str, Any], None]:
22
+ async for event in self._graph.astream_events(
23
+ inputs,
24
+ config,
25
+ version="v2",
26
+ context=context
27
+ ):
28
+ yield event
23
29
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: alayaflow
3
- Version: 0.1.0
3
+ Version: 0.1.1
4
4
  Summary: A desktop platform for executing LangGraph workflows with uv-managed sandboxes.
5
5
  Author-email: alayaflow group <dev@example.com>
6
6
  License: MIT
@@ -1,37 +1,40 @@
1
- alayaflow/__init__.py,sha256=Twp-G7fdsTkTspyDl9VKx9yieHHF9b8BalhEtnqNKWs,121
2
- alayaflow/api/__init__.py,sha256=Y33eVzsA9v20VLpRK-v3DZOF-DsjfExag6C1taK2WRc,74
3
- alayaflow/api/api_singleton.py,sha256=5ffWXL4umEOD3VNBOL0X2c38-PjOEEeQkK5yWbTI1BU,10721
1
+ alayaflow/__init__.py,sha256=bySS__ThcDNVwLrPl9W0L9QXcNaJJVIJ-7XLW-kTh6I,121
2
+ alayaflow/api/__init__.py,sha256=y6nWgqC3jhOffTqixKlv3OU_NEAFxbzHSvwJrE5bHNs,187
3
+ alayaflow/api/api_singleton.py,sha256=vQA17a29e62ezdPPAuUYnRRD0rAyjVVAALxBUTgYrXI,11159
4
4
  alayaflow/clients/alayamem/base_client.py,sha256=pyU2WF2jqNEgBEe8JOZSg13gHQ2pJcBgJ_6YP-5mWkw,540
5
5
  alayaflow/clients/alayamem/http_client.py,sha256=n0hAh_ddzEwFfNMsdw5s2dqvuMsyZNGOT-RcHsIXuEw,2171
6
6
  alayaflow/common/config.py,sha256=pi4zH_Pi0u6Fb8ZIs4u3qFOUOUeqxxUqqksoUp-hynM,3806
7
7
  alayaflow/component/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- alayaflow/component/chat_model.py,sha256=aXBRDdtp0HOHlonwfXTzOIcjepjd5zBh8znlJpK9oVU,461
8
+ alayaflow/component/chat_model.py,sha256=GH2xcOhtvh3YqN2LMITmu1j-0_-t9d4hiMuRFctF2og,402
9
9
  alayaflow/component/intent_classifier.py,sha256=5KH52LIqIDpw2hlX4gi3Ff7SFVhenCFdFV-fXag0sDM,3765
10
- alayaflow/component/llm_node.py,sha256=URRqSj-snRjbPk-7S7uEd8DJk3L2srYe8Qslu8T6u28,3773
10
+ alayaflow/component/llm_node.py,sha256=rvj1f8gqKmdGZkM8Mo8z1PDafdpxhn52nT8L19ZxmaI,3510
11
11
  alayaflow/component/memory.py,sha256=Xl5ABW89dswC9oMwkeS6NFAZniKFw8BuGuLAAHddRRA,1448
12
- alayaflow/component/retrieve_node.py,sha256=vJqK-5KC-w9ZE_cxA1hHDTWuA-vbPrvxJkionKfniYE,652
13
- alayaflow/component/web_search.py,sha256=PoUZV_H4vTDSwTqQarbmukQzpyUcBTatJxLZso-0Kok,3282
12
+ alayaflow/component/retrieve_node.py,sha256=mPzAiAXMCGWFYLnmU7kHuf9ejUhzpE_QSHJwc7LOlAU,451
13
+ alayaflow/component/web_search.py,sha256=HZp9j0X0YMBC_mhGqzi0g0pbvmlWiLiNdRxzbEFzl6s,3403
14
14
  alayaflow/component/langflow/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  alayaflow/component/langflow/intent_classifier.py,sha256=0xqq2wpVVnEErgjOenKYHMsXMkCrHOlCpEZRJqw3PoM,2822
16
+ alayaflow/component/model/__init__.py,sha256=v63w90tlcAIEy6cN0wTvnvx3afqwNYSn_fWI2U5fSwY,171
17
+ alayaflow/component/model/model_manager.py,sha256=VTqkCLXxhGqSXi7GcBxaRHw3wTTfEk1rP31UMYvPW7Y,2503
18
+ alayaflow/component/model/schemas.py,sha256=YADx6OGltGMzpUSNEYcUbGOrrJvtV6dFdAub3FfAw9w,1404
16
19
  alayaflow/execution/__init__.py,sha256=9gj_xgIJxlq3EuwsDMb5X05yP70HoD0_T25Khd495Xc,117
17
20
  alayaflow/execution/env_manager.py,sha256=fQm8RO4HwEIfbqdwA4Qc76TgrJiBj39NCaJuy7XhaAk,16672
18
- alayaflow/execution/executor_manager.py,sha256=EwSlU6WnsRkhO0z2cxESwtsQnaIOjfmDazVyUob6DVA,2158
21
+ alayaflow/execution/executor_manager.py,sha256=_t_tr58yUsMbIW_xfevUXv8ba-7lGbBJFhjPsQ-ricM,2147
19
22
  alayaflow/execution/langfuse_tracing.py,sha256=BuRMHDH7Gub7CMkJM5ECLzs4vjy3VqAgzh2INE9zbOI,3882
20
23
  alayaflow/execution/workflow_runner.py,sha256=XEX4Em0Hv1sI8Im0lREjXq3fN1jYVwFnMMW3pphIAZk,3243
21
24
  alayaflow/execution/executors/__init__.py,sha256=RYwYg880smrZ8EX5iwVsJe0Rtgo8-tF82pY5jA3926g,412
22
- alayaflow/execution/executors/base_executor.py,sha256=yMP2Fw2uf6TCOj9axQtFApIZCSw94QOXuxvEpzy9UW0,257
23
- alayaflow/execution/executors/naive_executor.py,sha256=lLqjsHZBbXGUO2HMvr_0hYD9tgUKMWep7v0QBQUF8Lk,4892
24
- alayaflow/execution/executors/uv_executor.py,sha256=XCqECDdieBlZ36CcMSGVyml11Oi9p4HnJLhyapBDlfQ,4630
25
- alayaflow/execution/executors/worker_executor.py,sha256=o_O8RjguTifGye4avuBkhKGZcrB_xAAbVuMNve8isfY,521
25
+ alayaflow/execution/executors/base_executor.py,sha256=mtBJM9bo_VLWAG9nnuq9xCjlD83bsvk1NPY5-aeD8TQ,254
26
+ alayaflow/execution/executors/naive_executor.py,sha256=ICXslitv-9ONvJ3kLC-3-vTTBg1dWQlp0evCtxMO_MI,4749
27
+ alayaflow/execution/executors/uv_executor.py,sha256=IIwP4j-BuDmfNoizuLsHcW0hRmzsLArWRVtVToX3_dM,4622
28
+ alayaflow/execution/executors/worker_executor.py,sha256=niyTqsxB1iHvkuYb3xd35UwnsQllKul-Z6ikenJZ9Hk,513
26
29
  alayaflow/utils/singleton.py,sha256=5crFVfOkr9pU_j83ywqAMaL07BvVN5Ke_VGjT9qyUN0,432
27
30
  alayaflow/workflow/__init__.py,sha256=9IqNPAtWt7DzASmxg48iTRu-STymvUBd8_7-JsR2pgk,250
28
31
  alayaflow/workflow/workflow_info.py,sha256=rnpAwYE4trhiv7o8LPmQpyQ3CDFfNN2yk1CLKRnWz0w,1259
29
32
  alayaflow/workflow/workflow_loader.py,sha256=fJi7i714JRY5bESahLxcTNei_f-YEL5fnZtgHG7ChG4,6623
30
33
  alayaflow/workflow/workflow_manager.py,sha256=bfPGP1UWom4B2ZfuWyyKI0tfFxyn4j2_wBMECc8-Fu8,11536
31
34
  alayaflow/workflow/runnable/__init__.py,sha256=sNybFeRxLwbDLHiZxlVFXsn3w2n1Jn0Mtun2W6fvjFU,257
32
- alayaflow/workflow/runnable/base_runnable_workflow.py,sha256=gN8d2pUijugu1JZr3RrHS95ziu8Of401IQQtmTM6_lc,655
33
- alayaflow/workflow/runnable/state_graph_runnable_workflow.py,sha256=K2ahaGN9ubr9G2wDeBTQR_0sYo03SWhQbGVUjIb7w0U,843
34
- alayaflow-0.1.0.dist-info/METADATA,sha256=ribiSb6KxPEN_sDGa9Yd4v8w21jFzKegHvkD0448zsw,1925
35
- alayaflow-0.1.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
36
- alayaflow-0.1.0.dist-info/licenses/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
37
- alayaflow-0.1.0.dist-info/RECORD,,
35
+ alayaflow/workflow/runnable/base_runnable_workflow.py,sha256=ap53fOeC5iUh2zm45LpEDjLJ4uqfO2C6FCN6WGm13kw,776
36
+ alayaflow/workflow/runnable/state_graph_runnable_workflow.py,sha256=PMSHks46kmNM2uDVmf5TNcLW7AR6dgfJFohxs8Dcfm4,972
37
+ alayaflow-0.1.1.dist-info/METADATA,sha256=w0pT-euiwT0DNwZp5-Yly3hb7dGTTWBNtQ7takFhh7s,1925
38
+ alayaflow-0.1.1.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
39
+ alayaflow-0.1.1.dist-info/licenses/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
40
+ alayaflow-0.1.1.dist-info/RECORD,,