akshare 1.16.8__py3-none-any.whl → 1.16.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
akshare/__init__.py CHANGED
@@ -3017,9 +3017,10 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
3017
3017
  1.16.6 fix: fix stock_sgt_reference_exchange_rate_sse interface
3018
3018
  1.16.7 fix: fix fund_lof_hist_em interface
3019
3019
  1.16.8 fix: fix option_czce_daily interface
3020
+ 1.16.9 fix: fix stock_sse_deal_daily interface
3020
3021
  """
3021
3022
 
3022
- __version__ = "1.16.8"
3023
+ __version__ = "1.16.9"
3023
3024
  __author__ = "AKFamily"
3024
3025
 
3025
3026
  import sys
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/3/22 17:00
4
+ Date: 2025/2/21 18:00
5
5
  Desc: 新浪财经-日内分时数据
6
6
  https://quote.eastmoney.com/f1.html?newcode=0.000001
7
7
  """
@@ -64,5 +64,5 @@ def stock_intraday_sina(
64
64
 
65
65
 
66
66
  if __name__ == "__main__":
67
- stock_intraday_sina_df = stock_intraday_sina(symbol="sz000001", date="20240321")
67
+ stock_intraday_sina_df = stock_intraday_sina(symbol="sz000001", date="20250221")
68
68
  print(stock_intraday_sina_df)
@@ -225,408 +225,87 @@ def stock_sse_summary() -> pd.DataFrame:
225
225
  return temp_df
226
226
 
227
227
 
228
- def stock_sse_deal_daily(date: str = "20060712") -> pd.DataFrame:
228
+ def stock_sse_deal_daily(date: str = "20241216") -> pd.DataFrame:
229
229
  """
230
230
  上海证券交易所-数据-股票数据-成交概况-股票成交概况-每日股票情况
231
231
  https://www.sse.com.cn/market/stockdata/overview/day/
232
232
  :return: 每日股票情况
233
233
  :rtype: pandas.DataFrame
234
234
  """
235
- if int(date) <= 20181231:
236
- url = "http://query.sse.com.cn/commonQuery.do"
237
- params = {
238
- "searchDate": "-".join([date[:4], date[4:6], date[6:]]),
239
- "sqlId": "COMMON_SSE_SJ_GPSJ_CJGK_DAYCJGK_C",
240
- "stockType": "90",
241
- "_": "1616744620492",
242
- }
243
- headers = {
244
- "Referer": "http://www.sse.com.cn/",
245
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
246
- "Chrome/89.0.4389.90 Safari/537.36",
247
- }
248
- r = requests.get(url, params=params, headers=headers)
249
- data_json = r.json()
250
- temp_df = pd.DataFrame(data_json["result"])
251
- temp_df = temp_df.T
252
- temp_df.reset_index(inplace=True)
253
- temp_df.columns = [
254
- "单日情况",
255
- "主板A",
256
- "-",
257
- "主板B",
258
- ]
259
- temp_df = temp_df[
260
- [
261
- "单日情况",
262
- "主板A",
263
- "主板B",
264
- ]
265
- ]
266
- temp_df["单日情况"] = [
267
- "流通市值",
268
- "流通换手率",
269
- "平均市盈率",
270
- "_",
271
- "市价总值",
272
- "_",
273
- "换手率",
274
- "_",
275
- "挂牌数",
276
- "_",
277
- "_",
278
- "_",
279
- "_",
280
- "_",
281
- "成交笔数",
282
- "成交金额",
283
- "成交量",
284
- "次新股换手率",
285
- "_",
286
- "_",
287
- ]
288
- temp_df = temp_df[temp_df["单日情况"] != "_"]
289
- temp_df["单日情况"] = temp_df["单日情况"].astype("category")
290
- list_custom_new = [
291
- "挂牌数",
292
- "市价总值",
293
- "流通市值",
294
- "成交金额",
295
- "成交量",
296
- "成交笔数",
297
- "平均市盈率",
298
- "换手率",
299
- "次新股换手率",
300
- "流通换手率",
301
- ]
302
- temp_df["单日情况"].cat.set_categories(list_custom_new)
303
- temp_df.sort_values("单日情况", ascending=True, inplace=True)
304
- temp_df.reset_index(drop=True, inplace=True)
305
- # 构建空
306
- temp_df["股票"] = "-"
307
- temp_df["科创板"] = "-"
308
- temp_df["股票回购"] = "-"
309
- temp_df["股票"] = pd.to_numeric(temp_df["股票"], errors="coerce")
310
- temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
311
- temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
312
- temp_df["科创板"] = pd.to_numeric("-", errors="coerce") # 默认位空
313
- temp_df["股票回购"] = pd.to_numeric(temp_df["股票回购"], errors="coerce")
314
- temp_df = temp_df[
315
- [
316
- "单日情况",
317
- "股票",
318
- "主板A",
319
- "主板B",
320
- "科创板",
321
- "股票回购",
322
- ]
323
- ]
324
- return temp_df
325
- if int(date) <= 20211224:
326
- url = "http://query.sse.com.cn/commonQuery.do"
327
- params = {
328
- "searchDate": "-".join([date[:4], date[4:6], date[6:]]),
329
- "sqlId": "COMMON_SSE_SJ_GPSJ_CJGK_DAYCJGK_C",
330
- "stockType": "90",
331
- "_": "1616744620492",
332
- }
333
- headers = {
334
- "Referer": "http://www.sse.com.cn/",
335
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
336
- "Chrome/89.0.4389.90 Safari/537.36",
337
- }
338
- r = requests.get(url, params=params, headers=headers)
339
- data_json = r.json()
340
- temp_df = pd.DataFrame(data_json["result"])
341
- temp_df = temp_df.T
342
- temp_df.reset_index(inplace=True)
343
- if len(temp_df.columns) == 6:
344
- temp_df.columns = [
345
- "单日情况",
346
- "-",
347
- "股票",
348
- "主板B",
349
- "主板A",
350
- "股票回购",
351
- ]
352
- temp_df = temp_df[
353
- [
354
- "单日情况",
355
- "股票",
356
- "主板A",
357
- "主板B",
358
- "股票回购",
359
- ]
360
- ]
361
- temp_df["单日情况"] = [
362
- "流通市值",
363
- "流通换手率",
364
- "平均市盈率",
365
- "_",
366
- "市价总值",
367
- "_",
368
- "换手率",
369
- "_",
370
- "挂牌数",
371
- "_",
372
- "_",
373
- "_",
374
- "_",
375
- "_",
376
- "成交笔数",
377
- "成交金额",
378
- "成交量",
379
- "次新股换手率",
380
- "_",
381
- "_",
382
- ]
383
- temp_df = temp_df[temp_df["单日情况"] != "_"]
384
- temp_df["单日情况"] = temp_df["单日情况"].astype("category")
385
- list_custom_new = [
386
- "挂牌数",
387
- "市价总值",
388
- "流通市值",
389
- "成交金额",
390
- "成交量",
391
- "成交笔数",
392
- "平均市盈率",
393
- "换手率",
394
- "次新股换手率",
395
- "流通换手率",
396
- ]
397
- temp_df["单日情况"].cat.set_categories(list_custom_new)
398
- temp_df.sort_values("单日情况", ascending=True, inplace=True)
399
- temp_df.reset_index(drop=True, inplace=True)
400
- temp_df["股票"] = pd.to_numeric(temp_df["股票"], errors="coerce")
401
- temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
402
- temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
403
- temp_df["科创板"] = pd.to_numeric("-", errors="coerce") # 默认位空
404
- temp_df["股票回购"] = pd.to_numeric(temp_df["股票回购"], errors="coerce")
405
- temp_df = temp_df[
406
- [
407
- "单日情况",
408
- "股票",
409
- "主板A",
410
- "主板B",
411
- "科创板",
412
- "股票回购",
413
- ]
414
- ]
415
- return temp_df
416
- else:
417
- temp_df.columns = [
418
- "单日情况",
419
- "主板A",
420
- "股票",
421
- "主板B",
422
- "_",
423
- "股票回购",
424
- "科创板",
425
- ]
426
- temp_df = temp_df[
427
- [
428
- "单日情况",
429
- "股票",
430
- "主板A",
431
- "主板B",
432
- "科创板",
433
- "股票回购",
434
- ]
435
- ]
436
- temp_df["单日情况"] = [
437
- "流通市值",
438
- "流通换手率",
439
- "平均市盈率",
440
- "_",
441
- "市价总值",
442
- "_",
443
- "换手率",
444
- "_",
445
- "挂牌数",
446
- "_",
447
- "_",
448
- "_",
449
- "_",
450
- "_",
451
- "成交笔数",
452
- "成交金额",
453
- "成交量",
454
- "次新股换手率",
455
- "_",
456
- "_",
457
- ]
458
- temp_df = temp_df[temp_df["单日情况"] != "_"]
459
- temp_df["单日情况"] = temp_df["单日情况"].astype("category")
460
- list_custom_new = [
461
- "挂牌数",
462
- "市价总值",
463
- "流通市值",
464
- "成交金额",
465
- "成交量",
466
- "成交笔数",
467
- "平均市盈率",
468
- "换手率",
469
- "次新股换手率",
470
- "流通换手率",
471
- ]
472
- temp_df["单日情况"].cat.set_categories(list_custom_new)
473
- temp_df.sort_values("单日情况", ascending=True, inplace=True)
474
- temp_df.reset_index(drop=True, inplace=True)
475
- temp_df["股票"] = pd.to_numeric(temp_df["股票"], errors="coerce")
476
- temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
477
- temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
478
- temp_df["科创板"] = pd.to_numeric(temp_df["科创板"], errors="coerce")
479
- temp_df["股票回购"] = pd.to_numeric(temp_df["股票回购"], errors="coerce")
480
- return temp_df
481
- elif int(date) <= 20220224:
482
- url = "http://query.sse.com.cn/commonQuery.do"
483
- params = {
484
- "sqlId": "COMMON_SSE_SJ_GPSJ_CJGK_MRGK_C",
485
- "SEARCH_DATE": "-".join([date[:4], date[4:6], date[6:]]),
486
- "_": "1640836561673",
487
- }
488
- headers = {
489
- "Referer": "http://www.sse.com.cn/",
490
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
491
- "Chrome/89.0.4389.90 Safari/537.36",
492
- }
493
- r = requests.get(url, params=params, headers=headers)
494
- data_json = r.json()
495
- temp_df = pd.DataFrame(data_json["result"])
496
- temp_df = temp_df.T
497
- temp_df.reset_index(inplace=True)
498
- temp_df.columns = [
235
+ url = "https://query.sse.com.cn/commonQuery.do"
236
+ params = {
237
+ "sqlId": "COMMON_SSE_SJ_GPSJ_CJGK_MRGK_C",
238
+ "PRODUCT_CODE": "01,02,03,11,17",
239
+ "type": "inParams",
240
+ "SEARCH_DATE": "-".join([date[:4], date[4:6], date[6:]]),
241
+ "_": "1640836561673",
242
+ }
243
+ headers = {
244
+ "Referer": "https://www.sse.com.cn/",
245
+ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
246
+ "Chrome/89.0.4389.90 Safari/537.36",
247
+ }
248
+ r = requests.get(url, params=params, headers=headers)
249
+ data_json = r.json()
250
+ temp_df = pd.DataFrame(data_json["result"])
251
+ temp_df = temp_df.T
252
+ temp_df.reset_index(inplace=True)
253
+ temp_df.columns = [
254
+ "单日情况",
255
+ "主板A",
256
+ "主板B",
257
+ "科创板",
258
+ "股票回购",
259
+ "股票",
260
+ ]
261
+ temp_df = temp_df[
262
+ [
499
263
  "单日情况",
264
+ "股票",
500
265
  "主板A",
501
266
  "主板B",
502
267
  "科创板",
503
- "-",
504
- "-",
505
- "-",
506
- "-",
507
- "-",
268
+ "股票回购",
508
269
  ]
509
- temp_df = temp_df[
510
- [
511
- "单日情况",
512
- "主板A",
513
- "主板B",
514
- "科创板",
515
- ]
516
- ]
517
- temp_df["单日情况"] = [
518
- "市价总值",
519
- "成交量",
520
- "平均市盈率",
521
- "换手率",
522
- "成交金额",
523
- "-",
524
- "流通市值",
525
- "流通换手率",
526
- "报告日期",
527
- "挂牌数",
528
- "-",
529
- ]
530
- temp_df = temp_df[temp_df["单日情况"] != "-"]
531
- temp_df["单日情况"] = temp_df["单日情况"].astype("category")
532
- list_custom_new = [
533
- "挂牌数",
534
- "市价总值",
535
- "流通市值",
536
- "成交金额",
537
- "成交量",
538
- "平均市盈率",
539
- "换手率",
540
- "流通换手率",
541
- ]
542
- temp_df["单日情况"].cat.set_categories(list_custom_new)
543
- temp_df.sort_values("单日情况", ascending=True, inplace=True)
544
- temp_df.reset_index(inplace=True, drop=True)
545
- temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
546
- temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
547
- temp_df["科创板"] = pd.to_numeric(temp_df["科创板"], errors="coerce")
548
- return temp_df
549
- else:
550
- url = "http://query.sse.com.cn/commonQuery.do"
551
- params = {
552
- "sqlId": "COMMON_SSE_SJ_GPSJ_CJGK_MRGK_C",
553
- "PRODUCT_CODE": "01,02,03,11,17",
554
- "type": "inParams",
555
- "SEARCH_DATE": "-".join([date[:4], date[4:6], date[6:]]),
556
- "_": "1640836561673",
557
- }
558
- headers = {
559
- "Referer": "http://www.sse.com.cn/",
560
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
561
- "Chrome/89.0.4389.90 Safari/537.36",
562
- }
563
- r = requests.get(url, params=params, headers=headers)
564
- data_json = r.json()
565
- temp_df = pd.DataFrame(data_json["result"])
566
- temp_df = temp_df.T
567
- temp_df.reset_index(inplace=True)
568
- if len(temp_df.T) == 5:
569
- temp_df.columns = [
570
- "单日情况",
571
- "主板A",
572
- "主板B",
573
- "科创板",
574
- "股票",
575
- ]
576
- temp_df["股票回购"] = "-"
577
- else:
578
- temp_df.columns = [
579
- "单日情况",
580
- "主板A",
581
- "主板B",
582
- "科创板",
583
- "股票回购",
584
- "股票",
585
- ]
586
- temp_df = temp_df[
587
- [
588
- "单日情况",
589
- "股票",
590
- "主板A",
591
- "主板B",
592
- "科创板",
593
- "股票回购",
594
- ]
595
- ]
596
- temp_df["单日情况"] = [
597
- "市价总值",
598
- "成交量",
599
- "平均市盈率",
600
- "换手率",
601
- "成交金额",
602
- "-",
603
- "流通市值",
604
- "流通换手率",
605
- "报告日期",
606
- "挂牌数",
607
- "-",
608
- ]
609
- temp_df = temp_df[temp_df["单日情况"] != "-"]
610
- temp_df["单日情况"] = temp_df["单日情况"].astype("category")
611
- list_custom_new = [
612
- "挂牌数",
613
- "市价总值",
614
- "流通市值",
615
- "成交金额",
616
- "成交量",
617
- "平均市盈率",
618
- "换手率",
619
- "流通换手率",
620
- ]
621
- temp_df["单日情况"].cat.set_categories(list_custom_new)
622
- temp_df.sort_values("单日情况", ascending=True, inplace=True)
623
- temp_df.reset_index(inplace=True, drop=True)
624
- temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
625
- temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
626
- temp_df["科创板"] = pd.to_numeric(temp_df["科创板"], errors="coerce")
627
- temp_df["股票"] = pd.to_numeric(temp_df["股票"], errors="coerce")
628
- temp_df["股票回购"] = pd.to_numeric(temp_df["股票回购"], errors="coerce")
629
- return temp_df
270
+ ]
271
+ temp_df["单日情况"] = [
272
+ "市价总值",
273
+ "成交量",
274
+ "平均市盈率",
275
+ "换手率",
276
+ "成交金额",
277
+ "-",
278
+ "流通市值",
279
+ "流通换手率",
280
+ "报告日期",
281
+ "挂牌数",
282
+ "-",
283
+ ]
284
+ temp_df = temp_df[temp_df["单日情况"] != "-"]
285
+ temp_df = temp_df[temp_df["单日情况"] != "报告日期"]
286
+ # 定义期望的指标顺序
287
+ desired_order = [
288
+ "挂牌数",
289
+ "市价总值",
290
+ "流通市值",
291
+ "成交金额",
292
+ "成交量",
293
+ "平均市盈率",
294
+ "换手率",
295
+ "流通换手率",
296
+ ]
297
+ # 使用 categorical 类型重新排序
298
+ temp_df["单日情况"] = pd.Categorical(
299
+ temp_df["单日情况"], categories=desired_order, ordered=True
300
+ )
301
+ # 按照指标排序
302
+ temp_df.sort_values("单日情况", ignore_index=True, inplace=True)
303
+ temp_df["股票"] = pd.to_numeric(temp_df["股票"], errors="coerce")
304
+ temp_df["主板A"] = pd.to_numeric(temp_df["主板A"], errors="coerce")
305
+ temp_df["主板B"] = pd.to_numeric(temp_df["主板B"], errors="coerce")
306
+ temp_df["科创板"] = pd.to_numeric(temp_df["科创板"], errors="coerce")
307
+ temp_df["股票回购"] = pd.to_numeric(temp_df["股票回购"], errors="coerce")
308
+ return temp_df
630
309
 
631
310
 
632
311
  if __name__ == "__main__":
@@ -644,14 +323,5 @@ if __name__ == "__main__":
644
323
  stock_sse_summary_df = stock_sse_summary()
645
324
  print(stock_sse_summary_df)
646
325
 
647
- stock_sse_deal_daily_df = stock_sse_deal_daily(date="20211221")
648
- print(stock_sse_deal_daily_df)
649
-
650
- stock_sse_deal_daily_df = stock_sse_deal_daily(date="20211227")
651
- print(stock_sse_deal_daily_df)
652
-
653
- stock_sse_deal_daily_df = stock_sse_deal_daily(date="20190613")
654
- print(stock_sse_deal_daily_df)
655
-
656
- stock_sse_deal_daily_df = stock_sse_deal_daily(date="20080131")
326
+ stock_sse_deal_daily_df = stock_sse_deal_daily(date="20250221")
657
327
  print(stock_sse_deal_daily_df)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: akshare
3
- Version: 1.16.8
3
+ Version: 1.16.9
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=sV_ASKhc3pFmHqDb7FWagE9E5-RGGn9salWxA8UalTM,187931
1
+ akshare/__init__.py,sha256=Flwht16-YxveFrqhWbTIm7RbwBJcIZurkUUQMmuveeM,187978
2
2
  akshare/datasets.py,sha256=rKuRNZrqi6IMsZ9nyvO3Rx02js0tH3zMLjz8HQNAoPQ,963
3
3
  akshare/exceptions.py,sha256=WEJjIhSmJ_xXNW6grwV4nufE_cfmmyuhmueVGiN1VAg,878
4
4
  akshare/request.py,sha256=HtFFf9MhfEibR-ETWe-1Tts6ELU4VKSqA-ghaXjegQM,4252
@@ -258,7 +258,7 @@ akshare/stock/stock_industry_sw.py,sha256=C0FjDg976EA0EksRS3sChbmJOZmOPEOzKCrHVs
258
258
  akshare/stock/stock_info.py,sha256=AqzLzsTlYTSExBtyrZZBjI-D-VROj9e7Sq37WKHJ7XQ,16314
259
259
  akshare/stock/stock_info_em.py,sha256=F-K8ZzWW70KTzShP82semh8RKklUEot2zxuzNDum20I,2615
260
260
  akshare/stock/stock_intraday_em.py,sha256=cm0qKVeCOqmjqd3WxqwjMCoa1uMA2zb98f6HX9_pIPQ,5905
261
- akshare/stock/stock_intraday_sina.py,sha256=HMuAAO2Teu4NUrOcBvyJdxYgWx-51qJCdtcqFmFNQg8,2359
261
+ akshare/stock/stock_intraday_sina.py,sha256=7LzXRwjdPo-BHwvs8244-MFiGriPUCFBJqRW-r9iVB4,2359
262
262
  akshare/stock/stock_ipo_summary_cninfo.py,sha256=Ma-54GsOOhRWxilLH-Qmm0VVbpJQGf2XWKaJ8NBSgAY,3847
263
263
  akshare/stock/stock_new_cninfo.py,sha256=EOuZowDLQSSHyPAwXcuPXbQkqhbz2nRBZsM7o2ZWILE,5725
264
264
  akshare/stock/stock_news_cx.py,sha256=aaAD-HTqAX0tOSD-0-Zus9pftvOdD3Y608GKYB1OMPE,1097
@@ -268,7 +268,7 @@ akshare/stock/stock_repurchase_em.py,sha256=XVAUD_yd48wqxbMbfU0Ne2SNFOSG9NBklUhf
268
268
  akshare/stock/stock_share_changes_cninfo.py,sha256=siy4PiZgYuNQn5jUUg2G7CyZ_yvuXNi3MVUDFhe5npY,4923
269
269
  akshare/stock/stock_share_hold.py,sha256=sKiWH69n8_MQohi0qZ3Br-WQRq9I7S0USrb-tMVinb0,11028
270
270
  akshare/stock/stock_stop.py,sha256=8HyazJAFj-s12ujUtrxO8VPXyA5bF9-3eNEj0qzGwMg,1185
271
- akshare/stock/stock_summary.py,sha256=CkUB2Y4ZcNtNbyKb1hJZDG9KvlvqMDNvcPwLN7iO7AQ,22891
271
+ akshare/stock/stock_summary.py,sha256=rtJImzACxpGRqYGe9-yNTzsSZDlsG1Uns18sDIgunZY,11204
272
272
  akshare/stock/stock_us_famous.py,sha256=enx_-EzEJWAhrMVQZaN83ETY_YEWO2xEStRm6z3upO0,3655
273
273
  akshare/stock/stock_us_js.py,sha256=wwZpRvVHqjxwd0cb2O5vtRW8Zw90Kdl5O4XNwoevN64,2502
274
274
  akshare/stock/stock_us_pink.py,sha256=BX7-tG4Zs0k2vSYGxHH0Yob-moD6AAu2a-ytZpxgIRQ,3065
@@ -380,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
380
380
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
381
381
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
382
382
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
383
- akshare-1.16.8.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
- akshare-1.16.8.dist-info/METADATA,sha256=EDmDzDVFOA46-cyHoLPASRP0RTBs5-XTRzE-7ewOS8o,13678
385
- akshare-1.16.8.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
386
- akshare-1.16.8.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
- akshare-1.16.8.dist-info/RECORD,,
383
+ akshare-1.16.9.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
+ akshare-1.16.9.dist-info/METADATA,sha256=t3Rb5CRORzzNDSzdfrY0quIJUJ2bGHSygddHmYkGpr4,13678
385
+ akshare-1.16.9.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
386
+ akshare-1.16.9.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
+ akshare-1.16.9.dist-info/RECORD,,