akshare 1.16.64__py3-none-any.whl → 1.16.65__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- akshare/__init__.py +2 -1
- akshare/air/cons.py +1 -0
- akshare/air/crypto.js +1 -1
- akshare/air/outcrypto.js +1 -1
- akshare/article/cons.py +1 -0
- akshare/article/epu_index.py +4 -3
- akshare/article/ff_factor.py +19 -8
- akshare/article/fred_md.py +4 -1
- akshare/article/risk_rv.py +3 -8
- akshare/bond/bond_cb_sina.py +1 -0
- akshare/bond/bond_cbond.py +19 -14
- akshare/bond/bond_em.py +34 -15
- akshare/bond/bond_summary.py +38 -37
- akshare/bond/bond_zh_cov.py +0 -6
- akshare/bond/cons.py +14 -11
- akshare/crypto/__init__.py +1 -1
- akshare/crypto/crypto_bitcoin_cme.py +7 -7
- akshare/crypto/crypto_hold.py +4 -1
- akshare/currency/currency.py +1 -0
- akshare/currency/currency_china_bank_sina.py +6 -3
- akshare/data/__init__.py +1 -1
- akshare/data/cninfo.js +1 -1
- akshare/economic/cons.py +10 -3
- akshare/economic/macro_australia.py +0 -7
- akshare/economic/macro_canada.py +92 -81
- akshare/economic/macro_china.py +0 -34
- akshare/economic/macro_china_hk.py +0 -1
- akshare/economic/macro_euro.py +103 -56
- akshare/economic/macro_germany.py +1 -1
- akshare/economic/macro_japan.py +0 -1
- akshare/economic/macro_other.py +1 -6
- akshare/economic/macro_swiss.py +2 -3
- akshare/economic/macro_uk.py +1 -1
- akshare/economic/macro_usa.py +0 -2
- akshare/energy/energy_carbon.py +0 -1
- akshare/energy/energy_oil_em.py +1 -2
- akshare/event/cons.py +1 -0
- akshare/forex/forex_em.py +0 -1
- akshare/fortune/fortune_bloomberg.py +6 -3
- akshare/fortune/fortune_forbes_500.py +3 -6
- akshare/fortune/fortune_hurun.py +2 -1
- akshare/fortune/fortune_xincaifu_500.py +17 -14
- akshare/fund/fund_announcement.py +1 -0
- akshare/fund/fund_aum_em.py +47 -35
- akshare/fund/fund_em.py +0 -7
- akshare/fund/fund_etf_em.py +0 -5
- akshare/fund/fund_fhsp_em.py +27 -20
- akshare/fund/fund_init_em.py +8 -5
- akshare/fund/fund_lof_em.py +0 -5
- akshare/fund/fund_manager.py +18 -7
- akshare/fund/fund_portfolio_em.py +0 -1
- akshare/fund/fund_position_lg.py +19 -8
- akshare/fund/fund_rank_em.py +0 -3
- akshare/fund/fund_rating.py +28 -9
- akshare/fund/fund_scale_em.py +24 -13
- akshare/futures/futures_comex_em.py +1 -0
- akshare/futures/futures_contract_detail.py +11 -8
- akshare/futures/futures_inventory_em.py +0 -2
- akshare/futures/futures_rule.py +5 -1
- akshare/futures/futures_settlement_price_sgx.py +21 -6
- akshare/futures/futures_stock_js.py +0 -1
- akshare/futures/receipt.py +279 -153
- akshare/futures/requests_fun.py +16 -3
- akshare/futures_derivative/cons.py +100 -103
- akshare/futures_derivative/futures_contract_info_cffex.py +53 -39
- akshare/futures_derivative/futures_contract_info_dce.py +16 -9
- akshare/futures_derivative/futures_contract_info_gfex.py +43 -31
- akshare/futures_derivative/futures_index_sina.py +25 -13
- akshare/fx/cons.py +12 -7
- akshare/fx/fx_quote.py +1 -0
- akshare/fx/fx_quote_baidu.py +2 -1
- akshare/hf/__init__.py +1 -1
- akshare/hf/hf_sp500.py +8 -7
- akshare/index/index_eri.py +1 -0
- akshare/index/index_global_em.py +0 -1
- akshare/index/index_kq_fz.py +17 -14
- akshare/index/index_kq_ss.py +1 -0
- akshare/index/index_stock_hk.py +0 -1
- akshare/index/index_stock_zh.py +0 -3
- akshare/index/index_sugar.py +18 -4
- akshare/index/index_zh_em.py +0 -15
- akshare/interest_rate/interbank_rate_em.py +0 -1
- akshare/movie/jm.js +0 -1
- akshare/news/__init__.py +1 -1
- akshare/news/news_stock.py +0 -1
- akshare/option/option_commodity_sina.py +22 -26
- akshare/option/option_daily_stats_sse_szse.py +0 -1
- akshare/option/option_em.py +0 -1
- akshare/option/option_lhb_em.py +0 -1
- akshare/option/option_risk_indicator_sse.py +0 -1
- akshare/other/__init__.py +1 -1
- akshare/pro/__init__.py +0 -1
- akshare/pro/client.py +6 -4
- akshare/pro/cons.py +3 -2
- akshare/pro/data_pro.py +6 -5
- akshare/qhkc/qhkc_api.py +63 -21
- akshare/qhkc_web/qhkc_fund.py +1 -0
- akshare/qhkc_web/qhkc_index.py +1 -0
- akshare/qhkc_web/qhkc_tool.py +55 -54
- akshare/rate/__init__.py +1 -1
- akshare/rate/repo_rate.py +36 -32
- akshare/reits/__init__.py +1 -1
- akshare/reits/reits_basic.py +44 -2
- akshare/sport/__init__.py +1 -1
- akshare/sport/sport_olympic.py +1 -0
- akshare/spot/__init__.py +1 -1
- akshare/stock/cons.py +19 -12
- akshare/stock/stock_board_concept_em.py +0 -6
- akshare/stock/stock_board_industry_em.py +0 -6
- akshare/stock/stock_dzjy_em.py +1 -1
- akshare/stock/stock_fund_em.py +0 -2
- akshare/stock/stock_fund_hold.py +1 -2
- akshare/stock/stock_gsrl_em.py +1 -0
- akshare/stock/stock_hk_famous.py +0 -1
- akshare/stock/stock_hk_fhpx_ths.py +2 -1
- akshare/stock/stock_hk_hot_rank_em.py +1 -0
- akshare/stock/stock_hold_control_em.py +0 -2
- akshare/stock/stock_hot_up_em.py +4 -1
- akshare/stock/stock_hsgt_em.py +0 -2
- akshare/stock/stock_industry.py +1 -0
- akshare/stock/stock_info.py +0 -2
- akshare/stock/stock_info_em.py +0 -1
- akshare/stock/stock_repurchase_em.py +7 -2
- akshare/stock/stock_share_hold.py +0 -1
- akshare/stock/stock_stop.py +0 -1
- akshare/stock/stock_summary.py +0 -2
- akshare/stock/stock_us_famous.py +0 -1
- akshare/stock/stock_us_js.py +3 -2
- akshare/stock/stock_us_pink.py +0 -1
- akshare/stock/stock_weibo_nlp.py +18 -20
- akshare/stock/stock_zh_a_special.py +0 -3
- akshare/stock/stock_zh_a_tick_tx.py +11 -3
- akshare/stock_a/stock_board_concept_name_em.py +0 -1
- akshare/stock_a/stock_zh_a_spot.py +0 -1
- akshare/stock_feature/cons.py +1 -0
- akshare/stock_feature/stock_account_em.py +0 -1
- akshare/stock_feature/stock_all_pb.py +2 -1
- akshare/stock_feature/stock_analyst_em.py +0 -3
- akshare/stock_feature/stock_buffett_index_lg.py +7 -6
- akshare/stock_feature/stock_classify_sina.py +3 -6
- akshare/stock_feature/stock_comment_em.py +0 -2
- akshare/stock_feature/stock_congestion_lg.py +2 -1
- akshare/stock_feature/stock_dxsyl_em.py +116 -71
- akshare/stock_feature/stock_gdzjc_em.py +16 -5
- akshare/stock_feature/stock_gxl_lg.py +3 -2
- akshare/stock_feature/stock_hist_em.py +0 -20
- akshare/stock_feature/stock_hist_tx.py +10 -8
- akshare/stock_feature/stock_hot_xq.py +4 -6
- akshare/stock_feature/stock_hsgt_em.py +0 -2
- akshare/stock_feature/stock_hsgt_exchange_rate.py +0 -2
- akshare/stock_feature/stock_hsgt_min_em.py +13 -16
- akshare/stock_feature/stock_inner_trade_xq.py +0 -1
- akshare/stock_feature/stock_lhb_em.py +0 -1
- akshare/stock_feature/stock_margin_em.py +0 -1
- akshare/stock_feature/stock_margin_sse.py +0 -2
- akshare/stock_feature/stock_pankou_em.py +0 -2
- akshare/stock_feature/stock_qsjy_em.py +13 -4
- akshare/stock_feature/stock_research_report_em.py +0 -1
- akshare/stock_feature/stock_yjyg_cninfo.py +4 -1
- akshare/stock_feature/stock_zh_vote_baidu.py +4 -1
- akshare/stock_feature/stock_ztb_em.py +0 -6
- akshare/stock_fundamental/__init__.py +1 -1
- akshare/stock_fundamental/stock_hold.py +26 -17
- akshare/stock_fundamental/stock_ipo_declare.py +1 -0
- akshare/stock_fundamental/stock_kcb_detail_sse.py +10 -10
- akshare/stock_fundamental/stock_kcb_sse.py +26 -25
- akshare/stock_fundamental/stock_profit_forecast_hk_etnet.py +64 -41
- akshare/stock_fundamental/stock_recommend.py +20 -4
- akshare/utils/demjson.py +2005 -1334
- akshare/utils/token_process.py +6 -5
- {akshare-1.16.64.dist-info → akshare-1.16.65.dist-info}/METADATA +3 -8
- {akshare-1.16.64.dist-info → akshare-1.16.65.dist-info}/RECORD +175 -175
- {akshare-1.16.64.dist-info → akshare-1.16.65.dist-info}/WHEEL +0 -0
- {akshare-1.16.64.dist-info → akshare-1.16.65.dist-info}/licenses/LICENSE +0 -0
- {akshare-1.16.64.dist-info → akshare-1.16.65.dist-info}/top_level.txt +0 -0
@@ -5,6 +5,7 @@ Date: 2024/1/7 17:00
|
|
5
5
|
Desc: 雪球-沪深股市-热度排行榜
|
6
6
|
https://xueqiu.com/hq
|
7
7
|
"""
|
8
|
+
|
8
9
|
import math
|
9
10
|
|
10
11
|
import pandas as pd
|
@@ -34,7 +35,6 @@ def stock_hot_follow_xq(symbol: str = "最热门") -> pd.DataFrame:
|
|
34
35
|
"order_by": symbol_map[symbol],
|
35
36
|
"only_count": "0",
|
36
37
|
"page": "1",
|
37
|
-
"_": "1651050034006",
|
38
38
|
}
|
39
39
|
headers = {
|
40
40
|
"Accept": "*/*",
|
@@ -56,7 +56,7 @@ def stock_hot_follow_xq(symbol: str = "最热门") -> pd.DataFrame:
|
|
56
56
|
}
|
57
57
|
r = requests.get(url, params=params, headers=headers)
|
58
58
|
data_json = r.json()
|
59
|
-
total_num = data_json["data"][
|
59
|
+
total_num = data_json["data"]["count"]
|
60
60
|
total_page = math.ceil(total_num / 200)
|
61
61
|
tqdm = get_tqdm()
|
62
62
|
big_df = pd.DataFrame()
|
@@ -119,7 +119,6 @@ def stock_hot_tweet_xq(symbol: str = "最热门") -> pd.DataFrame:
|
|
119
119
|
"order_by": symbol_map[symbol],
|
120
120
|
"only_count": "0",
|
121
121
|
"page": "1",
|
122
|
-
"_": "1651050034006",
|
123
122
|
}
|
124
123
|
headers = {
|
125
124
|
"Accept": "*/*",
|
@@ -141,7 +140,7 @@ def stock_hot_tweet_xq(symbol: str = "最热门") -> pd.DataFrame:
|
|
141
140
|
}
|
142
141
|
r = requests.get(url, params=params, headers=headers)
|
143
142
|
data_json = r.json()
|
144
|
-
total_num = data_json["data"][
|
143
|
+
total_num = data_json["data"]["count"]
|
145
144
|
total_page = math.ceil(total_num / 200)
|
146
145
|
tqdm = get_tqdm()
|
147
146
|
big_df = pd.DataFrame()
|
@@ -204,7 +203,6 @@ def stock_hot_deal_xq(symbol: str = "最热门") -> pd.DataFrame:
|
|
204
203
|
"order_by": symbol_map[symbol],
|
205
204
|
"only_count": "0",
|
206
205
|
"page": "1",
|
207
|
-
"_": "1651050034006",
|
208
206
|
}
|
209
207
|
headers = {
|
210
208
|
"Accept": "*/*",
|
@@ -226,7 +224,7 @@ def stock_hot_deal_xq(symbol: str = "最热门") -> pd.DataFrame:
|
|
226
224
|
}
|
227
225
|
r = requests.get(url, params=params, headers=headers)
|
228
226
|
data_json = r.json()
|
229
|
-
total_num = data_json["data"][
|
227
|
+
total_num = data_json["data"]["count"]
|
230
228
|
total_page = math.ceil(total_num / 200)
|
231
229
|
tqdm = get_tqdm()
|
232
230
|
big_df = pd.DataFrame()
|
@@ -37,7 +37,6 @@ def stock_hsgt_fund_flow_summary_em() -> pd.DataFrame:
|
|
37
37
|
"sortColumns": "MUTUAL_TYPE",
|
38
38
|
"source": "WEB",
|
39
39
|
"client": "WEB",
|
40
|
-
"_": "1669047266881",
|
41
40
|
}
|
42
41
|
r = requests.get(url, params=params)
|
43
42
|
data_json = r.json()
|
@@ -111,7 +110,6 @@ def stock_hk_ggt_components_em() -> pd.DataFrame:
|
|
111
110
|
"fs": "b:DLMK0146,b:DLMK0144",
|
112
111
|
"fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,"
|
113
112
|
"f25,f26,f22,f33,f11,f62,f128,f136,f115,f152",
|
114
|
-
"_": "1639974456250",
|
115
113
|
}
|
116
114
|
temp_df = fetch_paginated_data(url=url, base_params=params)
|
117
115
|
temp_df.columns = [
|
@@ -92,7 +92,6 @@ def stock_sgt_reference_exchange_rate_sse() -> pd.DataFrame:
|
|
92
92
|
"pageHelp.pageNo": "1",
|
93
93
|
"pageHelp.beginPage": "1",
|
94
94
|
"pageHelp.endPage": "1",
|
95
|
-
"_": "1664523262778",
|
96
95
|
}
|
97
96
|
headers = {
|
98
97
|
"Host": "query.sse.com.cn",
|
@@ -151,7 +150,6 @@ def stock_sgt_settlement_exchange_rate_sse() -> pd.DataFrame:
|
|
151
150
|
"pageHelp.pageNo": "1",
|
152
151
|
"pageHelp.beginPage": "1",
|
153
152
|
"pageHelp.endPage": "1",
|
154
|
-
"_": "1664523262778",
|
155
153
|
}
|
156
154
|
headers = {
|
157
155
|
"Host": "query.sse.com.cn",
|
@@ -5,6 +5,7 @@ Date: 2024/2/5 18:00
|
|
5
5
|
Desc: 东方财富网-数据中心-沪深港通-市场概括
|
6
6
|
https://data.eastmoney.com/hsgt/hsgtDetail/scgk.html
|
7
7
|
"""
|
8
|
+
|
8
9
|
import pandas as pd
|
9
10
|
import requests
|
10
11
|
|
@@ -20,37 +21,33 @@ def stock_hsgt_fund_min_em(symbol: str = "北向资金") -> pd.DataFrame:
|
|
20
21
|
"""
|
21
22
|
url = "https://push2.eastmoney.com/api/qt/kamtbs.rtmin/get"
|
22
23
|
params = {
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
24
|
+
"fields1": "f1,f2,f3,f4",
|
25
|
+
"fields2": "f51,f54,f52,f58,f53,f62,f56,f57,f60,f61",
|
26
|
+
"ut": "b2884a393a59ad64002292a3e90d46a5",
|
27
|
+
"_": "1707125786160",
|
27
28
|
}
|
28
29
|
r = requests.get(url, params=params)
|
29
30
|
data_json = r.json()
|
30
31
|
|
31
32
|
if symbol == "南向资金":
|
32
|
-
n2s_str_list = data_json[
|
33
|
+
n2s_str_list = data_json["data"]["n2s"]
|
33
34
|
temp_df = pd.DataFrame([item.split(",") for item in n2s_str_list])
|
34
|
-
temp_df[
|
35
|
+
temp_df["date"] = data_json["data"]["n2sDate"]
|
35
36
|
temp_df = temp_df.iloc[:, [0, 1, 3, 5, -1]]
|
36
|
-
temp_df.columns = [
|
37
|
-
temp_df = temp_df[[
|
38
|
-
"日期", '时间', "港股通(沪)", "港股通(深)", "南向资金"
|
39
|
-
]]
|
37
|
+
temp_df.columns = ["时间", "港股通(沪)", "港股通(深)", "南向资金", "日期"]
|
38
|
+
temp_df = temp_df[["日期", "时间", "港股通(沪)", "港股通(深)", "南向资金"]]
|
40
39
|
temp_df["日期"] = pd.to_datetime(temp_df["日期"], errors="coerce").dt.date
|
41
40
|
temp_df["港股通(沪)"] = pd.to_numeric(temp_df["港股通(沪)"], errors="coerce")
|
42
41
|
temp_df["港股通(深)"] = pd.to_numeric(temp_df["港股通(深)"], errors="coerce")
|
43
42
|
temp_df["南向资金"] = pd.to_numeric(temp_df["南向资金"], errors="coerce")
|
44
43
|
return temp_df
|
45
44
|
else:
|
46
|
-
s2n_str_list = data_json[
|
45
|
+
s2n_str_list = data_json["data"]["s2n"]
|
47
46
|
temp_df = pd.DataFrame([item.split(",") for item in s2n_str_list])
|
48
|
-
temp_df[
|
47
|
+
temp_df["date"] = data_json["data"]["s2nDate"]
|
49
48
|
temp_df = temp_df.iloc[:, [0, 1, 3, 5, -1]]
|
50
|
-
temp_df.columns = [
|
51
|
-
temp_df = temp_df[[
|
52
|
-
"日期", '时间', "沪股通", "深股通", "北向资金"
|
53
|
-
]]
|
49
|
+
temp_df.columns = ["时间", "沪股通", "深股通", "北向资金", "日期"]
|
50
|
+
temp_df = temp_df[["日期", "时间", "沪股通", "深股通", "北向资金"]]
|
54
51
|
temp_df["日期"] = pd.to_datetime(temp_df["日期"], errors="coerce").dt.date
|
55
52
|
temp_df["沪股通"] = pd.to_numeric(temp_df["沪股通"], errors="coerce")
|
56
53
|
temp_df["深股通"] = pd.to_numeric(temp_df["深股通"], errors="coerce")
|
@@ -83,7 +83,6 @@ def stock_margin_sse(
|
|
83
83
|
"pageHelp.beginPage": "1",
|
84
84
|
"pageHelp.cacheSize": "1",
|
85
85
|
"pageHelp.endPage": "5",
|
86
|
-
"_": "1612773448860",
|
87
86
|
}
|
88
87
|
headers = {
|
89
88
|
"Referer": "https://www.sse.com.cn/",
|
@@ -151,7 +150,6 @@ def stock_margin_detail_sse(date: str = "20230922") -> pd.DataFrame:
|
|
151
150
|
"pageHelp.beginPage": "1",
|
152
151
|
"pageHelp.cacheSize": "1",
|
153
152
|
"pageHelp.endPage": "21",
|
154
|
-
"_": "1612773448860",
|
155
153
|
}
|
156
154
|
headers = {
|
157
155
|
"Referer": "https://www.sse.com.cn/",
|
@@ -53,7 +53,6 @@ def stock_changes_em(symbol: str = "大笔买入") -> pd.DataFrame:
|
|
53
53
|
"pagesize": "5000",
|
54
54
|
"ut": "7eea3edcaed734bea9cbfc24409ed989",
|
55
55
|
"dpt": "wzchanges",
|
56
|
-
"_": "1624005264245",
|
57
56
|
}
|
58
57
|
r = requests.get(url, params=params)
|
59
58
|
data_json = r.json()
|
@@ -94,7 +93,6 @@ def stock_board_change_em() -> pd.DataFrame:
|
|
94
93
|
"dpt": "wzchanges",
|
95
94
|
"pageindex": "0",
|
96
95
|
"pagesize": "5000",
|
97
|
-
"_": "1671978840598",
|
98
96
|
}
|
99
97
|
r = requests.get(url, params=params)
|
100
98
|
data_json = r.json()
|
@@ -5,6 +5,7 @@ Date: 2022/9/21 16:49
|
|
5
5
|
Desc: 东方财富网-数据中心-特色数据-券商业绩月报
|
6
6
|
http://data.eastmoney.com/other/qsjy.html
|
7
7
|
"""
|
8
|
+
|
8
9
|
import pandas as pd
|
9
10
|
import requests
|
10
11
|
|
@@ -71,13 +72,21 @@ def stock_qsjy_em(date: str = "20200731") -> pd.DataFrame:
|
|
71
72
|
temp_df["当月净利润-净利润"] = pd.to_numeric(temp_df["当月净利润-净利润"])
|
72
73
|
temp_df["当月净利润-同比增长"] = pd.to_numeric(temp_df["当月净利润-同比增长"])
|
73
74
|
temp_df["当月净利润-环比增长"] = pd.to_numeric(temp_df["当月净利润-环比增长"])
|
74
|
-
temp_df["当年累计净利润-累计净利润"] = pd.to_numeric(
|
75
|
-
|
75
|
+
temp_df["当年累计净利润-累计净利润"] = pd.to_numeric(
|
76
|
+
temp_df["当年累计净利润-累计净利润"]
|
77
|
+
)
|
78
|
+
temp_df["当年累计净利润-同比增长"] = pd.to_numeric(
|
79
|
+
temp_df["当年累计净利润-同比增长"]
|
80
|
+
)
|
76
81
|
temp_df["当月营业收入-营业收入"] = pd.to_numeric(temp_df["当月营业收入-营业收入"])
|
77
82
|
temp_df["当月营业收入-环比增长"] = pd.to_numeric(temp_df["当月营业收入-环比增长"])
|
78
83
|
temp_df["当月营业收入-同比增长"] = pd.to_numeric(temp_df["当月营业收入-同比增长"])
|
79
|
-
temp_df["当年累计营业收入-累计营业收入"] = pd.to_numeric(
|
80
|
-
|
84
|
+
temp_df["当年累计营业收入-累计营业收入"] = pd.to_numeric(
|
85
|
+
temp_df["当年累计营业收入-累计营业收入"]
|
86
|
+
)
|
87
|
+
temp_df["当年累计营业收入-同比增长"] = pd.to_numeric(
|
88
|
+
temp_df["当年累计营业收入-同比增长"]
|
89
|
+
)
|
81
90
|
temp_df["净资产-净资产"] = pd.to_numeric(temp_df["净资产-净资产"])
|
82
91
|
temp_df["净资产-同比增长"] = pd.to_numeric(temp_df["净资产-同比增长"])
|
83
92
|
return temp_df
|
@@ -5,6 +5,7 @@ Date: 2023/6/8 16:34
|
|
5
5
|
Desc: 巨潮资讯-首页-数据-预约披露
|
6
6
|
http://www.cninfo.com.cn/new/commonUrl?url=data/yypl
|
7
7
|
"""
|
8
|
+
|
8
9
|
import pandas as pd
|
9
10
|
import requests
|
10
11
|
|
@@ -86,5 +87,7 @@ def stock_report_disclosure(
|
|
86
87
|
|
87
88
|
|
88
89
|
if __name__ == "__main__":
|
89
|
-
stock_report_disclosure_df = stock_report_disclosure(
|
90
|
+
stock_report_disclosure_df = stock_report_disclosure(
|
91
|
+
market="沪深京", period="2022年报"
|
92
|
+
)
|
90
93
|
print(stock_report_disclosure_df)
|
@@ -5,11 +5,14 @@ Date: 2022/10/10 17:26
|
|
5
5
|
Desc: 百度股市通- A 股或指数-股评-投票
|
6
6
|
https://gushitong.baidu.com/index/ab-000001
|
7
7
|
"""
|
8
|
+
|
8
9
|
import requests
|
9
10
|
import pandas as pd
|
10
11
|
|
11
12
|
|
12
|
-
def stock_zh_vote_baidu(
|
13
|
+
def stock_zh_vote_baidu(
|
14
|
+
symbol: str = "000001", indicator: str = "指数"
|
15
|
+
) -> pd.DataFrame:
|
13
16
|
"""
|
14
17
|
百度股市通- A 股或指数-股评-投票
|
15
18
|
https://gushitong.baidu.com/index/ab-000001
|
@@ -38,7 +38,6 @@ def stock_zt_pool_em(date: str = "20241008") -> pd.DataFrame:
|
|
38
38
|
"pagesize": "10000",
|
39
39
|
"sort": "fbt:asc",
|
40
40
|
"date": date,
|
41
|
-
"_": "1621590489736",
|
42
41
|
}
|
43
42
|
r = requests.get(url, params=params)
|
44
43
|
data_json = r.json()
|
@@ -125,7 +124,6 @@ def stock_zt_pool_previous_em(date: str = "20240415") -> pd.DataFrame:
|
|
125
124
|
"pagesize": "5000",
|
126
125
|
"sort": "zs:desc",
|
127
126
|
"date": date,
|
128
|
-
"_": "1621590489736",
|
129
127
|
}
|
130
128
|
r = requests.get(url, params=params)
|
131
129
|
data_json = r.json()
|
@@ -203,7 +201,6 @@ def stock_zt_pool_strong_em(date: str = "20241231") -> pd.DataFrame:
|
|
203
201
|
"pagesize": "5000",
|
204
202
|
"sort": "zdp:desc",
|
205
203
|
"date": date,
|
206
|
-
"_": "1621590489736",
|
207
204
|
}
|
208
205
|
r = requests.get(url, params=params)
|
209
206
|
data_json = r.json()
|
@@ -293,7 +290,6 @@ def stock_zt_pool_sub_new_em(date: str = "20241231") -> pd.DataFrame:
|
|
293
290
|
"pagesize": "5000",
|
294
291
|
"sort": "ods:asc",
|
295
292
|
"date": date,
|
296
|
-
"_": "1621590489736",
|
297
293
|
}
|
298
294
|
r = requests.get(url, params=params)
|
299
295
|
data_json = r.json()
|
@@ -380,7 +376,6 @@ def stock_zt_pool_zbgc_em(date: str = "20241011") -> pd.DataFrame:
|
|
380
376
|
"pagesize": "5000",
|
381
377
|
"sort": "fbt:asc",
|
382
378
|
"date": date,
|
383
|
-
"_": "1621590489736",
|
384
379
|
}
|
385
380
|
r = requests.get(url, params=params)
|
386
381
|
data_json = r.json()
|
@@ -463,7 +458,6 @@ def stock_zt_pool_dtgc_em(date: str = "20241011") -> pd.DataFrame:
|
|
463
458
|
"pagesize": "10000",
|
464
459
|
"sort": "fund:asc",
|
465
460
|
"date": date,
|
466
|
-
"_": "1621590489736",
|
467
461
|
}
|
468
462
|
r = requests.get(url, params=params)
|
469
463
|
data_json = r.json()
|
@@ -5,6 +5,7 @@ Date: 2024/2/21 11:00
|
|
5
5
|
Desc: 新浪财经-股票-机构持股
|
6
6
|
https://vip.stock.finance.sina.com.cn/q/go.php/vComStockHold/kind/jgcg/index.phtml
|
7
7
|
"""
|
8
|
+
|
8
9
|
from io import StringIO
|
9
10
|
|
10
11
|
import pandas as pd
|
@@ -43,17 +44,19 @@ def stock_institute_hold(symbol: str = "20051") -> pd.DataFrame:
|
|
43
44
|
"占流通股比例",
|
44
45
|
"占流通股比例增幅",
|
45
46
|
]
|
46
|
-
temp_df[
|
47
|
-
temp_df[
|
48
|
-
temp_df[
|
49
|
-
temp_df[
|
50
|
-
temp_df[
|
51
|
-
temp_df[
|
47
|
+
temp_df["机构数"] = pd.to_numeric(temp_df["机构数"], errors="coerce")
|
48
|
+
temp_df["机构数变化"] = pd.to_numeric(temp_df["机构数变化"], errors="coerce")
|
49
|
+
temp_df["持股比例"] = pd.to_numeric(temp_df["持股比例"], errors="coerce")
|
50
|
+
temp_df["持股比例增幅"] = pd.to_numeric(temp_df["持股比例增幅"], errors="coerce")
|
51
|
+
temp_df["占流通股比例"] = pd.to_numeric(temp_df["占流通股比例"], errors="coerce")
|
52
|
+
temp_df["占流通股比例增幅"] = pd.to_numeric(
|
53
|
+
temp_df["占流通股比例增幅"], errors="coerce"
|
54
|
+
)
|
52
55
|
return temp_df
|
53
56
|
|
54
57
|
|
55
58
|
def stock_institute_hold_detail(
|
56
|
-
|
59
|
+
stock: str = "600433", quarter: str = "20201"
|
57
60
|
) -> pd.DataFrame:
|
58
61
|
"""
|
59
62
|
新浪财经-股票-机构持股详情
|
@@ -72,7 +75,7 @@ def stock_institute_hold_detail(
|
|
72
75
|
}
|
73
76
|
r = requests.get(url, params=params)
|
74
77
|
text_data = r.text
|
75
|
-
json_data = demjson.decode(text_data[text_data.find("{"): -2])
|
78
|
+
json_data = demjson.decode(text_data[text_data.find("{") : -2])
|
76
79
|
big_df = pd.DataFrame()
|
77
80
|
for item in json_data["data"].keys():
|
78
81
|
inner_temp_df = pd.DataFrame(json_data["data"][item]).T.iloc[:-1, :]
|
@@ -97,18 +100,24 @@ def stock_institute_hold_detail(
|
|
97
100
|
"占流通股比例增幅",
|
98
101
|
]
|
99
102
|
big_df["持股机构类型"] = big_df["持股机构类型"].str.replace("fund", "基金")
|
100
|
-
big_df["持股机构类型"] = big_df["持股机构类型"].str.replace(
|
103
|
+
big_df["持股机构类型"] = big_df["持股机构类型"].str.replace(
|
104
|
+
"socialSecurity", "全国社保"
|
105
|
+
)
|
101
106
|
big_df["持股机构类型"] = big_df["持股机构类型"].str.replace("qfii", "QFII")
|
102
107
|
big_df["持股机构类型"] = big_df["持股机构类型"].str.replace("insurance", "保险")
|
103
108
|
|
104
|
-
big_df[
|
105
|
-
big_df[
|
106
|
-
big_df[
|
107
|
-
big_df[
|
108
|
-
big_df[
|
109
|
-
big_df[
|
110
|
-
|
111
|
-
|
109
|
+
big_df["持股数"] = pd.to_numeric(big_df["持股数"], errors="coerce")
|
110
|
+
big_df["最新持股数"] = pd.to_numeric(big_df["最新持股数"], errors="coerce")
|
111
|
+
big_df["持股比例"] = pd.to_numeric(big_df["持股比例"], errors="coerce")
|
112
|
+
big_df["最新持股比例"] = pd.to_numeric(big_df["最新持股比例"], errors="coerce")
|
113
|
+
big_df["占流通股比例"] = pd.to_numeric(big_df["占流通股比例"], errors="coerce")
|
114
|
+
big_df["最新占流通股比例"] = pd.to_numeric(
|
115
|
+
big_df["最新占流通股比例"], errors="coerce"
|
116
|
+
)
|
117
|
+
big_df["持股比例增幅"] = pd.to_numeric(big_df["持股比例增幅"], errors="coerce")
|
118
|
+
big_df["占流通股比例增幅"] = pd.to_numeric(
|
119
|
+
big_df["占流通股比例增幅"], errors="coerce"
|
120
|
+
)
|
112
121
|
return big_df
|
113
122
|
else:
|
114
123
|
return pd.DataFrame()
|
@@ -4,6 +4,7 @@
|
|
4
4
|
Date: 2022/4/7 17:36
|
5
5
|
Desc: http://kcb.sse.com.cn/renewal/xmxq/index.shtml?auditId=926&anchor_type=0
|
6
6
|
"""
|
7
|
+
|
7
8
|
import requests
|
8
9
|
import pandas as pd
|
9
10
|
|
@@ -13,20 +14,19 @@ import pandas as pd
|
|
13
14
|
def stock_kcb_detail_renewal():
|
14
15
|
url = "http://query.sse.com.cn/commonSoaQuery.do"
|
15
16
|
params = {
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
17
|
+
"isPagination": "true",
|
18
|
+
"sqlId": "SH_XM_LB",
|
19
|
+
"stockAuditNum": "926", # 每次更新该字段就可以
|
20
|
+
"_": "1649324745607",
|
20
21
|
}
|
21
22
|
headers = {
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
23
|
+
"Host": "query.sse.com.cn",
|
24
|
+
"Pragma": "no-cache",
|
25
|
+
"Referer": "http://kcb.sse.com.cn/",
|
26
|
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.60 Safari/537.36",
|
26
27
|
}
|
27
28
|
r = requests.get(url, params=params, headers=headers)
|
28
29
|
data_json = r.json()
|
29
|
-
temp_df = pd.DataFrame(data_json[
|
30
|
+
temp_df = pd.DataFrame(data_json["result"])
|
30
31
|
# 处理下 temp_df 里面的字段就可以了
|
31
32
|
print(temp_df)
|
32
|
-
|
@@ -4,6 +4,7 @@
|
|
4
4
|
Date: 2022/4/7 17:36
|
5
5
|
Desc: http://kcb.sse.com.cn/renewal/#
|
6
6
|
"""
|
7
|
+
|
7
8
|
import requests
|
8
9
|
import pandas as pd
|
9
10
|
|
@@ -13,43 +14,43 @@ import pandas as pd
|
|
13
14
|
def stock_kcb_renewal():
|
14
15
|
url = "http://query.sse.com.cn/statusAction.do"
|
15
16
|
params = {
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
17
|
+
"isPagination": "true",
|
18
|
+
"sqlId": "SH_XM_LB",
|
19
|
+
"pageHelp.pageSize": "20",
|
20
|
+
"offerType": "",
|
21
|
+
"commitiResult": "",
|
22
|
+
"registeResult": "",
|
23
|
+
"province": "",
|
24
|
+
"csrcCode": "",
|
25
|
+
"currStatus": "",
|
26
|
+
"order": "updateDate|desc,stockAuditNum|desc",
|
27
|
+
"keyword": "",
|
28
|
+
"auditApplyDateBegin": "",
|
29
|
+
"auditApplyDateEnd": "",
|
30
|
+
"pageHelp.pageNo": "1",
|
31
|
+
"pageHelp.beginPage": "1",
|
32
|
+
"pageHelp.endPage": "1",
|
33
|
+
"_": "1649322742207",
|
33
34
|
}
|
34
35
|
headers = {
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
36
|
+
"Host": "query.sse.com.cn",
|
37
|
+
"Pragma": "no-cache",
|
38
|
+
"Referer": "http://kcb.sse.com.cn/",
|
39
|
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.60 Safari/537.36",
|
39
40
|
}
|
40
41
|
|
41
42
|
for page in range(1, 37):
|
42
43
|
print(page)
|
43
44
|
params.update(
|
44
45
|
{
|
45
|
-
|
46
|
-
|
47
|
-
|
46
|
+
"pageHelp.pageNo": page,
|
47
|
+
"pageHelp.beginPage": page,
|
48
|
+
"pageHelp.endPage": page,
|
48
49
|
}
|
49
50
|
)
|
50
51
|
r = requests.get(url, params=params, headers=headers)
|
51
52
|
data_json = r.json()
|
52
|
-
temp_df = pd.DataFrame(data_json[
|
53
|
+
temp_df = pd.DataFrame(data_json["result"])
|
53
54
|
# 处理下 temp_df 里面的字段就可以了
|
54
55
|
print(temp_df)
|
55
56
|
break
|