akshare 1.16.5__py3-none-any.whl → 1.16.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
akshare/__init__.py CHANGED
@@ -3014,9 +3014,11 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
3014
3014
  1.16.3 fix: fix stock_zh_index_spot_em interface
3015
3015
  1.16.4 fix: fix stock_hk_ggt_components_em interface
3016
3016
  1.16.5 fix: fix stock_sector_fund_flow_rank interface
3017
+ 1.16.6 fix: fix stock_sgt_reference_exchange_rate_sse interface
3018
+ 1.16.7 fix: fix fund_lof_hist_em interface
3017
3019
  """
3018
3020
 
3019
- __version__ = "1.16.5"
3021
+ __version__ = "1.16.7"
3020
3022
  __author__ = "AKFamily"
3021
3023
 
3022
3024
  import sys
@@ -7,10 +7,9 @@ https://quote.eastmoney.com/sh513500.html
7
7
  """
8
8
 
9
9
  from functools import lru_cache
10
- import math
10
+
11
11
  import pandas as pd
12
12
  import requests
13
- from akshare.utils.tqdm import get_tqdm
14
13
 
15
14
 
16
15
  @lru_cache()
@@ -24,9 +23,9 @@ def _fund_etf_code_id_map_em() -> dict:
24
23
  url = "https://88.push2.eastmoney.com/api/qt/clist/get"
25
24
  params = {
26
25
  "pn": "1",
27
- "pz": "200",
26
+ "pz": "50000",
28
27
  "po": "1",
29
- "np": "1",
28
+ "np": "2",
30
29
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
31
30
  "fltt": "2",
32
31
  "invt": "2",
@@ -38,20 +37,7 @@ def _fund_etf_code_id_map_em() -> dict:
38
37
  }
39
38
  r = requests.get(url, params=params, timeout=15)
40
39
  data_json = r.json()
41
- total_page = math.ceil(data_json["data"]["total"] / 200)
42
- temp_list = []
43
- tqdm = get_tqdm()
44
- for page in tqdm(range(1, total_page + 1), leave=False):
45
- params.update(
46
- {
47
- "pn": page,
48
- }
49
- )
50
- r = requests.get(url, params=params, timeout=15)
51
- data_json = r.json()
52
- inner_temp_df = pd.DataFrame(data_json["data"]["diff"])
53
- temp_list.append(inner_temp_df)
54
- temp_df = pd.concat(temp_list, ignore_index=True)
40
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
55
41
  temp_dict = dict(zip(temp_df["f12"], temp_df["f13"]))
56
42
  return temp_dict
57
43
 
@@ -66,9 +52,9 @@ def fund_etf_spot_em() -> pd.DataFrame:
66
52
  url = "https://88.push2.eastmoney.com/api/qt/clist/get"
67
53
  params = {
68
54
  "pn": "1",
69
- "pz": "200",
55
+ "pz": "50000",
70
56
  "po": "1",
71
- "np": "1",
57
+ "np": "2",
72
58
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
73
59
  "fltt": "2",
74
60
  "invt": "2",
@@ -87,20 +73,7 @@ def fund_etf_spot_em() -> pd.DataFrame:
87
73
  }
88
74
  r = requests.get(url, timeout=15, params=params)
89
75
  data_json = r.json()
90
- total_page = math.ceil(data_json["data"]["total"] / 200)
91
- temp_list = []
92
- tqdm = get_tqdm()
93
- for page in tqdm(range(1, total_page + 1), leave=False):
94
- params.update(
95
- {
96
- "pn": page,
97
- }
98
- )
99
- r = requests.get(url, params=params, timeout=15)
100
- data_json = r.json()
101
- inner_temp_df = pd.DataFrame(data_json["data"]["diff"])
102
- temp_list.append(inner_temp_df)
103
- temp_df = pd.concat(temp_list, ignore_index=True)
76
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
104
77
  temp_df.rename(
105
78
  columns={
106
79
  "f12": "代码",
@@ -26,7 +26,7 @@ def _fund_lof_code_id_map_em() -> dict:
26
26
  "pn": "1",
27
27
  "pz": "5000",
28
28
  "po": "1",
29
- "np": "1",
29
+ "np": "2",
30
30
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
31
31
  "fltt": "2",
32
32
  "invt": "2",
@@ -38,7 +38,7 @@ def _fund_lof_code_id_map_em() -> dict:
38
38
  }
39
39
  r = requests.get(url, params=params)
40
40
  data_json = r.json()
41
- temp_df = pd.DataFrame(data_json["data"]["diff"])
41
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
42
42
  temp_dict = dict(zip(temp_df["f12"], temp_df["f13"]))
43
43
  return temp_dict
44
44
 
@@ -55,7 +55,7 @@ def fund_lof_spot_em() -> pd.DataFrame:
55
55
  "pn": "1",
56
56
  "pz": "5000",
57
57
  "po": "1",
58
- "np": "1",
58
+ "np": "2",
59
59
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
60
60
  "fltt": "2",
61
61
  "invt": "2",
@@ -68,7 +68,7 @@ def fund_lof_spot_em() -> pd.DataFrame:
68
68
  }
69
69
  r = requests.get(url, params=params)
70
70
  data_json = r.json()
71
- temp_df = pd.DataFrame(data_json["data"]["diff"])
71
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
72
72
  temp_df.rename(
73
73
  columns={
74
74
  "f12": "代码",
@@ -1,13 +1,14 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/1/17 19:30
4
+ Date: 2024/2/20 17:00
5
5
  Desc: 东方财富网-期货行情
6
6
  https://qhweb.eastmoney.com/quote
7
7
  """
8
8
 
9
9
  import re
10
10
  from functools import lru_cache
11
+ from typing import Tuple, Dict
11
12
 
12
13
  import pandas as pd
13
14
  import requests
@@ -53,7 +54,7 @@ def __fetch_exchange_symbol_raw_em() -> list:
53
54
 
54
55
 
55
56
  @lru_cache()
56
- def __get_exchange_symbol_map() -> tuple[dict, dict, dict, dict]:
57
+ def __get_exchange_symbol_map() -> Tuple[Dict, Dict, Dict, Dict]:
57
58
  """
58
59
  东方财富网-期货行情-交易所品种映射
59
60
  https://quote.eastmoney.com/qihuo/al2505.html
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/4/11 17:00
4
+ Date: 2025/2/20 17:00
5
5
  Desc: 东方财富网-行情中心-美股市场-粉单市场
6
6
  https://quote.eastmoney.com/center/gridlist.html#us_pinksheet
7
7
  """
@@ -20,9 +20,9 @@ def stock_us_pink_spot_em() -> pd.DataFrame:
20
20
  url = "https://23.push2.eastmoney.com/api/qt/clist/get"
21
21
  params = {
22
22
  "pn": "1",
23
- "pz": "2000",
23
+ "pz": "50000",
24
24
  "po": "1",
25
- "np": "1",
25
+ "np": "2",
26
26
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
27
27
  "fltt": "2",
28
28
  "invt": "2",
@@ -34,7 +34,7 @@ def stock_us_pink_spot_em() -> pd.DataFrame:
34
34
  }
35
35
  r = requests.get(url, params=params)
36
36
  data_json = r.json()
37
- temp_df = pd.DataFrame(data_json["data"]["diff"])
37
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
38
38
  temp_df.columns = [
39
39
  "_",
40
40
  "最新价",
@@ -1,12 +1,14 @@
1
1
  # -*- coding:utf-8 -*-
2
2
  # !/usr/bin/env python
3
3
  """
4
- Date: 2022/9/30 15:20
4
+ Date: 2025/2/19 22:00
5
5
  Desc: 参考汇率和结算汇率
6
6
  深港通-港股通业务信息
7
7
  深港通-港股通业务信息: https://www.szse.cn/szhk/hkbussiness/exchangerate/index.html
8
- 沪港通-港股通信息披露: http://www.sse.com.cn/services/hkexsc/disclo/ratios/
8
+ 沪港通-港股通信息披露: https://www.sse.com.cn/services/hkexsc/disclo/ratios/
9
9
  """
10
+
11
+ import warnings
10
12
  from datetime import datetime
11
13
 
12
14
  import pandas as pd
@@ -22,20 +24,23 @@ def stock_sgt_settlement_exchange_rate_szse() -> pd.DataFrame:
22
24
  """
23
25
  url = "https://www.szse.cn/api/report/ShowReport"
24
26
  params = {
25
- 'SHOWTYPE': 'xlsx',
26
- 'CATALOGID': 'SGT_LSHL',
27
- 'TABKEY': 'tab2',
28
- 'random': '0.9184251620553985',
27
+ "SHOWTYPE": "xlsx",
28
+ "CATALOGID": "SGT_LSHL",
29
+ "TABKEY": "tab2",
30
+ "random": "0.9184251620553985",
29
31
  }
30
32
  r = requests.get(url, params=params)
31
- import warnings
32
33
  with warnings.catch_warnings(record=True):
33
34
  warnings.simplefilter("always")
34
35
  temp_df = pd.read_excel(r.content, engine="openpyxl")
35
- temp_df.sort_values('适用日期', inplace=True, ignore_index=True)
36
- temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date
37
- temp_df['买入结算汇兑比率'] = pd.to_numeric(temp_df['买入结算汇兑比率'], errors='coerce')
38
- temp_df['卖出结算汇兑比率'] = pd.to_numeric(temp_df['卖出结算汇兑比率'], errors='coerce')
36
+ temp_df.sort_values(by="适用日期", inplace=True, ignore_index=True)
37
+ temp_df["适用日期"] = pd.to_datetime(temp_df["适用日期"], errors="coerce").dt.date
38
+ temp_df["买入结算汇兑比率"] = pd.to_numeric(
39
+ temp_df["买入结算汇兑比率"], errors="coerce"
40
+ )
41
+ temp_df["卖出结算汇兑比率"] = pd.to_numeric(
42
+ temp_df["卖出结算汇兑比率"], errors="coerce"
43
+ )
39
44
  return temp_df
40
45
 
41
46
 
@@ -48,123 +53,148 @@ def stock_sgt_reference_exchange_rate_szse() -> pd.DataFrame:
48
53
  """
49
54
  url = "https://www.szse.cn/api/report/ShowReport"
50
55
  params = {
51
- 'SHOWTYPE': 'xlsx',
52
- 'CATALOGID': 'SGT_LSHL',
53
- 'TABKEY': 'tab1',
54
- 'random': '0.9184251620553985',
56
+ "SHOWTYPE": "xlsx",
57
+ "CATALOGID": "SGT_LSHL",
58
+ "TABKEY": "tab1",
59
+ "random": "0.9184251620553985",
55
60
  }
56
61
  r = requests.get(url, params=params)
57
- import warnings
58
62
  with warnings.catch_warnings(record=True):
59
63
  warnings.simplefilter("always")
60
64
  temp_df = pd.read_excel(r.content, engine="openpyxl")
61
- temp_df.sort_values('适用日期', inplace=True, ignore_index=True)
62
- temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date
63
- temp_df['参考汇率买入价'] = pd.to_numeric(temp_df['参考汇率买入价'], errors='coerce')
64
- temp_df['参考汇率卖出价'] = pd.to_numeric(temp_df['参考汇率卖出价'], errors='coerce')
65
+ temp_df.sort_values(by="适用日期", inplace=True, ignore_index=True)
66
+ temp_df["适用日期"] = pd.to_datetime(temp_df["适用日期"], errors="coerce").dt.date
67
+ temp_df["参考汇率买入价"] = pd.to_numeric(
68
+ temp_df["参考汇率买入价"], errors="coerce"
69
+ )
70
+ temp_df["参考汇率卖出价"] = pd.to_numeric(
71
+ temp_df["参考汇率卖出价"], errors="coerce"
72
+ )
65
73
  return temp_df
66
74
 
67
75
 
68
76
  def stock_sgt_reference_exchange_rate_sse() -> pd.DataFrame:
69
77
  """
70
78
  沪港通-港股通信息披露-参考汇率
71
- http://www.sse.com.cn/services/hkexsc/disclo/ratios/
79
+ https://www.sse.com.cn/services/hkexsc/disclo/ratios/
72
80
  :return: 参考汇率
73
81
  :rtype: pandas.DataFrame
74
82
  """
75
83
  current_date = datetime.now().date().isoformat().replace("-", "")
76
- url = "http://query.sse.com.cn/commonSoaQuery.do"
84
+ url = "https://query.sse.com.cn/commonSoaQuery.do"
77
85
  params = {
78
- 'isPagination': 'true',
79
- 'updateDate': '20120601',
80
- 'updateDateEnd': current_date,
81
- 'sqlId': 'FW_HGT_GGTHL',
82
- 'pageHelp.cacheSize': '1',
83
- 'pageHelp.pageSize': '10000',
84
- 'pageHelp.pageNo': '1',
85
- 'pageHelp.beginPage': '1',
86
- 'pageHelp.endPage': '1',
87
- '_': '1664523262778',
86
+ "isPagination": "true",
87
+ "updateDate": "20120601",
88
+ "updateDateEnd": current_date,
89
+ "sqlId": "FW_HGT_GGTHL",
90
+ "pageHelp.cacheSize": "1",
91
+ "pageHelp.pageSize": "10000",
92
+ "pageHelp.pageNo": "1",
93
+ "pageHelp.beginPage": "1",
94
+ "pageHelp.endPage": "1",
95
+ "_": "1664523262778",
88
96
  }
89
97
  headers = {
90
- 'Host': 'query.sse.com.cn',
91
- 'Referer': 'http://www.sse.com.cn/',
92
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36'
98
+ "Host": "query.sse.com.cn",
99
+ "Referer": "https://www.sse.com.cn/",
100
+ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
101
+ "Chrome/105.0.0.0 Safari/537.36",
93
102
  }
94
103
  r = requests.get(url, params=params, headers=headers)
95
104
  data_json = r.json()
96
- temp_df = pd.DataFrame(data_json['result'])
97
- temp_df.rename(columns={
98
- 'currencyType': "货币种类",
99
- 'buyPrice': "参考汇率买入价",
100
- 'updateDate': "-",
101
- 'validDate': "适用日期",
102
- 'sellPrice': "参考汇率卖出价"
103
- }, inplace=True)
104
- temp_df = temp_df[[
105
- "适用日期",
106
- "参考汇率买入价",
107
- "参考汇率卖出价",
108
- "货币种类",
109
- ]]
110
- temp_df.sort_values('适用日期', inplace=True, ignore_index=True)
111
- temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date
112
- temp_df['参考汇率买入价'] = pd.to_numeric(temp_df['参考汇率买入价'], errors='coerce')
113
- temp_df['参考汇率卖出价'] = pd.to_numeric(temp_df['参考汇率卖出价'], errors='coerce')
105
+ temp_df = pd.DataFrame(data_json["result"])
106
+ temp_df.rename(
107
+ columns={
108
+ "currencyType": "货币种类",
109
+ "buyPrice": "参考汇率买入价",
110
+ "updateDate": "-",
111
+ "validDate": "适用日期",
112
+ "sellPrice": "参考汇率卖出价",
113
+ },
114
+ inplace=True,
115
+ )
116
+ temp_df = temp_df[
117
+ [
118
+ "适用日期",
119
+ "参考汇率买入价",
120
+ "参考汇率卖出价",
121
+ "货币种类",
122
+ ]
123
+ ]
124
+ temp_df.sort_values("适用日期", inplace=True, ignore_index=True)
125
+ temp_df["适用日期"] = pd.to_datetime(temp_df["适用日期"], errors="coerce").dt.date
126
+ temp_df["参考汇率买入价"] = pd.to_numeric(
127
+ temp_df["参考汇率买入价"], errors="coerce"
128
+ )
129
+ temp_df["参考汇率卖出价"] = pd.to_numeric(
130
+ temp_df["参考汇率卖出价"], errors="coerce"
131
+ )
114
132
  return temp_df
115
133
 
116
134
 
117
135
  def stock_sgt_settlement_exchange_rate_sse() -> pd.DataFrame:
118
136
  """
119
137
  沪港通-港股通信息披露-结算汇兑
120
- http://www.sse.com.cn/services/hkexsc/disclo/ratios/
138
+ https://www.sse.com.cn/services/hkexsc/disclo/ratios/
121
139
  :return: 结算汇兑比率
122
140
  :rtype: pandas.DataFrame
123
141
  """
124
142
  current_date = datetime.now().date().isoformat().replace("-", "")
125
- url = "http://query.sse.com.cn/commonSoaQuery.do"
143
+ url = "https://query.sse.com.cn/commonSoaQuery.do"
126
144
  params = {
127
- 'isPagination': 'true',
128
- 'updateDate': '20120601',
129
- 'updateDateEnd': current_date,
130
- 'sqlId': 'FW_HGT_JSHDBL',
131
- 'pageHelp.cacheSize': '1',
132
- 'pageHelp.pageSize': '10000',
133
- 'pageHelp.pageNo': '1',
134
- 'pageHelp.beginPage': '1',
135
- 'pageHelp.endPage': '1',
136
- '_': '1664523262778',
145
+ "isPagination": "true",
146
+ "updateDate": "20120601",
147
+ "updateDateEnd": current_date,
148
+ "sqlId": "FW_HGT_JSHDBL",
149
+ "pageHelp.cacheSize": "1",
150
+ "pageHelp.pageSize": "10000",
151
+ "pageHelp.pageNo": "1",
152
+ "pageHelp.beginPage": "1",
153
+ "pageHelp.endPage": "1",
154
+ "_": "1664523262778",
137
155
  }
138
156
  headers = {
139
- 'Host': 'query.sse.com.cn',
140
- 'Referer': 'http://www.sse.com.cn/',
141
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36'
157
+ "Host": "query.sse.com.cn",
158
+ "Referer": "https://www.sse.com.cn/",
159
+ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
160
+ "Chrome/105.0.0.0 Safari/537.36",
142
161
  }
143
162
  r = requests.get(url, params=params, headers=headers)
144
163
  data_json = r.json()
145
- temp_df = pd.DataFrame(data_json['result'])
146
- temp_df.rename(columns={
147
- 'currencyType': "货币种类",
148
- 'buyPrice': "买入结算汇兑比率",
149
- 'updateDate': "-",
150
- 'validDate': "适用日期",
151
- 'sellPrice': "卖出结算汇兑比率"
152
- }, inplace=True)
153
- temp_df = temp_df[[
154
- "适用日期",
155
- "买入结算汇兑比率",
156
- "卖出结算汇兑比率",
157
- "货币种类",
158
- ]]
159
- temp_df.sort_values('适用日期', inplace=True, ignore_index=True)
160
- temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date
161
- temp_df['买入结算汇兑比率'] = pd.to_numeric(temp_df['买入结算汇兑比率'], errors='coerce')
162
- temp_df['卖出结算汇兑比率'] = pd.to_numeric(temp_df['卖出结算汇兑比率'], errors='coerce')
164
+ temp_df = pd.DataFrame(data_json["result"])
165
+ temp_df.rename(
166
+ columns={
167
+ "currencyType": "货币种类",
168
+ "buyPrice": "买入结算汇兑比率",
169
+ "updateDate": "-",
170
+ "validDate": "适用日期",
171
+ "sellPrice": "卖出结算汇兑比率",
172
+ },
173
+ inplace=True,
174
+ )
175
+ temp_df = temp_df[
176
+ [
177
+ "适用日期",
178
+ "买入结算汇兑比率",
179
+ "卖出结算汇兑比率",
180
+ "货币种类",
181
+ ]
182
+ ]
183
+ temp_df.sort_values("适用日期", inplace=True, ignore_index=True)
184
+ temp_df["适用日期"] = pd.to_datetime(temp_df["适用日期"], errors="coerce").dt.date
185
+ temp_df["买入结算汇兑比率"] = pd.to_numeric(
186
+ temp_df["买入结算汇兑比率"], errors="coerce"
187
+ )
188
+ temp_df["卖出结算汇兑比率"] = pd.to_numeric(
189
+ temp_df["卖出结算汇兑比率"], errors="coerce"
190
+ )
163
191
  return temp_df
164
192
 
165
193
 
166
194
  if __name__ == "__main__":
167
- stock_sgt_settlement_exchange_rate_szse_df = stock_sgt_settlement_exchange_rate_szse()
195
+ stock_sgt_settlement_exchange_rate_szse_df = (
196
+ stock_sgt_settlement_exchange_rate_szse()
197
+ )
168
198
  print(stock_sgt_settlement_exchange_rate_szse_df)
169
199
 
170
200
  stock_sgt_reference_exchange_rate_szse_df = stock_sgt_reference_exchange_rate_szse()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: akshare
3
- Version: 1.16.5
3
+ Version: 1.16.7
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=Woqe67N4mZqHH9jG6ogwDd14suMbDoijf6JktLRT1-s,187780
1
+ akshare/__init__.py,sha256=QG3baAikq03vAI74DtNmTXR4UEe4R6ZCgmCRQmM5LGs,187887
2
2
  akshare/datasets.py,sha256=rKuRNZrqi6IMsZ9nyvO3Rx02js0tH3zMLjz8HQNAoPQ,963
3
3
  akshare/exceptions.py,sha256=WEJjIhSmJ_xXNW6grwV4nufE_cfmmyuhmueVGiN1VAg,878
4
4
  akshare/request.py,sha256=HtFFf9MhfEibR-ETWe-1Tts6ELU4VKSqA-ghaXjegQM,4252
@@ -86,13 +86,13 @@ akshare/fund/fund_amac.py,sha256=Dml3EgpJhmVgkttb0OdaWN41ynOCIbJ0-1qAPDWF0oo,338
86
86
  akshare/fund/fund_announcement.py,sha256=g5rcIC9vQ4HapZd0b7cDbFYzHu9V6bOKhwxRHVfmv8k,1848
87
87
  akshare/fund/fund_aum_em.py,sha256=dy1R1-0X48H8S-LPiuggNA5M-6MvQ08fnp5bytvCGPQ,3518
88
88
  akshare/fund/fund_em.py,sha256=nX0VA5JeiF-zRr1J10X-U9-pJj5KFDUAbovN1DWjvTo,40450
89
- akshare/fund/fund_etf_em.py,sha256=WdekgvHHyBOA5ON3x--7I4uTnp_2U09hooszHlDqfDI,18320
89
+ akshare/fund/fund_etf_em.py,sha256=xswdZoMN8mcDA_q-lN9lvOjKEPUzoPBjOU7Nn0grIHM,17393
90
90
  akshare/fund/fund_etf_sina.py,sha256=YV2KrqKMF_h8kgrywvWvRJx2oy62lhgizvHFk40E4Rk,7042
91
91
  akshare/fund/fund_etf_ths.py,sha256=vb_jy0h2-Kz2dNWUrwBYxPB0MAotv0KZgnFhE98ohSM,3432
92
92
  akshare/fund/fund_fee_em.py,sha256=fa_Nfr4GWx4FNzNY0blBPhIZ3fGW5qedQOuYIAlVsvE,4158
93
93
  akshare/fund/fund_fhsp_em.py,sha256=-zSwwveiCB4HHRxwAuaLDTQHmNe3FxwxxeoPeiG8JbM,5546
94
94
  akshare/fund/fund_init_em.py,sha256=4kOhsOkEs50B-RAxz-fTyWxNC1J4jNBDoKGJlFUpIjQ,2210
95
- akshare/fund/fund_lof_em.py,sha256=eWpIlHzUYbscyxvz8awiDERxd7gTucHcGcrBPTCCFno,12473
95
+ akshare/fund/fund_lof_em.py,sha256=h3rpSeRenQYau-T8FnhfzrMpXmAkO7bxUzzSVROQhQE,12477
96
96
  akshare/fund/fund_manager.py,sha256=yhpXp_WKradzSc0dMfGKJibNCksts2L2Bg_gvUU4_VQ,2801
97
97
  akshare/fund/fund_portfolio_em.py,sha256=8kk7a8hA22ANfnlnK1j4f5qXepfkgJOiEMpuazP2Xlk,10785
98
98
  akshare/fund/fund_position_lg.py,sha256=dxwGvfc8SXlRziWBWHIcaqOOltsKlxHgHL0Cxr7cCeM,3857
@@ -113,7 +113,7 @@ akshare/futures/futures_contract_detail.py,sha256=auwzNdaoFi5hoJY6rNkO54v5FD2gmE
113
113
  akshare/futures/futures_daily_bar.py,sha256=pultXs8digLfWT0dzyWs0AtFk3Fi2uZDT-zxbg_PcOM,25299
114
114
  akshare/futures/futures_foreign.py,sha256=oSIoAg5oy-CIlPWHkQffcvZGu02Y2GWOrt-6aPA53Xg,2059
115
115
  akshare/futures/futures_hf_em.py,sha256=jne-wUYr2QTUkDq3qAxYKE0Hm90L3H8qUDu3JavKiUg,3338
116
- akshare/futures/futures_hist_em.py,sha256=23poFID_GE2mWf9NnkJBE3N7FgxNYiqrbTKO0VciS_A,6441
116
+ akshare/futures/futures_hist_em.py,sha256=Q8I20qRjp2ujiJMCCNBvTHXmrIth22p2k6KpvbkC3dk,6472
117
117
  akshare/futures/futures_hq_sina.py,sha256=eK1gEan4DPvpYmln8-tNnzh_J_733s95DBr--NqNYVA,9576
118
118
  akshare/futures/futures_index_ccidx.py,sha256=_kgWioCOpFNn8WUcL5qKHGb3rUHzrbrx2AszprKpBh4,4460
119
119
  akshare/futures/futures_inventory_99.py,sha256=pK1nzPNplRexvb2iFnU6Y_4blINTP8z-OFbQYzR3Q0g,2990
@@ -271,7 +271,7 @@ akshare/stock/stock_stop.py,sha256=8HyazJAFj-s12ujUtrxO8VPXyA5bF9-3eNEj0qzGwMg,1
271
271
  akshare/stock/stock_summary.py,sha256=CkUB2Y4ZcNtNbyKb1hJZDG9KvlvqMDNvcPwLN7iO7AQ,22891
272
272
  akshare/stock/stock_us_famous.py,sha256=enx_-EzEJWAhrMVQZaN83ETY_YEWO2xEStRm6z3upO0,3655
273
273
  akshare/stock/stock_us_js.py,sha256=wwZpRvVHqjxwd0cb2O5vtRW8Zw90Kdl5O4XNwoevN64,2502
274
- akshare/stock/stock_us_pink.py,sha256=jgkEjPm_qa4zSN1MH0unHJopSkcF-8Rqlp5Kus2KaQ8,3062
274
+ akshare/stock/stock_us_pink.py,sha256=BX7-tG4Zs0k2vSYGxHH0Yob-moD6AAu2a-ytZpxgIRQ,3065
275
275
  akshare/stock/stock_us_sina.py,sha256=D4fhJgpmvnlVoeSV2wQQ7H6lig8h6vaJp71o88dZhDg,8200
276
276
  akshare/stock/stock_weibo_nlp.py,sha256=eM7ofsNSrKiYeS0g38Qj9CxT6dkJZrn_pmziIiTqp4U,3286
277
277
  akshare/stock/stock_xq.py,sha256=E7dCNJw8GsJry3lU1LzCjADqRhrsZE4fERIF-G5SoVE,4641
@@ -316,7 +316,7 @@ akshare/stock_feature/stock_hist_tx.py,sha256=WpLsbkG2didSx7lYNkSbTWNTrLhUKbcopf
316
316
  akshare/stock_feature/stock_hk_valuation_baidu.py,sha256=_sErx4UhNsSXJgXyPfrL0aPxkW53Mg1zH9gEKoziaCA,1968
317
317
  akshare/stock_feature/stock_hot_xq.py,sha256=NmoH4x-0hiDztj-YwzMFVIyOICQ2wUUBbhjt91q-tq4,9112
318
318
  akshare/stock_feature/stock_hsgt_em.py,sha256=A10L3LX44YrkcYi7kT9Y0-XK_r0mv9c50x5emshh25Q,56690
319
- akshare/stock_feature/stock_hsgt_exchange_rate.py,sha256=YvhvdGx1nBJ_1swos1YNOtzy0GMFYo8MgNBh5QKphtE,6838
319
+ akshare/stock_feature/stock_hsgt_exchange_rate.py,sha256=-oJZ83FUQrNJX_4GB5hS562IdrfJbCwr0d5ioYXtPrQ,7212
320
320
  akshare/stock_feature/stock_hsgt_min_em.py,sha256=KLeez7MQwBAcO-RT7n41LOikUfvXDGK0-G1n9av5mtY,2883
321
321
  akshare/stock_feature/stock_info.py,sha256=AQ4ZMXAks3qCxk3lbH_YpsqC-qQHpZ49UGk0Mm08d2E,9192
322
322
  akshare/stock_feature/stock_inner_trade_xq.py,sha256=jsARS5It6_UNn3WL8vnTK4F90Rx1dMvarxtiVbzOLrM,2682
@@ -380,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
380
380
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
381
381
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
382
382
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
383
- akshare-1.16.5.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
- akshare-1.16.5.dist-info/METADATA,sha256=LmY7ro5e6jtJJyArjiea0bPwfUvVpv3guykg7lhvWgc,13678
385
- akshare-1.16.5.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
386
- akshare-1.16.5.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
- akshare-1.16.5.dist-info/RECORD,,
383
+ akshare-1.16.7.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
+ akshare-1.16.7.dist-info/METADATA,sha256=K4M0hgeH4JCfh4dddujBhBN20boaw_FAOJcpa4o4XR0,13678
385
+ akshare-1.16.7.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
386
+ akshare-1.16.7.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
+ akshare-1.16.7.dist-info/RECORD,,