akshare 1.16.63__py3-none-any.whl → 1.16.65__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (175) hide show
  1. akshare/__init__.py +4 -2
  2. akshare/air/cons.py +1 -0
  3. akshare/air/crypto.js +1 -1
  4. akshare/air/outcrypto.js +1 -1
  5. akshare/article/cons.py +1 -0
  6. akshare/article/epu_index.py +4 -3
  7. akshare/article/ff_factor.py +19 -8
  8. akshare/article/fred_md.py +4 -1
  9. akshare/article/risk_rv.py +3 -8
  10. akshare/bond/bond_cb_sina.py +1 -0
  11. akshare/bond/bond_cbond.py +19 -14
  12. akshare/bond/bond_em.py +34 -15
  13. akshare/bond/bond_summary.py +38 -37
  14. akshare/bond/bond_zh_cov.py +0 -6
  15. akshare/bond/cons.py +14 -11
  16. akshare/crypto/__init__.py +1 -1
  17. akshare/crypto/crypto_bitcoin_cme.py +7 -7
  18. akshare/crypto/crypto_hold.py +4 -1
  19. akshare/currency/currency.py +1 -0
  20. akshare/currency/currency_china_bank_sina.py +6 -3
  21. akshare/data/__init__.py +1 -1
  22. akshare/data/cninfo.js +1 -1
  23. akshare/economic/cons.py +10 -3
  24. akshare/economic/macro_australia.py +0 -7
  25. akshare/economic/macro_canada.py +92 -81
  26. akshare/economic/macro_china.py +0 -34
  27. akshare/economic/macro_china_hk.py +0 -1
  28. akshare/economic/macro_euro.py +103 -56
  29. akshare/economic/macro_germany.py +1 -1
  30. akshare/economic/macro_japan.py +0 -1
  31. akshare/economic/macro_other.py +1 -6
  32. akshare/economic/macro_swiss.py +2 -3
  33. akshare/economic/macro_uk.py +1 -1
  34. akshare/economic/macro_usa.py +0 -2
  35. akshare/energy/energy_carbon.py +0 -1
  36. akshare/energy/energy_oil_em.py +1 -2
  37. akshare/event/cons.py +1 -0
  38. akshare/forex/forex_em.py +0 -1
  39. akshare/fortune/fortune_bloomberg.py +6 -3
  40. akshare/fortune/fortune_forbes_500.py +3 -6
  41. akshare/fortune/fortune_hurun.py +2 -1
  42. akshare/fortune/fortune_xincaifu_500.py +17 -14
  43. akshare/fund/fund_announcement.py +1 -0
  44. akshare/fund/fund_aum_em.py +47 -35
  45. akshare/fund/fund_em.py +0 -7
  46. akshare/fund/fund_etf_em.py +0 -5
  47. akshare/fund/fund_fhsp_em.py +27 -20
  48. akshare/fund/fund_init_em.py +8 -5
  49. akshare/fund/fund_lof_em.py +0 -5
  50. akshare/fund/fund_manager.py +18 -7
  51. akshare/fund/fund_portfolio_em.py +0 -1
  52. akshare/fund/fund_position_lg.py +19 -8
  53. akshare/fund/fund_rank_em.py +0 -3
  54. akshare/fund/fund_rating.py +28 -9
  55. akshare/fund/fund_scale_em.py +24 -13
  56. akshare/futures/futures_comex_em.py +1 -0
  57. akshare/futures/futures_contract_detail.py +11 -8
  58. akshare/futures/futures_inventory_em.py +0 -2
  59. akshare/futures/futures_rule.py +5 -1
  60. akshare/futures/futures_settlement_price_sgx.py +21 -6
  61. akshare/futures/futures_stock_js.py +0 -1
  62. akshare/futures/receipt.py +279 -153
  63. akshare/futures/requests_fun.py +16 -3
  64. akshare/futures_derivative/cons.py +100 -103
  65. akshare/futures_derivative/futures_contract_info_cffex.py +53 -39
  66. akshare/futures_derivative/futures_contract_info_dce.py +16 -9
  67. akshare/futures_derivative/futures_contract_info_gfex.py +43 -31
  68. akshare/futures_derivative/futures_index_sina.py +25 -13
  69. akshare/fx/cons.py +12 -7
  70. akshare/fx/fx_quote.py +1 -0
  71. akshare/fx/fx_quote_baidu.py +2 -1
  72. akshare/hf/__init__.py +1 -1
  73. akshare/hf/hf_sp500.py +8 -7
  74. akshare/index/index_eri.py +1 -0
  75. akshare/index/index_global_em.py +0 -1
  76. akshare/index/index_kq_fz.py +17 -14
  77. akshare/index/index_kq_ss.py +1 -0
  78. akshare/index/index_stock_hk.py +0 -1
  79. akshare/index/index_stock_zh.py +0 -3
  80. akshare/index/index_sugar.py +18 -4
  81. akshare/index/index_zh_em.py +0 -15
  82. akshare/interest_rate/interbank_rate_em.py +0 -1
  83. akshare/movie/jm.js +0 -1
  84. akshare/news/__init__.py +1 -1
  85. akshare/news/news_stock.py +0 -1
  86. akshare/option/option_commodity_sina.py +22 -26
  87. akshare/option/option_daily_stats_sse_szse.py +0 -1
  88. akshare/option/option_em.py +0 -1
  89. akshare/option/option_lhb_em.py +0 -1
  90. akshare/option/option_risk_indicator_sse.py +0 -1
  91. akshare/other/__init__.py +1 -1
  92. akshare/pro/__init__.py +0 -1
  93. akshare/pro/client.py +6 -4
  94. akshare/pro/cons.py +3 -2
  95. akshare/pro/data_pro.py +6 -5
  96. akshare/qhkc/qhkc_api.py +63 -21
  97. akshare/qhkc_web/qhkc_fund.py +1 -0
  98. akshare/qhkc_web/qhkc_index.py +1 -0
  99. akshare/qhkc_web/qhkc_tool.py +55 -54
  100. akshare/rate/__init__.py +1 -1
  101. akshare/rate/repo_rate.py +36 -32
  102. akshare/reits/__init__.py +1 -1
  103. akshare/reits/reits_basic.py +139 -5
  104. akshare/sport/__init__.py +1 -1
  105. akshare/sport/sport_olympic.py +1 -0
  106. akshare/spot/__init__.py +1 -1
  107. akshare/stock/cons.py +19 -12
  108. akshare/stock/stock_board_concept_em.py +0 -6
  109. akshare/stock/stock_board_industry_em.py +0 -6
  110. akshare/stock/stock_dzjy_em.py +1 -1
  111. akshare/stock/stock_fund_em.py +0 -2
  112. akshare/stock/stock_fund_hold.py +1 -2
  113. akshare/stock/stock_gsrl_em.py +1 -0
  114. akshare/stock/stock_hk_famous.py +0 -1
  115. akshare/stock/stock_hk_fhpx_ths.py +2 -1
  116. akshare/stock/stock_hk_hot_rank_em.py +1 -0
  117. akshare/stock/stock_hold_control_em.py +0 -2
  118. akshare/stock/stock_hot_up_em.py +4 -1
  119. akshare/stock/stock_hsgt_em.py +0 -2
  120. akshare/stock/stock_industry.py +1 -0
  121. akshare/stock/stock_info.py +0 -2
  122. akshare/stock/stock_info_em.py +0 -1
  123. akshare/stock/stock_repurchase_em.py +7 -2
  124. akshare/stock/stock_share_hold.py +0 -1
  125. akshare/stock/stock_stop.py +0 -1
  126. akshare/stock/stock_summary.py +0 -2
  127. akshare/stock/stock_us_famous.py +0 -1
  128. akshare/stock/stock_us_js.py +3 -2
  129. akshare/stock/stock_us_pink.py +0 -1
  130. akshare/stock/stock_weibo_nlp.py +18 -20
  131. akshare/stock/stock_zh_a_special.py +0 -3
  132. akshare/stock/stock_zh_a_tick_tx.py +11 -3
  133. akshare/stock_a/stock_board_concept_name_em.py +0 -1
  134. akshare/stock_a/stock_zh_a_spot.py +0 -1
  135. akshare/stock_feature/cons.py +1 -0
  136. akshare/stock_feature/stock_account_em.py +0 -1
  137. akshare/stock_feature/stock_all_pb.py +2 -1
  138. akshare/stock_feature/stock_analyst_em.py +0 -3
  139. akshare/stock_feature/stock_buffett_index_lg.py +7 -6
  140. akshare/stock_feature/stock_classify_sina.py +3 -6
  141. akshare/stock_feature/stock_comment_em.py +0 -2
  142. akshare/stock_feature/stock_congestion_lg.py +2 -1
  143. akshare/stock_feature/stock_dxsyl_em.py +116 -71
  144. akshare/stock_feature/stock_gdzjc_em.py +16 -5
  145. akshare/stock_feature/stock_gxl_lg.py +3 -2
  146. akshare/stock_feature/stock_hist_em.py +0 -20
  147. akshare/stock_feature/stock_hist_tx.py +10 -8
  148. akshare/stock_feature/stock_hot_xq.py +4 -6
  149. akshare/stock_feature/stock_hsgt_em.py +0 -2
  150. akshare/stock_feature/stock_hsgt_exchange_rate.py +0 -2
  151. akshare/stock_feature/stock_hsgt_min_em.py +13 -16
  152. akshare/stock_feature/stock_inner_trade_xq.py +0 -1
  153. akshare/stock_feature/stock_lhb_em.py +0 -1
  154. akshare/stock_feature/stock_margin_em.py +0 -1
  155. akshare/stock_feature/stock_margin_sse.py +0 -2
  156. akshare/stock_feature/stock_pankou_em.py +0 -2
  157. akshare/stock_feature/stock_qsjy_em.py +13 -4
  158. akshare/stock_feature/stock_research_report_em.py +0 -1
  159. akshare/stock_feature/stock_yjyg_cninfo.py +4 -1
  160. akshare/stock_feature/stock_zh_vote_baidu.py +4 -1
  161. akshare/stock_feature/stock_ztb_em.py +0 -6
  162. akshare/stock_fundamental/__init__.py +1 -1
  163. akshare/stock_fundamental/stock_hold.py +26 -17
  164. akshare/stock_fundamental/stock_ipo_declare.py +1 -0
  165. akshare/stock_fundamental/stock_kcb_detail_sse.py +10 -10
  166. akshare/stock_fundamental/stock_kcb_sse.py +26 -25
  167. akshare/stock_fundamental/stock_profit_forecast_hk_etnet.py +64 -41
  168. akshare/stock_fundamental/stock_recommend.py +20 -4
  169. akshare/utils/demjson.py +2005 -1334
  170. akshare/utils/token_process.py +6 -5
  171. {akshare-1.16.63.dist-info → akshare-1.16.65.dist-info}/METADATA +3 -8
  172. {akshare-1.16.63.dist-info → akshare-1.16.65.dist-info}/RECORD +175 -175
  173. {akshare-1.16.63.dist-info → akshare-1.16.65.dist-info}/WHEEL +0 -0
  174. {akshare-1.16.63.dist-info → akshare-1.16.65.dist-info}/licenses/LICENSE +0 -0
  175. {akshare-1.16.63.dist-info → akshare-1.16.65.dist-info}/top_level.txt +0 -0
akshare/pro/data_pro.py CHANGED
@@ -4,24 +4,25 @@
4
4
  Date: 2019/11/10 22:52
5
5
  Desc: 数据接口初始化
6
6
  """
7
+
7
8
  from akshare.pro import client
8
9
  from akshare.utils import token_process
9
10
 
10
11
 
11
- def pro_api(token=''):
12
+ def pro_api(token=""):
12
13
  """
13
14
  初始化 pro API,第一次可以通过ak.set_token('your token')来记录自己的token凭证,临时token可以通过本参数传入
14
15
  """
15
- if token == '' or token is None:
16
+ if token == "" or token is None:
16
17
  token = token_process.get_token()
17
- if token is not None and token != '':
18
+ if token is not None and token != "":
18
19
  pro = client.DataApi(token)
19
20
  return pro
20
21
  else:
21
- raise Exception('api init error.')
22
+ raise Exception("api init error.")
22
23
 
23
24
 
24
- if __name__ == '__main__':
25
+ if __name__ == "__main__":
25
26
  pro_test = pro_api()
26
27
  variety_all_df = pro_test.variety_all()
27
28
  print(variety_all_df)
akshare/qhkc/qhkc_api.py CHANGED
@@ -4,16 +4,21 @@
4
4
  Date: 2020/2/13 21:33
5
5
  Desc: 接口测试文件
6
6
  """
7
+
7
8
  from akshare.pro.data_pro import pro_api
8
9
 
9
10
  pro = pro_api()
10
11
 
11
12
  # 商品-持仓数据-多头龙虎榜
12
- variety_positions_longs_df = pro.variety_positions(fields="longs", code="rb1810", date="2018-08-08")
13
+ variety_positions_longs_df = pro.variety_positions(
14
+ fields="longs", code="rb1810", date="2018-08-08"
15
+ )
13
16
  print(variety_positions_longs_df)
14
17
 
15
18
  # 商品-持仓数据-空头龙虎榜
16
- variety_positions_shorts_df = pro.variety_positions(fields="shorts", code="rb1810", date="2018-08-08")
19
+ variety_positions_shorts_df = pro.variety_positions(
20
+ fields="shorts", code="rb1810", date="2018-08-08"
21
+ )
17
22
  print(variety_positions_shorts_df)
18
23
 
19
24
  # 商品-合约行情数据
@@ -41,7 +46,9 @@ variety_total_money_df = pro.variety_total_money(code="rb1810", date="2018-08-08
41
46
  print(variety_total_money_df)
42
47
 
43
48
  # 商品-商品的席位盈亏数据
44
- variety_profit_df = pro.variety_profit(symbol="RB", start_date="2018-02-08", end_date="2018-08-08")
49
+ variety_profit_df = pro.variety_profit(
50
+ symbol="RB", start_date="2018-02-08", end_date="2018-08-08"
51
+ )
45
52
  print(variety_profit_df)
46
53
 
47
54
  # 商品-自研指标数据
@@ -57,11 +64,15 @@ variety_longhu_short_top_df = pro.variety_longhu_top(fields="short", date="2018-
57
64
  print(variety_longhu_short_top_df)
58
65
 
59
66
  # 商品-牛熊线排行数据-多头排行
60
- variety_niuxiong_long_top_df = pro.variety_niuxiong_top(fields="long", date="2018-08-08")
67
+ variety_niuxiong_long_top_df = pro.variety_niuxiong_top(
68
+ fields="long", date="2018-08-08"
69
+ )
61
70
  print(variety_niuxiong_long_top_df)
62
71
 
63
72
  # 商品-牛熊线排行数据-空头排行
64
- variety_niuxiong_short_top_df = pro.variety_niuxiong_top(fields="short", date="2018-08-08")
73
+ variety_niuxiong_short_top_df = pro.variety_niuxiong_top(
74
+ fields="short", date="2018-08-08"
75
+ )
65
76
  print(variety_niuxiong_short_top_df)
66
77
 
67
78
  # 商品-商品相关研报数据
@@ -74,7 +85,9 @@ print(variety_all_df)
74
85
 
75
86
 
76
87
  # 席位-商品净持仓数据
77
- variety_net_positions_df = pro.variety_net_positions(symbol="RB", broker="永安期货", date="2018-08-08")
88
+ variety_net_positions_df = pro.variety_net_positions(
89
+ symbol="RB", broker="永安期货", date="2018-08-08"
90
+ )
78
91
  print(variety_net_positions_df)
79
92
 
80
93
  # 席位-席位持仓数据
@@ -82,7 +95,9 @@ broker_positions_df = pro.broker_positions(broker="永安期货", date="2018-08-
82
95
  print(broker_positions_df)
83
96
 
84
97
  # 席位-席位盈亏数据
85
- broker_calendar_df = pro.broker_calendar(broker="永安期货", start_date="2018-07-08", end_date="2018-08-08")
98
+ broker_calendar_df = pro.broker_calendar(
99
+ broker="永安期货", start_date="2018-07-08", end_date="2018-08-08"
100
+ )
86
101
  print(broker_calendar_df)
87
102
 
88
103
  # 席位-席位每日大资金流动数据
@@ -94,7 +109,9 @@ broker_bbr_df = pro.broker_bbr(broker="永安期货", date="2018-08-08")
94
109
  print(broker_bbr_df)
95
110
 
96
111
  # 席位-席位净持仓保证金变化数据
97
- broker_net_money_chge_df = pro.broker_net_money_chge(broker="永安期货", date="2018-08-08")
112
+ broker_net_money_chge_df = pro.broker_net_money_chge(
113
+ broker="永安期货", date="2018-08-08"
114
+ )
98
115
  print(broker_net_money_chge_df)
99
116
 
100
117
  # 席位-席位净持仓保证金数据
@@ -106,15 +123,21 @@ broker_total_money_df = pro.broker_total_money(broker="永安期货", date="2018
106
123
  print(broker_total_money_df)
107
124
 
108
125
  # 席位-席位的商品盈亏数据
109
- broker_profit_df = pro.broker_profit(broker="永安期货", start_date="2018-07-08", end_date="2018-08-08")
126
+ broker_profit_df = pro.broker_profit(
127
+ broker="永安期货", start_date="2018-07-08", end_date="2018-08-08"
128
+ )
110
129
  print(broker_profit_df)
111
130
 
112
131
  # 席位-席位盈利排行
113
- broker_in_profit_list_df = pro.broker_in_profit_list(start_date="2018-07-08", end_date="2018-08-08", count="10")
132
+ broker_in_profit_list_df = pro.broker_in_profit_list(
133
+ start_date="2018-07-08", end_date="2018-08-08", count="10"
134
+ )
114
135
  print(broker_in_profit_list_df)
115
136
 
116
137
  # 席位-席位亏损排行
117
- broker_in_loss_list_df = pro.broker_in_loss_list(start_date="2018-07-08", end_date="2018-08-08", count="10")
138
+ broker_in_loss_list_df = pro.broker_in_loss_list(
139
+ start_date="2018-07-08", end_date="2018-08-08", count="10"
140
+ )
118
141
  print(broker_in_loss_list_df)
119
142
 
120
143
  # 席位-所有席位数据
@@ -122,7 +145,9 @@ broker_all_df = pro.broker_all(offset_days="365")
122
145
  print(broker_all_df)
123
146
 
124
147
  # 席位-建仓过程
125
- broker_positions_process_df = pro.broker_positions_process(broker="永安期货", code="rb2010", start_date="2020-02-03", end_date="2020-06-03")
148
+ broker_positions_process_df = pro.broker_positions_process(
149
+ broker="永安期货", code="rb2010", start_date="2020-02-03", end_date="2020-06-03"
150
+ )
126
151
  print(broker_positions_process_df)
127
152
 
128
153
  # 席位-席位对对碰
@@ -135,15 +160,21 @@ index_info_df = pro.index_info(index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e9
135
160
  print(index_info_df)
136
161
 
137
162
  # 指数-指数权重数据
138
- index_weights_df = pro.index_weights(index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e959", date="2018-08-08")
163
+ index_weights_df = pro.index_weights(
164
+ index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e959", date="2018-08-08"
165
+ )
139
166
  print(index_weights_df)
140
167
 
141
168
  # 指数-指数行情数据
142
- index_quotes_df = pro.index_quotes(index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e959", date="2018-08-08")
169
+ index_quotes_df = pro.index_quotes(
170
+ index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e959", date="2018-08-08"
171
+ )
143
172
  print(index_quotes_df)
144
173
 
145
174
  # 指数-指数沉淀资金数据
146
- index_money_df = pro.index_money(index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e959", date="2018-08-08")
175
+ index_money_df = pro.index_money(
176
+ index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e959", date="2018-08-08"
177
+ )
147
178
  print(index_money_df)
148
179
 
149
180
  # 指数-公共指数列表
@@ -155,11 +186,17 @@ index_mine_df = pro.index_mine()
155
186
  print(index_mine_df)
156
187
 
157
188
  # 指数-指数资金动向
158
- index_trend_df = pro.index_trend(index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e959", date="2018-08-08")
189
+ index_trend_df = pro.index_trend(
190
+ index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e959", date="2018-08-08"
191
+ )
159
192
  print(index_trend_df)
160
193
 
161
194
  # 指数-指数的席位盈亏数据
162
- index_profit_df = pro.index_profit(index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e959", start_date="2018-07-08", end_date="2018-08-08")
195
+ index_profit_df = pro.index_profit(
196
+ index_id="index0070c0eb-93ba-2da9-6633-fa70cb90e959",
197
+ start_date="2018-07-08",
198
+ end_date="2018-08-08",
199
+ )
163
200
  print(index_profit_df)
164
201
 
165
202
  # 基本面-基差
@@ -183,15 +220,21 @@ trader_prices_df = pro.trader_prices(variety="RB", date="2020-03-30")
183
220
  print(trader_prices_df)
184
221
 
185
222
  # 基本面-跨期套利数据
186
- intertemporal_arbitrage_df = pro.intertemporal_arbitrage(variety="RB", code1="01", code2="05", date="2018-08-08")
223
+ intertemporal_arbitrage_df = pro.intertemporal_arbitrage(
224
+ variety="RB", code1="01", code2="05", date="2018-08-08"
225
+ )
187
226
  print(intertemporal_arbitrage_df)
188
227
 
189
228
  # 基本面-自由价差数据
190
- free_spread_df = pro.free_spread(variety1="RB", code1="01", variety2="HC", code2="01", date="2018-08-08")
229
+ free_spread_df = pro.free_spread(
230
+ variety1="RB", code1="01", variety2="HC", code2="01", date="2018-08-08"
231
+ )
191
232
  print(free_spread_df)
192
233
 
193
234
  # 基本面-自由价比数据
194
- free_ratio_df = pro.free_ratio(variety1="RB", code1="01", variety2="HC", code2="01", date="2018-08-08")
235
+ free_ratio_df = pro.free_ratio(
236
+ variety1="RB", code1="01", variety2="HC", code2="01", date="2018-08-08"
237
+ )
195
238
  print(free_ratio_df)
196
239
 
197
240
  # 基本面-仓单数据
@@ -235,4 +278,3 @@ print(stock_flow_short_df)
235
278
  # 资金-每日商品保证金沉淀变化
236
279
  money_in_out_df = pro.money_in_out(date="2018-08-08")
237
280
  print(money_in_out_df)
238
-
@@ -5,6 +5,7 @@ Date: 2019/9/30 13:58
5
5
  Desc: 奇货可查网站目前已经商业化运营, 特提供奇货可查-资金数据接口, 方便您程序化调用
6
6
  注:期货价格为收盘价; 现货价格来自网络; 基差=现货价格-期货价格; 基差率=(现货价格-期货价格)/现货价格 * 100 %.
7
7
  """
8
+
8
9
  import datetime
9
10
  from typing import AnyStr
10
11
 
@@ -5,6 +5,7 @@ Date: 2019/9/30 13:58
5
5
  Desc: 奇货可查网站目前已经商业化运营, 特提供奇货可查-指数数据接口, 方便您程序化调用
6
6
  注:期货价格为收盘价; 现货价格来自网络; 基差=现货价格-期货价格; 基差率=(现货价格-期货价格)/现货价格 * 100 %.
7
7
  """
8
+
8
9
  from typing import AnyStr
9
10
 
10
11
  import pandas as pd
@@ -5,6 +5,7 @@ Date: 2019/9/30 13:58
5
5
  Desc: 奇货可查网站目前已经商业化运营, 特提供奇货可查-工具数据接口, 方便您程序化调用
6
6
  注:期货价格为收盘价; 现货价格来自网络; 基差=现货价格-期货价格; 基差率=(现货价格-期货价格)/现货价格 * 100 %.
7
7
  """
8
+
8
9
  from typing import AnyStr
9
10
 
10
11
  import pandas as pd
@@ -108,60 +109,60 @@ def qhkc_tool_nebula(url: AnyStr = QHKC_TOOL_FOREIGN_URL):
108
109
 
109
110
  def qhkc_tool_gdp(url: AnyStr = QHKC_TOOL_GDP_URL):
110
111
  """
111
- 奇货可查-工具-各地区经济数据
112
- 实时更新数据, 暂不能查询历史数据
113
- :param url:
114
- :return: pandas.DataFrame
115
- 国家 国内生产总值 国内生产总值YoY 国内生产总值QoQ ... 预算 债务 经常账户 人口
116
- 美国 20494 2.30% 2.00% ... -3.80% 106.10% -2.40 327.17
117
- 欧元区 13670 1.20% 0.20% ... -0.50% 85.10% 2.90 341.15
118
- 中国 13608 6.20% 1.60% ... -4.20% 50.50% 0.40 1395.38
119
- 日本 4971 1.00% 0.30% ... -3.80% 238.20% 3.50 126.25
120
- 德国 3997 0.40% -0.10% ... 1.70% 60.90% 7.30 82.85
121
- 英国 2825 1.30% -0.20% ... -2.00% 84.70% -3.90 66.19
122
- 法国 2778 1.40% 0.30% ... -2.50% 98.40% -0.30 67.19
123
- 印度 2726 5.00% 1.00% ... -3.42% 68.30% -2.30 1298.04
124
- 意大利 2074 -0.10% 0.00% ... -2.10% 134.80% 2.50 60.48
125
- 巴西 1869 1.00% 0.40% ... -7.10% 77.22% -0.77 208.49
126
- 加拿大 1709 1.60% 0.90% ... -0.70% 90.60% -2.60 37.31
127
- 俄罗斯 1658 0.90% 0.20% ... 2.70% 13.50% 7.00 146.90
128
- 韩国 1619 2.00% 1.00% ... -1.60% 36.60% 4.70 51.61
129
- 澳大利亚 1432 1.40% 0.50% ... -0.60% 40.70% -1.50 25.18
130
- 西班牙 1426 2.00% 0.40% ... -2.50% 97.10% 0.90 46.66
131
- 墨西哥 1224 -0.80% 0.00% ... -2.00% 46.00% -1.80 125.33
132
- 印尼 1042 5.05% 4.20% ... -1.76% 29.80% -3.00 264.20
133
- 荷兰 913 1.80% 0.40% ... 1.50% 52.40% 10.80 17.12
134
- 沙特阿拉伯 782 0.50% 0.00% ... -9.20% 19.10% 9.20 33.41
135
- 土耳其 767 -1.50% 1.20% ... -2.00% 30.40% -3.50 82.00
136
- 瑞士 706 0.20% 0.30% ... 1.30% 27.70% 10.20 8.48
137
- 台湾 589 2.40% 0.67% ... -1.90% 30.90% 11.60 23.58
138
- 波兰 586 4.50% 0.80% ... -0.40% 48.90% -0.70 37.98
139
- 瑞典 551 1.00% 0.10% ... 0.90% 38.80% 2.00 10.12
140
- 比利时 532 1.20% 0.20% ... -0.70% 102.00% -1.30 11.41
141
- 阿根廷 519 0.60% -0.30% ... -5.50% 86.20% -5.40 44.50
142
- 泰国 505 2.30% 0.60% ... -2.50% 41.80% 7.50 66.41
143
- 委内瑞拉 482 -22.50% -5.40% ... -20.00% 23.00% 6.00 31.83
144
- 奥地利 456 1.50% 0.30% ... 0.10% 73.80% 2.30 8.82
145
- 伊朗 454 1.80% NaN ... -3.90% 44.20% 1.30 82.10
146
- 挪威 435 -0.70% 0.30% ... 7.30% 36.30% 8.10 5.30
147
- 阿联酋 414 2.20% 1.70% ... -1.80% 18.60% 9.10 9.60
148
- 尼日利亚 397 1.94% 2.85% ... -2.80% 18.20% 2.30 195.87
149
- 爱尔兰 376 5.80% 0.70% ... 0.00% 64.80% 9.10 4.84
150
- 以色列 370 3.20% 0.30% ... -1.90% 61.00% 1.90 8.97
151
- 南非 366 0.90% 3.10% ... -4.40% 55.80% -3.60 58.78
152
- 新加坡 364 0.10% -3.30% ... 0.40% 112.20% 17.70 5.64
153
- 香港 363 0.50% -0.40% ... 2.10% 38.40% 4.30 7.48
154
- 马来西亚 354 4.90% 1.00% ... -3.70% 51.80% 2.30 32.40
155
- 丹麦 351 2.60% 0.90% ... 0.50% 34.10% 6.10 5.78
156
- 菲律宾 331 5.50% 1.40% ... -3.20% 41.90% -2.40 107.00
157
- 哥伦比亚 330 3.00% 1.40% ... -3.10% 50.50% -3.80 49.83
158
- 巴基斯坦 313 5.20% 5.79% ... -6.60% 72.50% -4.80 212.22
159
- 智利 298 1.90% 0.80% ... -1.70% 25.60% -3.10 18.75
160
- 芬兰 276 1.20% 0.50% ... -0.70% 58.90% -1.90 5.51
161
- 孟加拉国 274 7.90% 7.90% ... -4.80% 27.90% -3.60 163.70
162
- 埃及 251 5.70% 5.40% ... -8.20% 90.50% -2.40 98.00
163
- 越南 245 7.31% 6.88% ... -3.50% 57.50% 3.00 94.67
164
- 捷克共和国 244 2.70% 0.70% ... 0.90% 32.70% 0.30 10.61
112
+ 奇货可查-工具-各地区经济数据
113
+ 实时更新数据, 暂不能查询历史数据
114
+ :param url:
115
+ :return: pandas.DataFrame
116
+ 国家 国内生产总值 国内生产总值YoY 国内生产总值QoQ ... 预算 债务 经常账户 人口
117
+ 美国 20494 2.30% 2.00% ... -3.80% 106.10% -2.40 327.17
118
+ 欧元区 13670 1.20% 0.20% ... -0.50% 85.10% 2.90 341.15
119
+ 中国 13608 6.20% 1.60% ... -4.20% 50.50% 0.40 1395.38
120
+ 日本 4971 1.00% 0.30% ... -3.80% 238.20% 3.50 126.25
121
+ 德国 3997 0.40% -0.10% ... 1.70% 60.90% 7.30 82.85
122
+ 英国 2825 1.30% -0.20% ... -2.00% 84.70% -3.90 66.19
123
+ 法国 2778 1.40% 0.30% ... -2.50% 98.40% -0.30 67.19
124
+ 印度 2726 5.00% 1.00% ... -3.42% 68.30% -2.30 1298.04
125
+ 意大利 2074 -0.10% 0.00% ... -2.10% 134.80% 2.50 60.48
126
+ 巴西 1869 1.00% 0.40% ... -7.10% 77.22% -0.77 208.49
127
+ 加拿大 1709 1.60% 0.90% ... -0.70% 90.60% -2.60 37.31
128
+ 俄罗斯 1658 0.90% 0.20% ... 2.70% 13.50% 7.00 146.90
129
+ 韩国 1619 2.00% 1.00% ... -1.60% 36.60% 4.70 51.61
130
+ 澳大利亚 1432 1.40% 0.50% ... -0.60% 40.70% -1.50 25.18
131
+ 西班牙 1426 2.00% 0.40% ... -2.50% 97.10% 0.90 46.66
132
+ 墨西哥 1224 -0.80% 0.00% ... -2.00% 46.00% -1.80 125.33
133
+ 印尼 1042 5.05% 4.20% ... -1.76% 29.80% -3.00 264.20
134
+ 荷兰 913 1.80% 0.40% ... 1.50% 52.40% 10.80 17.12
135
+ 沙特阿拉伯 782 0.50% 0.00% ... -9.20% 19.10% 9.20 33.41
136
+ 土耳其 767 -1.50% 1.20% ... -2.00% 30.40% -3.50 82.00
137
+ 瑞士 706 0.20% 0.30% ... 1.30% 27.70% 10.20 8.48
138
+ 台湾 589 2.40% 0.67% ... -1.90% 30.90% 11.60 23.58
139
+ 波兰 586 4.50% 0.80% ... -0.40% 48.90% -0.70 37.98
140
+ 瑞典 551 1.00% 0.10% ... 0.90% 38.80% 2.00 10.12
141
+ 比利时 532 1.20% 0.20% ... -0.70% 102.00% -1.30 11.41
142
+ 阿根廷 519 0.60% -0.30% ... -5.50% 86.20% -5.40 44.50
143
+ 泰国 505 2.30% 0.60% ... -2.50% 41.80% 7.50 66.41
144
+ 委内瑞拉 482 -22.50% -5.40% ... -20.00% 23.00% 6.00 31.83
145
+ 奥地利 456 1.50% 0.30% ... 0.10% 73.80% 2.30 8.82
146
+ 伊朗 454 1.80% NaN ... -3.90% 44.20% 1.30 82.10
147
+ 挪威 435 -0.70% 0.30% ... 7.30% 36.30% 8.10 5.30
148
+ 阿联酋 414 2.20% 1.70% ... -1.80% 18.60% 9.10 9.60
149
+ 尼日利亚 397 1.94% 2.85% ... -2.80% 18.20% 2.30 195.87
150
+ 爱尔兰 376 5.80% 0.70% ... 0.00% 64.80% 9.10 4.84
151
+ 以色列 370 3.20% 0.30% ... -1.90% 61.00% 1.90 8.97
152
+ 南非 366 0.90% 3.10% ... -4.40% 55.80% -3.60 58.78
153
+ 新加坡 364 0.10% -3.30% ... 0.40% 112.20% 17.70 5.64
154
+ 香港 363 0.50% -0.40% ... 2.10% 38.40% 4.30 7.48
155
+ 马来西亚 354 4.90% 1.00% ... -3.70% 51.80% 2.30 32.40
156
+ 丹麦 351 2.60% 0.90% ... 0.50% 34.10% 6.10 5.78
157
+ 菲律宾 331 5.50% 1.40% ... -3.20% 41.90% -2.40 107.00
158
+ 哥伦比亚 330 3.00% 1.40% ... -3.10% 50.50% -3.80 49.83
159
+ 巴基斯坦 313 5.20% 5.79% ... -6.60% 72.50% -4.80 212.22
160
+ 智利 298 1.90% 0.80% ... -1.70% 25.60% -3.10 18.75
161
+ 芬兰 276 1.20% 0.50% ... -0.70% 58.90% -1.90 5.51
162
+ 孟加拉国 274 7.90% 7.90% ... -4.80% 27.90% -3.60 163.70
163
+ 埃及 251 5.70% 5.40% ... -8.20% 90.50% -2.40 98.00
164
+ 越南 245 7.31% 6.88% ... -3.50% 57.50% 3.00 94.67
165
+ 捷克共和国 244 2.70% 0.70% ... 0.90% 32.70% 0.30 10.61
165
166
  """
166
167
  data = pd.read_html(url, encoding="utf-8")
167
168
  columns_list = data[0].columns.tolist()
akshare/rate/__init__.py CHANGED
@@ -2,5 +2,5 @@
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
4
  Date: 2020/10/29 13:03
5
- Desc:
5
+ Desc:
6
6
  """
akshare/rate/repo_rate.py CHANGED
@@ -4,6 +4,7 @@
4
4
  Date: 2024/1/20 23:04
5
5
  Desc: 中国外汇交易中心暨全国银行间同业拆借中心-回购定盘利率-历史数据
6
6
  """
7
+
7
8
  import pandas as pd
8
9
  import requests
9
10
 
@@ -21,27 +22,29 @@ def repo_rate_query(symbol: str = "回购定盘利率") -> pd.DataFrame:
21
22
  url = "https://www.chinamoney.com.cn/r/cms/www/chinamoney/data/currency/frr-chrt.csv"
22
23
  temp_df = pd.read_csv(url, header=None)
23
24
  temp_df.dropna(axis=1, inplace=True)
24
- temp_df.columns = ['date', "FR001", "FR007", "FR014"]
25
- temp_df['date'] = pd.to_datetime(temp_df['date'], errors="coerce").dt.date
26
- temp_df['FR001'] = pd.to_numeric(temp_df['FR001'], errors="coerce")
27
- temp_df['FR007'] = pd.to_numeric(temp_df['FR007'], errors="coerce")
28
- temp_df['FR014'] = pd.to_numeric(temp_df['FR014'], errors="coerce")
29
- temp_df.sort_values(by=['date'], ignore_index=True, inplace=True)
25
+ temp_df.columns = ["date", "FR001", "FR007", "FR014"]
26
+ temp_df["date"] = pd.to_datetime(temp_df["date"], errors="coerce").dt.date
27
+ temp_df["FR001"] = pd.to_numeric(temp_df["FR001"], errors="coerce")
28
+ temp_df["FR007"] = pd.to_numeric(temp_df["FR007"], errors="coerce")
29
+ temp_df["FR014"] = pd.to_numeric(temp_df["FR014"], errors="coerce")
30
+ temp_df.sort_values(by=["date"], ignore_index=True, inplace=True)
30
31
  return temp_df
31
32
  else:
32
33
  url = "https://www.chinamoney.com.cn/r/cms/www/chinamoney/data/currency/fdr-chrt.csv"
33
34
  temp_df = pd.read_csv(url, header=None)
34
35
  temp_df.dropna(axis=1, inplace=True)
35
- temp_df.columns = ['date', "FDR001", "FDR007", "FDR014"]
36
- temp_df['date'] = pd.to_datetime(temp_df['date'], errors="coerce").dt.date
37
- temp_df['FDR001'] = pd.to_numeric(temp_df['FDR001'], errors="coerce")
38
- temp_df['FDR007'] = pd.to_numeric(temp_df['FDR007'], errors="coerce")
39
- temp_df['FDR014'] = pd.to_numeric(temp_df['FDR014'], errors="coerce")
40
- temp_df.sort_values(by=['date'], ignore_index=True, inplace=True)
36
+ temp_df.columns = ["date", "FDR001", "FDR007", "FDR014"]
37
+ temp_df["date"] = pd.to_datetime(temp_df["date"], errors="coerce").dt.date
38
+ temp_df["FDR001"] = pd.to_numeric(temp_df["FDR001"], errors="coerce")
39
+ temp_df["FDR007"] = pd.to_numeric(temp_df["FDR007"], errors="coerce")
40
+ temp_df["FDR014"] = pd.to_numeric(temp_df["FDR014"], errors="coerce")
41
+ temp_df.sort_values(by=["date"], ignore_index=True, inplace=True)
41
42
  return temp_df
42
43
 
43
44
 
44
- def repo_rate_hist(start_date: str = "20200930", end_date: str = "20201029") -> pd.DataFrame:
45
+ def repo_rate_hist(
46
+ start_date: str = "20200930", end_date: str = "20201029"
47
+ ) -> pd.DataFrame:
45
48
  """
46
49
  中国外汇交易中心暨全国银行间同业拆借中心-回购定盘利率-历史数据
47
50
  https://www.chinamoney.com.cn/chinese/bkfrr/
@@ -57,7 +60,6 @@ def repo_rate_hist(start_date: str = "20200930", end_date: str = "20201029") ->
57
60
  url = "https://www.chinamoney.com.cn/ags/ms/cm-u-bk-currency/FrrHis"
58
61
  headers = {
59
62
  "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36",
60
-
61
63
  }
62
64
  params = {
63
65
  "lang": "CN",
@@ -68,27 +70,29 @@ def repo_rate_hist(start_date: str = "20200930", end_date: str = "20201029") ->
68
70
  data_json = r.json()
69
71
  temp_df = pd.DataFrame(data_json["records"])
70
72
  temp_df = pd.DataFrame([item for item in temp_df["frValueMap"].to_list()])
71
- temp_df = temp_df[[
72
- "date",
73
- "FR001",
74
- "FR007",
75
- "FR014",
76
- "FDR001",
77
- "FDR007",
78
- "FDR014",
79
- ]]
80
- temp_df['date'] = pd.to_datetime(temp_df['date'], errors="coerce").dt.date
81
- temp_df['FR001'] = pd.to_numeric(temp_df['FR001'], errors="coerce")
82
- temp_df['FR007'] = pd.to_numeric(temp_df['FR007'], errors="coerce")
83
- temp_df['FR014'] = pd.to_numeric(temp_df['FR014'], errors="coerce")
84
- temp_df['FDR001'] = pd.to_numeric(temp_df['FDR001'], errors="coerce")
85
- temp_df['FDR007'] = pd.to_numeric(temp_df['FDR007'], errors="coerce")
86
- temp_df['FDR014'] = pd.to_numeric(temp_df['FDR014'], errors="coerce")
87
- temp_df.sort_values(['date'], ignore_index=True, inplace=True)
73
+ temp_df = temp_df[
74
+ [
75
+ "date",
76
+ "FR001",
77
+ "FR007",
78
+ "FR014",
79
+ "FDR001",
80
+ "FDR007",
81
+ "FDR014",
82
+ ]
83
+ ]
84
+ temp_df["date"] = pd.to_datetime(temp_df["date"], errors="coerce").dt.date
85
+ temp_df["FR001"] = pd.to_numeric(temp_df["FR001"], errors="coerce")
86
+ temp_df["FR007"] = pd.to_numeric(temp_df["FR007"], errors="coerce")
87
+ temp_df["FR014"] = pd.to_numeric(temp_df["FR014"], errors="coerce")
88
+ temp_df["FDR001"] = pd.to_numeric(temp_df["FDR001"], errors="coerce")
89
+ temp_df["FDR007"] = pd.to_numeric(temp_df["FDR007"], errors="coerce")
90
+ temp_df["FDR014"] = pd.to_numeric(temp_df["FDR014"], errors="coerce")
91
+ temp_df.sort_values(["date"], ignore_index=True, inplace=True)
88
92
  return temp_df
89
93
 
90
94
 
91
- if __name__ == '__main__':
95
+ if __name__ == "__main__":
92
96
  repo_rate_query_df = repo_rate_query(symbol="回购定盘利率")
93
97
  print(repo_rate_query_df)
94
98
 
akshare/reits/__init__.py CHANGED
@@ -2,5 +2,5 @@
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
4
  Date: 2021/8/27 15:49
5
- Desc:
5
+ Desc:
6
6
  """