akshare 1.16.9__py3-none-any.whl → 1.16.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
akshare/__init__.py CHANGED
@@ -3018,9 +3018,10 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
3018
3018
  1.16.7 fix: fix fund_lof_hist_em interface
3019
3019
  1.16.8 fix: fix option_czce_daily interface
3020
3020
  1.16.9 fix: fix stock_sse_deal_daily interface
3021
+ 1.16.10 fix: fix option_risk_analysis_em interface
3021
3022
  """
3022
3023
 
3023
- __version__ = "1.16.9"
3024
+ __version__ = "1.16.10"
3024
3025
  __author__ = "AKFamily"
3025
3026
 
3026
3027
  import sys
@@ -20,7 +20,7 @@ def option_current_em() -> pd.DataFrame:
20
20
  url = "https://23.push2.eastmoney.com/api/qt/clist/get"
21
21
  params = {
22
22
  "pn": "1",
23
- "pz": "200000",
23
+ "pz": "50000",
24
24
  "po": "1",
25
25
  "np": "2",
26
26
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
@@ -1,10 +1,11 @@
1
1
  # -*- coding:utf-8 -*-
2
2
  # !/usr/bin/env python
3
3
  """
4
- Date: 2022/1/25 10:20
4
+ Date: 2025/2/22 21:00
5
5
  Desc: 东方财富网-数据中心-特色数据-期权折溢价
6
6
  https://data.eastmoney.com/other/premium.html
7
7
  """
8
+
8
9
  import requests
9
10
  import pandas as pd
10
11
 
@@ -18,60 +19,62 @@ def option_premium_analysis_em() -> pd.DataFrame:
18
19
  """
19
20
  url = "https://push2.eastmoney.com/api/qt/clist/get"
20
21
  params = {
21
- 'fid': 'f250',
22
- 'po': '1',
23
- 'pz': '5000',
24
- 'pn': '1',
25
- 'np': '1',
26
- 'fltt': '2',
27
- 'invt': '2',
28
- 'ut': 'b2884a393a59ad64002292a3e90d46a5',
29
- 'fields': 'f1,f2,f3,f12,f13,f14,f161,f250,f330,f331,f332,f333,f334,f335,f337,f301,f152',
30
- 'fs': 'm:10'
22
+ "fid": "f250",
23
+ "po": "1",
24
+ "pz": "50000",
25
+ "pn": "1",
26
+ "np": "2",
27
+ "fltt": "2",
28
+ "invt": "2",
29
+ "ut": "b2884a393a59ad64002292a3e90d46a5",
30
+ "fields": "f1,f2,f3,f12,f13,f14,f161,f250,f330,f331,f332,f333,f334,f335,f337,f301,f152",
31
+ "fs": "m:10",
31
32
  }
32
33
  r = requests.get(url, params=params)
33
34
  data_json = r.json()
34
- temp_df = pd.DataFrame(data_json["data"]["diff"])
35
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
35
36
  temp_df.columns = [
36
- '-',
37
- '最新价',
38
- '涨跌幅',
39
- '期权代码',
40
- '-',
41
- '期权名称',
42
- '-',
43
- '行权价',
44
- '折溢价率',
45
- '到期日',
46
- '-',
47
- '-',
48
- '-',
49
- '标的名称',
50
- '标的最新价',
51
- '标的涨跌幅',
52
- '盈亏平衡价',
37
+ "-",
38
+ "最新价",
39
+ "涨跌幅",
40
+ "期权代码",
41
+ "-",
42
+ "期权名称",
43
+ "-",
44
+ "行权价",
45
+ "折溢价率",
46
+ "到期日",
47
+ "-",
48
+ "-",
49
+ "-",
50
+ "标的名称",
51
+ "标的最新价",
52
+ "标的涨跌幅",
53
+ "盈亏平衡价",
54
+ ]
55
+ temp_df = temp_df[
56
+ [
57
+ "期权代码",
58
+ "期权名称",
59
+ "最新价",
60
+ "涨跌幅",
61
+ "行权价",
62
+ "折溢价率",
63
+ "标的名称",
64
+ "标的最新价",
65
+ "标的涨跌幅",
66
+ "盈亏平衡价",
67
+ "到期日",
68
+ ]
53
69
  ]
54
- temp_df = temp_df[[
55
- '期权代码',
56
- '期权名称',
57
- '最新价',
58
- '涨跌幅',
59
- '行权价',
60
- '折溢价率',
61
- '标的名称',
62
- '标的最新价',
63
- '标的涨跌幅',
64
- '盈亏平衡价',
65
- '到期日',
66
- ]]
67
- temp_df['最新价'] = pd.to_numeric(temp_df['最新价'], errors="coerce")
68
- temp_df['涨跌幅'] = pd.to_numeric(temp_df['涨跌幅'], errors="coerce")
69
- temp_df['行权价'] = pd.to_numeric(temp_df['行权价'], errors="coerce")
70
- temp_df['折溢价率'] = pd.to_numeric(temp_df['折溢价率'], errors="coerce")
71
- temp_df['标的最新价'] = pd.to_numeric(temp_df['标的最新价'], errors="coerce")
72
- temp_df['标的涨跌幅'] = pd.to_numeric(temp_df['标的涨跌幅'], errors="coerce")
73
- temp_df['盈亏平衡价'] = pd.to_numeric(temp_df['盈亏平衡价'], errors="coerce")
74
- temp_df['到期日'] = pd.to_datetime(temp_df['到期日'].astype(str)).dt.date
70
+ temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce")
71
+ temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce")
72
+ temp_df["行权价"] = pd.to_numeric(temp_df["行权价"], errors="coerce")
73
+ temp_df["折溢价率"] = pd.to_numeric(temp_df["折溢价率"], errors="coerce")
74
+ temp_df["标的最新价"] = pd.to_numeric(temp_df["标的最新价"], errors="coerce")
75
+ temp_df["标的涨跌幅"] = pd.to_numeric(temp_df["标的涨跌幅"], errors="coerce")
76
+ temp_df["盈亏平衡价"] = pd.to_numeric(temp_df["盈亏平衡价"], errors="coerce")
77
+ temp_df["到期日"] = pd.to_datetime(temp_df["到期日"].astype(str)).dt.date
75
78
  return temp_df
76
79
 
77
80
 
@@ -1,10 +1,11 @@
1
1
  # -*- coding:utf-8 -*-
2
2
  # !/usr/bin/env python
3
3
  """
4
- Date: 2023/3/20 15:20
4
+ Date: 2025/2/22 21:00
5
5
  Desc: 东方财富网-数据中心-特色数据-期权风险分析
6
6
  https://data.eastmoney.com/other/riskanal.html
7
7
  """
8
+
8
9
  import requests
9
10
  import pandas as pd
10
11
 
@@ -20,9 +21,9 @@ def option_risk_analysis_em() -> pd.DataFrame:
20
21
  params = {
21
22
  "fid": "f3",
22
23
  "po": "1",
23
- "pz": "5000",
24
+ "pz": "50000",
24
25
  "pn": "1",
25
- "np": "1",
26
+ "np": "2",
26
27
  "fltt": "2",
27
28
  "invt": "2",
28
29
  "ut": "b2884a393a59ad64002292a3e90d46a5",
@@ -31,7 +32,7 @@ def option_risk_analysis_em() -> pd.DataFrame:
31
32
  }
32
33
  r = requests.get(url, params=params)
33
34
  data_json = r.json()
34
- temp_df = pd.DataFrame(data_json["data"]["diff"])
35
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
35
36
  temp_df.columns = [
36
37
  "-",
37
38
  "最新价",
@@ -1,10 +1,11 @@
1
1
  # -*- coding:utf-8 -*-
2
2
  # !/usr/bin/env python
3
3
  """
4
- Date: 2022/1/24 15:41
4
+ Date: 2025/2/22 21:00
5
5
  Desc: 东方财富网-数据中心-特色数据-期权价值分析
6
6
  https://data.eastmoney.com/other/valueAnal.html
7
7
  """
8
+
8
9
  import requests
9
10
  import pandas as pd
10
11
 
@@ -18,62 +19,68 @@ def option_value_analysis_em() -> pd.DataFrame:
18
19
  """
19
20
  url = "https://push2.eastmoney.com/api/qt/clist/get"
20
21
  params = {
21
- 'fid': 'f301',
22
- 'po': '1',
23
- 'pz': '5000',
24
- 'pn': '1',
25
- 'np': '1',
26
- 'fltt': '2',
27
- 'invt': '2',
28
- 'ut': 'b2884a393a59ad64002292a3e90d46a5',
29
- 'fields': 'f1,f2,f3,f12,f13,f14,f298,f299,f249,f300,f330,f331,f332,f333,f334,f335,f336,f301,f152',
30
- 'fs': 'm:10'
22
+ "fid": "f301",
23
+ "po": "1",
24
+ "pz": "50000",
25
+ "pn": "1",
26
+ "np": "2",
27
+ "fltt": "2",
28
+ "invt": "2",
29
+ "ut": "b2884a393a59ad64002292a3e90d46a5",
30
+ "fields": "f1,f2,f3,f12,f13,f14,f298,f299,f249,f300,f330,f331,f332,f333,f334,f335,f336,f301,f152",
31
+ "fs": "m:10",
31
32
  }
32
33
  r = requests.get(url, params=params)
33
34
  data_json = r.json()
34
- temp_df = pd.DataFrame(data_json["data"]["diff"])
35
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
35
36
  temp_df.columns = [
36
- '-',
37
- '最新价',
38
- '-',
39
- '期权代码',
40
- '-',
41
- '期权名称',
42
- '-',
43
- '隐含波动率',
44
- '时间价值',
45
- '内在价值',
46
- '理论价格',
47
- '到期日',
48
- '-',
49
- '-',
50
- '-',
51
- '标的名称',
52
- '标的最新价',
53
- '-',
54
- '标的近一年波动率',
37
+ "-",
38
+ "最新价",
39
+ "-",
40
+ "期权代码",
41
+ "-",
42
+ "期权名称",
43
+ "-",
44
+ "隐含波动率",
45
+ "时间价值",
46
+ "内在价值",
47
+ "理论价格",
48
+ "到期日",
49
+ "-",
50
+ "-",
51
+ "-",
52
+ "标的名称",
53
+ "标的最新价",
54
+ "-",
55
+ "标的近一年波动率",
56
+ ]
57
+ temp_df = temp_df[
58
+ [
59
+ "期权代码",
60
+ "期权名称",
61
+ "最新价",
62
+ "时间价值",
63
+ "内在价值",
64
+ "隐含波动率",
65
+ "理论价格",
66
+ "标的名称",
67
+ "标的最新价",
68
+ "标的近一年波动率",
69
+ "到期日",
70
+ ]
55
71
  ]
56
- temp_df = temp_df[[
57
- '期权代码',
58
- '期权名称',
59
- '最新价',
60
- '时间价值',
61
- '内在价值',
62
- '隐含波动率',
63
- '理论价格',
64
- '标的名称',
65
- '标的最新价',
66
- '标的近一年波动率',
67
- '到期日',
68
- ]]
69
- temp_df['最新价'] = pd.to_numeric(temp_df['最新价'], errors="coerce")
70
- temp_df['时间价值'] = pd.to_numeric(temp_df['时间价值'])
71
- temp_df['内在价值'] = pd.to_numeric(temp_df['内在价值'])
72
- temp_df['隐含波动率'] = pd.to_numeric(temp_df['隐含波动率'])
73
- temp_df['理论价格'] = pd.to_numeric(temp_df['理论价格'], errors="coerce")
74
- temp_df['标的最新价'] = pd.to_numeric(temp_df['标的最新价'])
75
- temp_df['标的近一年波动率'] = pd.to_numeric(temp_df['标的近一年波动率'])
76
- temp_df['到期日'] = pd.to_datetime(temp_df['到期日'].astype(str)).dt.date
72
+ temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce")
73
+ temp_df["时间价值"] = pd.to_numeric(temp_df["时间价值"], errors="coerce")
74
+ temp_df["内在价值"] = pd.to_numeric(temp_df["内在价值"], errors="coerce")
75
+ temp_df["隐含波动率"] = pd.to_numeric(temp_df["隐含波动率"], errors="coerce")
76
+ temp_df["理论价格"] = pd.to_numeric(temp_df["理论价格"], errors="coerce")
77
+ temp_df["标的最新价"] = pd.to_numeric(temp_df["标的最新价"], errors="coerce")
78
+ temp_df["标的近一年波动率"] = pd.to_numeric(
79
+ temp_df["标的近一年波动率"], errors="coerce"
80
+ )
81
+ temp_df["到期日"] = pd.to_datetime(
82
+ temp_df["到期日"].astype(str), errors="coerce"
83
+ ).dt.date
77
84
  return temp_df
78
85
 
79
86
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: akshare
3
- Version: 1.16.9
3
+ Version: 1.16.10
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=Flwht16-YxveFrqhWbTIm7RbwBJcIZurkUUQMmuveeM,187978
1
+ akshare/__init__.py,sha256=GnoafSM2cc42DZ931gdHom1GoGpZWs1LX-bEvD8w1A0,188030
2
2
  akshare/datasets.py,sha256=rKuRNZrqi6IMsZ9nyvO3Rx02js0tH3zMLjz8HQNAoPQ,963
3
3
  akshare/exceptions.py,sha256=WEJjIhSmJ_xXNW6grwV4nufE_cfmmyuhmueVGiN1VAg,878
4
4
  akshare/request.py,sha256=HtFFf9MhfEibR-ETWe-1Tts6ELU4VKSqA-ghaXjegQM,4252
@@ -194,14 +194,14 @@ akshare/option/option_commodity.py,sha256=KQ690k83wKnjYN5Sf3meLx0pvEYAc5dE2tOkv3
194
194
  akshare/option/option_commodity_sina.py,sha256=r6qK_K7w3A6Uqp5ZtBb4pW7vH04oMyeCEZLLGqi0jpA,7776
195
195
  akshare/option/option_czce.py,sha256=L4i7TVKcOns5ZKoqq-mrSykdx3SGwu6OL4eI77-A_lc,1812
196
196
  akshare/option/option_daily_stats_sse_szse.py,sha256=Ip_vE81qbEGt4ocbtWfUT7XGu0HWU0zKkzauZeq9RJA,4962
197
- akshare/option/option_em.py,sha256=5Y9Fqhk6VxsDLxQLJQyptkgAEAszIQiDyMl_wRfZjAg,5963
197
+ akshare/option/option_em.py,sha256=M5mWE-YRQOywC9MY4CNgNwjLNl2AF32P4CHSF6zvK4k,5962
198
198
  akshare/option/option_finance.py,sha256=7rnEeHo-7Sddrs36Q4c99CXL_9m8IJzw9S1Aqh3Bw90,12568
199
199
  akshare/option/option_finance_sina.py,sha256=Pzsrl_NKN99nWPSAirq7ushGwSfd738ISVYeCHxMZXE,37843
200
200
  akshare/option/option_lhb_em.py,sha256=VHrV2BWAPE7tj8q7J5Crjm-sey8QarYd1lgxKbkX2CQ,9090
201
- akshare/option/option_premium_analysis_em.py,sha256=uL-wxwsZu3UbeUmHs5W1x3PBfk0HfVyGubx6FvkeyPg,2471
202
- akshare/option/option_risk_analysis_em.py,sha256=WYwjXzZhIr8WpwoVKXfAnFA7Ylx_vLQiFDeTxDvrnBk,2577
201
+ akshare/option/option_premium_analysis_em.py,sha256=vPOndT5I7j_bS0rIsJpmu0QbCec7TQinON8OAdE06vc,2538
202
+ akshare/option/option_risk_analysis_em.py,sha256=3IlE-OxJprB8MOmSXd2Ym4y8xM01zHCML9lUQxJFa0g,2581
203
203
  akshare/option/option_risk_indicator_sse.py,sha256=W1_mGrk8M9pbbadzSAy5euWMEGn4-cVWBc8Jk_I2WmI,2484
204
- akshare/option/option_value_analysis_em.py,sha256=XAHbSvUvcmyuv6rr2hxxGalWcKK8EqaP2L8G7p8woko,2487
204
+ akshare/option/option_value_analysis_em.py,sha256=lueBvtDelpYPccEYH0LSUvgUQqOGloVFqZFSyT2J2_0,2684
205
205
  akshare/other/__init__.py,sha256=guH4GLhFcE_5iaMHOHtgK7QKa0i7esYdmZFfJMG6E10,82
206
206
  akshare/other/other_car_cpca.py,sha256=hCBNUrCI2l3OCP3Gqgr_4zpyzhO99XCBoiwkIhUM3r0,34987
207
207
  akshare/other/other_car_gasgoo.py,sha256=KaCMVPydiGJvhJN9eZEvObygYquCsSgsZkQRB0J6srk,3046
@@ -380,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
380
380
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
381
381
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
382
382
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
383
- akshare-1.16.9.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
- akshare-1.16.9.dist-info/METADATA,sha256=t3Rb5CRORzzNDSzdfrY0quIJUJ2bGHSygddHmYkGpr4,13678
385
- akshare-1.16.9.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
386
- akshare-1.16.9.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
- akshare-1.16.9.dist-info/RECORD,,
383
+ akshare-1.16.10.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
+ akshare-1.16.10.dist-info/METADATA,sha256=RNN700E4_9n33dSVXHfX6Upk4psd4Dbq2nYwi-jLTSQ,13679
385
+ akshare-1.16.10.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
386
+ akshare-1.16.10.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
+ akshare-1.16.10.dist-info/RECORD,,