akshare 1.16.58__py3-none-any.whl → 1.16.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
akshare/__init__.py CHANGED
@@ -3067,9 +3067,11 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
3067
3067
  1.16.56 fix: fix stock_zh_a_daily interface
3068
3068
  1.16.57 fix: fix stock_market_pe_lg interface
3069
3069
  1.16.58 fix: fix stock_zh_a_spot interface
3070
+ 1.16.59 fix: fix option_czce_hist interface
3071
+ 1.16.60 fix: fix stock_individual_fund_flow_rank interface
3070
3072
  """
3071
3073
 
3072
- __version__ = "1.16.58"
3074
+ __version__ = "1.16.60"
3073
3075
  __author__ = "AKFamily"
3074
3076
 
3075
3077
  import sys
@@ -3095,6 +3097,8 @@ del sys
3095
3097
  异步接口
3096
3098
  """
3097
3099
  from akshare.stock_a.stock_zh_a_spot import stock_zh_a_spot_em
3100
+ from akshare.stock_a.stock_individual_fund_flow_rank import stock_individual_fund_flow_rank
3101
+ from akshare.stock_a.stock_board_concept_name_em import stock_board_concept_name_em
3098
3102
 
3099
3103
  """
3100
3104
  雪球-个股-公司概况-公司简介
@@ -4138,7 +4142,7 @@ from akshare.stock.stock_board_concept_em import (
4138
4142
  stock_board_concept_cons_em,
4139
4143
  stock_board_concept_hist_em,
4140
4144
  stock_board_concept_hist_min_em,
4141
- stock_board_concept_name_em,
4145
+ # stock_board_concept_name_em,
4142
4146
  stock_board_concept_spot_em,
4143
4147
  )
4144
4148
 
@@ -4781,7 +4785,7 @@ from akshare.stock.stock_fund_em import (
4781
4785
  stock_individual_fund_flow,
4782
4786
  stock_market_fund_flow,
4783
4787
  stock_sector_fund_flow_rank,
4784
- stock_individual_fund_flow_rank,
4788
+ # stock_individual_fund_flow_rank,
4785
4789
  stock_sector_fund_flow_summary,
4786
4790
  stock_sector_fund_flow_hist,
4787
4791
  stock_concept_fund_flow_hist,
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2021/7/21 14:22
4
+ Date: 2025/3/22 16:30
5
5
  Desc: 郑州商品交易所-交易数据-历史行情下载-期权历史行情下载
6
6
  http://www.czce.com.cn/cn/jysj/lshqxz/H770319index_1.htm
7
7
  自 20200101 起,成交量、空盘量、成交额、行权量均为单边计算
@@ -12,7 +12,21 @@ http://www.czce.com.cn/cn/jysj/lshqxz/H770319index_1.htm
12
12
  "MA": "20191217"
13
13
  "RM": "20200116"
14
14
  "ZC": "20200630"
15
+ "OI": "20220826"
16
+ "PK": "20220826"
17
+ "PX": "20230915"
18
+ "SH": "20230915"
19
+ "SA": "20231020"
20
+ "PF": "20231020"
21
+ "SM": "20231020"
22
+ "SF": "20231020"
23
+ "UR": "20231020"
24
+ "AP": "20231020"
25
+ "CJ": "20240621"
26
+ "FG": "20240621"
27
+ "PR": "20241227"
15
28
  """
29
+
16
30
  from io import StringIO
17
31
  import warnings
18
32
 
@@ -24,7 +38,9 @@ def option_czce_hist(symbol: str = "SR", year: str = "2021") -> pd.DataFrame:
24
38
  """
25
39
  郑州商品交易所-交易数据-历史行情下载-期权历史行情下载
26
40
  http://www.czce.com.cn/cn/jysj/lshqxz/H770319index_1.htm
27
- :param symbol: choice of {"白糖": "SR", "棉花": "CF", "PTA": "TA", "甲醇": "MA", "菜籽粕": "RM", "动力煤": "ZC"}
41
+ :param symbol: choice of {"白糖": "SR", "棉花": "CF", "PTA": "TA", "甲醇": "MA", "菜籽粕": "RM",
42
+ "动力煤": "ZC", "菜籽油": "OI", "花生": "PK", "对二甲苯": "PX", "烧碱": "SH", "纯碱": "SA", "短纤": "PF",
43
+ "锰硅": "SM", "硅铁": "SF", "尿素": "UR", "苹果": "AP", "红枣": "CJ", "玻璃": "FG", "瓶片": "PR"}
28
44
  :type symbol: str
29
45
  :param year: 需要获取数据的年份, 注意品种的上市时间
30
46
  :type year: str
@@ -38,17 +54,29 @@ def option_czce_hist(symbol: str = "SR", year: str = "2021") -> pd.DataFrame:
38
54
  "MA": "2019",
39
55
  "RM": "2020",
40
56
  "ZC": "2020",
57
+ "OI": "2022",
58
+ "PK": "2022",
59
+ "PX": "2023",
60
+ "SH": "2023",
61
+ "SA": "2023",
62
+ "PF": "2023",
63
+ "SM": "2023",
64
+ "SF": "2023",
65
+ "UR": "2023",
66
+ "AP": "2023",
67
+ "CJ": "2024",
68
+ "FG": "2024",
69
+ "PR": "2024",
41
70
  }
42
71
  if int(symbol_year_dict[symbol]) > int(year):
43
72
  warnings.warn(f"{year} year, symbol {symbol} is not on trade")
44
- return None
45
- warnings.warn("正在下载中, 请稍等")
46
- url = f'http://www.czce.com.cn/cn/DFSStaticFiles/Option/2021/OptionDataAllHistory/{symbol}OPTIONS{year}.txt'
73
+ return pd.DataFrame()
74
+ url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Option/{year}/OptionDataAllHistory/{symbol}OPTIONS{year}.txt"
47
75
  r = requests.get(url)
48
76
  option_df = pd.read_table(StringIO(r.text), skiprows=1, sep="|", low_memory=False)
49
77
  return option_df
50
78
 
51
79
 
52
80
  if __name__ == "__main__":
53
- option_czce_hist_df = option_czce_hist(symbol="ZC", year="2021")
81
+ option_czce_hist_df = option_czce_hist(symbol="RM", year="2025")
54
82
  print(option_czce_hist_df)
@@ -0,0 +1,171 @@
1
+ #!/usr/bin/env python
2
+ # -*- coding:utf-8 -*-
3
+ """
4
+ Date: 2025/3/22 18:00
5
+ Desc: 东方财富网-行情中心-沪深京板块-概念板块-名称
6
+ https://quote.eastmoney.com/center/boardlist.html#concept_board
7
+ 异步接口-测试版
8
+ """
9
+
10
+ import asyncio
11
+ from typing import Dict, List
12
+
13
+ import aiohttp
14
+ import pandas as pd
15
+
16
+
17
+ async def fetch_single_page(
18
+ session: aiohttp.ClientSession, url: str, params: Dict
19
+ ) -> Dict:
20
+ """异步获取单页数据"""
21
+ async with session.get(url, params=params, ssl=False) as response:
22
+ return await response.json()
23
+
24
+
25
+ async def fetch_all_pages_async(url: str, base_params: Dict) -> List[Dict]:
26
+ """异步获取所有页面数据"""
27
+ # 首先获取总数以计算页数
28
+ first_page_params = base_params.copy()
29
+ first_page_params["pn"] = "1"
30
+
31
+ async with aiohttp.ClientSession() as session:
32
+ first_page_data = await fetch_single_page(session, url, first_page_params)
33
+
34
+ # 检查是否成功获取数据
35
+ if first_page_data.get("rc") != 0 or not first_page_data.get("data"):
36
+ return [first_page_data] # 返回错误信息
37
+
38
+ total = first_page_data["data"]["total"]
39
+ page_size = int(base_params["pz"])
40
+ total_pages = (total + page_size - 1) // page_size
41
+
42
+ # 限制页数,避免过大请求
43
+ total_pages = min(total_pages, 100)
44
+
45
+ # 创建所有页面的任务
46
+ tasks = []
47
+ for page in range(1, total_pages + 1):
48
+ page_params = base_params.copy()
49
+ page_params["pn"] = str(page)
50
+ tasks.append(fetch_single_page(session, url, page_params))
51
+
52
+ # 并发执行所有任务
53
+ results = await asyncio.gather(*tasks)
54
+ return results
55
+
56
+
57
+ def process_concept_board_data(page_results: List[Dict]) -> pd.DataFrame:
58
+ """处理概念板块数据,转换为DataFrame"""
59
+ all_data = []
60
+
61
+ for result in page_results:
62
+ if result.get("data") and result["data"].get("diff"):
63
+ page_data = result["data"]["diff"]
64
+ all_data.extend(page_data)
65
+
66
+ if not all_data:
67
+ return pd.DataFrame()
68
+
69
+ temp_df = pd.DataFrame(all_data)
70
+
71
+ # 转换数值类型,确保排序正确
72
+ numeric_columns = ["f2", "f3", "f4", "f8", "f20", "f104", "f105", "f136"]
73
+ for col in numeric_columns:
74
+ if col in temp_df.columns:
75
+ temp_df[col] = pd.to_numeric(temp_df[col], errors="coerce")
76
+
77
+ # 按涨跌幅(f3)降序排序
78
+ if "f3" in temp_df.columns:
79
+ temp_df.sort_values(by="f3", ascending=False, inplace=True)
80
+
81
+ # 重命名列
82
+ columns_map = {
83
+ "f2": "最新价",
84
+ "f3": "涨跌幅",
85
+ "f4": "涨跌额",
86
+ "f8": "换手率",
87
+ "f12": "板块代码",
88
+ "f14": "板块名称",
89
+ "f20": "总市值",
90
+ "f104": "上涨家数",
91
+ "f105": "下跌家数",
92
+ "f128": "领涨股票",
93
+ "f136": "领涨股票-涨跌幅",
94
+ }
95
+
96
+ # 选择需要的列并重命名
97
+ selected_columns = list(columns_map.keys())
98
+ available_columns = [col for col in selected_columns if col in temp_df.columns]
99
+ temp_df = temp_df[available_columns]
100
+ temp_df.rename(columns=columns_map, inplace=True)
101
+
102
+ # 重置索引并添加排名列
103
+ temp_df.reset_index(drop=True, inplace=True)
104
+ temp_df.insert(0, "排名", range(1, len(temp_df) + 1))
105
+
106
+ # 调整列顺序,与原函数保持一致
107
+ final_columns = [
108
+ "排名",
109
+ "板块名称",
110
+ "板块代码",
111
+ "最新价",
112
+ "涨跌额",
113
+ "涨跌幅",
114
+ "总市值",
115
+ "换手率",
116
+ "上涨家数",
117
+ "下跌家数",
118
+ "领涨股票",
119
+ "领涨股票-涨跌幅",
120
+ ]
121
+
122
+ # 只保留存在的列
123
+ final_columns = [col for col in final_columns if col in temp_df.columns]
124
+ temp_df = temp_df[final_columns]
125
+
126
+ return temp_df
127
+
128
+
129
+ async def stock_board_concept_name_em_async() -> pd.DataFrame:
130
+ """
131
+ 异步获取东方财富网-行情中心-沪深京板块-概念板块-名称
132
+ https://quote.eastmoney.com/center/boardlist.html#concept_board
133
+ :return: 概念板块-名称
134
+ :rtype: pandas.DataFrame
135
+ """
136
+ url = "https://79.push2.eastmoney.com/api/qt/clist/get"
137
+ params = {
138
+ "pn": "1",
139
+ "pz": "100",
140
+ "po": "1", # 按涨跌幅排序,1为降序
141
+ "np": "1",
142
+ "ut": "bd1d9ddb04089700cf9c27f6f7426281",
143
+ "fltt": "2",
144
+ "invt": "2",
145
+ "fid": "f3", # 按涨跌幅排序
146
+ "fs": "m:90 t:3 f:!50",
147
+ "fields": "f2,f3,f4,f8,f12,f14,f15,f16,f17,f18,f20,f21,f24,f25,f22,f33,f11,f62,f128,f124,f107,f104,f105,f136",
148
+ "_": "1626075887768",
149
+ }
150
+
151
+ results = await fetch_all_pages_async(url, params)
152
+ return process_concept_board_data(results)
153
+
154
+
155
+ def stock_board_concept_name_em() -> pd.DataFrame:
156
+ """
157
+ 东方财富网-行情中心-沪深京板块-概念板块-名称 (同步接口)
158
+ https://quote.eastmoney.com/center/boardlist.html#concept_board
159
+ :return: 概念板块-名称
160
+ :rtype: pandas.DataFrame
161
+ """
162
+ import nest_asyncio
163
+
164
+ nest_asyncio.apply()
165
+ return asyncio.run(stock_board_concept_name_em_async())
166
+
167
+
168
+ if __name__ == "__main__":
169
+ # 测试同步接口
170
+ stock_board_concept_name_em_df = stock_board_concept_name_em()
171
+ print(stock_board_concept_name_em_df)
@@ -0,0 +1,258 @@
1
+ #!/usr/bin/env python
2
+ # -*- coding:utf-8 -*-
3
+ """
4
+ Date: 2025/3/22 18:00
5
+ Desc: 东方财富网-数据中心-资金流向-排名
6
+ https://data.eastmoney.com/zjlx/detail.html
7
+ 异步接口-测试版
8
+ """
9
+
10
+ import asyncio
11
+ from typing import Dict, List
12
+
13
+ import aiohttp
14
+ import pandas as pd
15
+
16
+
17
+ async def fetch_single_page(
18
+ session: aiohttp.ClientSession, url: str, params: Dict
19
+ ) -> Dict:
20
+ """异步获取单页数据"""
21
+ async with session.get(url, params=params, ssl=False) as response:
22
+ return await response.json()
23
+
24
+
25
+ async def fetch_all_pages_async(url: str, base_params: Dict) -> List[Dict]:
26
+ """异步获取所有页面数据"""
27
+ # 首先获取总数以计算页数
28
+ first_page_params = base_params.copy()
29
+ first_page_params["pn"] = "1"
30
+
31
+ async with aiohttp.ClientSession() as session:
32
+ first_page_data = await fetch_single_page(session, url, first_page_params)
33
+
34
+ # 检查是否成功获取数据
35
+ if first_page_data.get("rc") != 0 or not first_page_data.get("data"):
36
+ return [first_page_data] # 返回错误信息
37
+
38
+ total = first_page_data["data"]["total"]
39
+ page_size = int(base_params["pz"])
40
+ total_pages = (total + page_size - 1) // page_size
41
+
42
+ # 限制页数,避免过大请求
43
+ total_pages = min(total_pages, 100)
44
+
45
+ # 创建所有页面的任务
46
+ tasks = []
47
+ for page in range(1, total_pages + 1):
48
+ page_params = base_params.copy()
49
+ page_params["pn"] = str(page)
50
+ tasks.append(fetch_single_page(session, url, page_params))
51
+
52
+ # 并发执行所有任务
53
+ results = await asyncio.gather(*tasks)
54
+ return results
55
+
56
+
57
+ def process_fund_flow_data(page_results: List[Dict], indicator: str) -> pd.DataFrame:
58
+ """处理资金流向排名数据,转换为DataFrame"""
59
+ all_data = []
60
+
61
+ for result in page_results:
62
+ if result.get("data") and result["data"].get("diff"):
63
+ page_data = result["data"]["diff"]
64
+ all_data.extend(page_data)
65
+
66
+ if not all_data:
67
+ return pd.DataFrame()
68
+
69
+ temp_df = pd.DataFrame(all_data)
70
+
71
+ # 根据不同的指标设置列名并选择需要的列
72
+ if indicator == "今日":
73
+ columns_map = {
74
+ "f12": "代码",
75
+ "f14": "名称",
76
+ "f2": "最新价",
77
+ "f3": "今日涨跌幅",
78
+ "f62": "今日主力净流入-净额",
79
+ "f184": "今日主力净流入-净占比",
80
+ "f66": "今日超大单净流入-净额",
81
+ "f69": "今日超大单净流入-净占比",
82
+ "f72": "今日大单净流入-净额",
83
+ "f75": "今日大单净流入-净占比",
84
+ "f78": "今日中单净流入-净额",
85
+ "f81": "今日中单净流入-净占比",
86
+ "f84": "今日小单净流入-净额",
87
+ "f87": "今日小单净流入-净占比",
88
+ }
89
+ main_column = "f62" # 今日主力净流入-净额
90
+
91
+ elif indicator == "3日":
92
+ columns_map = {
93
+ "f12": "代码",
94
+ "f14": "名称",
95
+ "f2": "最新价",
96
+ "f127": "3日涨跌幅",
97
+ "f267": "3日主力净流入-净额",
98
+ "f268": "3日主力净流入-净占比",
99
+ "f269": "3日超大单净流入-净额",
100
+ "f270": "3日超大单净流入-净占比",
101
+ "f271": "3日大单净流入-净额",
102
+ "f272": "3日大单净流入-净占比",
103
+ "f273": "3日中单净流入-净额",
104
+ "f274": "3日中单净流入-净占比",
105
+ "f275": "3日小单净流入-净额",
106
+ "f276": "3日小单净流入-净占比",
107
+ }
108
+ main_column = "f267" # 3日主力净流入-净额
109
+
110
+ elif indicator == "5日":
111
+ columns_map = {
112
+ "f12": "代码",
113
+ "f14": "名称",
114
+ "f2": "最新价",
115
+ "f109": "5日涨跌幅",
116
+ "f164": "5日主力净流入-净额",
117
+ "f165": "5日主力净流入-净占比",
118
+ "f166": "5日超大单净流入-净额",
119
+ "f167": "5日超大单净流入-净占比",
120
+ "f168": "5日大单净流入-净额",
121
+ "f169": "5日大单净流入-净占比",
122
+ "f170": "5日中单净流入-净额",
123
+ "f171": "5日中单净流入-净占比",
124
+ "f172": "5日小单净流入-净额",
125
+ "f173": "5日小单净流入-净占比",
126
+ }
127
+ main_column = "f164" # 5日主力净流入-净额
128
+
129
+ elif indicator == "10日":
130
+ columns_map = {
131
+ "f12": "代码",
132
+ "f14": "名称",
133
+ "f2": "最新价",
134
+ "f160": "10日涨跌幅",
135
+ "f174": "10日主力净流入-净额",
136
+ "f175": "10日主力净流入-净占比",
137
+ "f176": "10日超大单净流入-净额",
138
+ "f177": "10日超大单净流入-净占比",
139
+ "f178": "10日大单净流入-净额",
140
+ "f179": "10日大单净流入-净占比",
141
+ "f180": "10日中单净流入-净额",
142
+ "f181": "10日中单净流入-净占比",
143
+ "f182": "10日小单净流入-净额",
144
+ "f183": "10日小单净流入-净占比",
145
+ }
146
+ main_column = "f174" # 10日主力净流入-净额
147
+
148
+ # 确保数值型列为数值类型
149
+ numeric_columns = [
150
+ col
151
+ for col in temp_df.columns
152
+ if col.startswith("f") and col not in ["f12", "f14"]
153
+ ]
154
+ for col in numeric_columns:
155
+ if col in temp_df.columns:
156
+ temp_df[col] = pd.to_numeric(temp_df[col], errors="coerce")
157
+
158
+ # 按照主力净流入额降序排序
159
+ if main_column in temp_df.columns:
160
+ temp_df.sort_values(by=main_column, ascending=False, inplace=True)
161
+
162
+ # 首先重命名列
163
+ temp_df.rename(columns=columns_map, inplace=True)
164
+
165
+ # 选择需要的列
166
+ selected_columns = list(columns_map.values())
167
+ available_columns = [col for col in selected_columns if col in temp_df.columns]
168
+ temp_df = temp_df[available_columns]
169
+
170
+ # 重置索引并生成序号列
171
+ temp_df.reset_index(drop=True, inplace=True)
172
+ temp_df.insert(0, "序号", range(1, len(temp_df) + 1))
173
+
174
+ return temp_df
175
+
176
+
177
+ async def stock_individual_fund_flow_rank_async(indicator: str = "5日") -> pd.DataFrame:
178
+ """
179
+ 异步获取东方财富网-数据中心-资金流向-排名
180
+ https://data.eastmoney.com/zjlx/detail.html
181
+ :param indicator: choice of {"今日", "3日", "5日", "10日"}
182
+ :type indicator: str
183
+ :return: 指定 indicator 资金流向排行
184
+ :rtype: pandas.DataFrame
185
+ """
186
+ indicator_map = {
187
+ "今日": [
188
+ "f62",
189
+ "f12,f14,f2,f3,f62,f184,f66,f69,f72,f75,f78,f81,f84,f87,f204,f205,f124",
190
+ ],
191
+ "3日": [
192
+ "f267",
193
+ "f12,f14,f2,f127,f267,f268,f269,f270,f271,f272,f273,f274,f275,f276,f257,f258,f124",
194
+ ],
195
+ "5日": [
196
+ "f164",
197
+ "f12,f14,f2,f109,f164,f165,f166,f167,f168,f169,f170,f171,f172,f173,f257,f258,f124",
198
+ ],
199
+ "10日": [
200
+ "f174",
201
+ "f12,f14,f2,f160,f174,f175,f176,f177,f178,f179,f180,f181,f182,f183,f260,f261,f124",
202
+ ],
203
+ }
204
+
205
+ url = "https://push2.eastmoney.com/api/qt/clist/get"
206
+ params = {
207
+ "fid": indicator_map[indicator][0],
208
+ "po": "1", # 按照降序排列
209
+ "pz": "100", # 每页100条
210
+ "pn": "1", # 从第1页开始
211
+ "np": "1",
212
+ "fltt": "2",
213
+ "invt": "2",
214
+ "ut": "b2884a393a59ad64002292a3e90d46a5",
215
+ "fs": "m:0+t:6+f:!2,m:0+t:13+f:!2,m:0+t:80+f:!2,m:1+t:2+f:!2,m:1+t:23+f:!2,m:0+t:7+f:!2,m:1+t:3+f:!2",
216
+ "fields": indicator_map[indicator][1],
217
+ }
218
+
219
+ results = await fetch_all_pages_async(url, params)
220
+ return process_fund_flow_data(results, indicator)
221
+
222
+
223
+ def stock_individual_fund_flow_rank(indicator: str = "5日") -> pd.DataFrame:
224
+ """
225
+ 东方财富网-数据中心-资金流向-排名 (同步接口)
226
+ https://data.eastmoney.com/zjlx/detail.html
227
+ :param indicator: choice of {"今日", "3日", "5日", "10日"}
228
+ :type indicator: str
229
+ :return: 指定 indicator 资金流向排行
230
+ :rtype: pandas.DataFrame
231
+ """
232
+ import nest_asyncio
233
+
234
+ nest_asyncio.apply()
235
+ return asyncio.run(stock_individual_fund_flow_rank_async(indicator))
236
+
237
+
238
+ if __name__ == "__main__":
239
+ # 测试同步接口
240
+ stock_individual_fund_flow_rank_df = stock_individual_fund_flow_rank(
241
+ indicator="今日"
242
+ )
243
+ print(stock_individual_fund_flow_rank_df)
244
+
245
+ stock_individual_fund_flow_rank_df = stock_individual_fund_flow_rank(
246
+ indicator="3日"
247
+ )
248
+ print(stock_individual_fund_flow_rank_df)
249
+
250
+ stock_individual_fund_flow_rank_df = stock_individual_fund_flow_rank(
251
+ indicator="5日"
252
+ )
253
+ print(stock_individual_fund_flow_rank_df)
254
+
255
+ stock_individual_fund_flow_rank_df = stock_individual_fund_flow_rank(
256
+ indicator="10日"
257
+ )
258
+ print(stock_individual_fund_flow_rank_df)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: akshare
3
- Version: 1.16.58
3
+ Version: 1.16.60
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=jML5hq7VZZsmSv8N3RwaMZhbkjHZvsN7pPVfRHvhdXc,191808
1
+ akshare/__init__.py,sha256=gYwMK-te457YyNDH-L4RzmTa46Ix42084gAuwuGGUrM,192091
2
2
  akshare/datasets.py,sha256=rKuRNZrqi6IMsZ9nyvO3Rx02js0tH3zMLjz8HQNAoPQ,963
3
3
  akshare/exceptions.py,sha256=WEJjIhSmJ_xXNW6grwV4nufE_cfmmyuhmueVGiN1VAg,878
4
4
  akshare/request.py,sha256=HtFFf9MhfEibR-ETWe-1Tts6ELU4VKSqA-ghaXjegQM,4252
@@ -197,7 +197,7 @@ akshare/option/cons.py,sha256=zTRZ62RFwOcAKfmso-7nZJtT3a8Dt1nQbNnEjSqgjpI,4811
197
197
  akshare/option/option_comm_qihuo.py,sha256=kjbdp-94KJJJi1ex5U03abtlgviqwP0Aahb6FwddPkk,3128
198
198
  akshare/option/option_commodity.py,sha256=KQ690k83wKnjYN5Sf3meLx0pvEYAc5dE2tOkv3AK3dk,26758
199
199
  akshare/option/option_commodity_sina.py,sha256=r6qK_K7w3A6Uqp5ZtBb4pW7vH04oMyeCEZLLGqi0jpA,7776
200
- akshare/option/option_czce.py,sha256=L4i7TVKcOns5ZKoqq-mrSykdx3SGwu6OL4eI77-A_lc,1812
200
+ akshare/option/option_czce.py,sha256=TxmLZn6hxjZa8TyEpwhZazL2m5XbympRHaRjJw1q7lk,2509
201
201
  akshare/option/option_daily_stats_sse_szse.py,sha256=Ip_vE81qbEGt4ocbtWfUT7XGu0HWU0zKkzauZeq9RJA,4962
202
202
  akshare/option/option_em.py,sha256=SV_pBGDE4rer1wZ3wsBsfjtOIIudBAHPuk6_5kPAPBc,5860
203
203
  akshare/option/option_finance.py,sha256=7rnEeHo-7Sddrs36Q4c99CXL_9m8IJzw9S1Aqh3Bw90,12568
@@ -289,6 +289,8 @@ akshare/stock/stock_zh_b_sina.py,sha256=-sd0wG4zETsgrJSXivww4YieXfnVMNSfh3phsX_X
289
289
  akshare/stock/stock_zh_kcb_report.py,sha256=7zRovNGqXrPIYtUj9C3ivlYzfiudkaeBNiYPYlzDWkQ,2914
290
290
  akshare/stock/stock_zh_kcb_sina.py,sha256=ZKFoyq9Y-6LhBoYERc4Oqv5q3Llpne7ngDIZcCs8Yq0,9862
291
291
  akshare/stock_a/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
292
+ akshare/stock_a/stock_board_concept_name_em.py,sha256=lcHzY_hetx-1orFM7J5gHRy1s84nnMGFwJzhxgKu2Js,5313
293
+ akshare/stock_a/stock_individual_fund_flow_rank.py,sha256=WBB8j2swF5WNlsfIk2kW4NzbhsozON2HXU5AiTYFgRw,8996
292
294
  akshare/stock_a/stock_zh_a_spot.py,sha256=9gznZujzJ-awj7p4Ma_n5orGPpvyOc8RmSy695aFca8,6485
293
295
  akshare/stock_feature/__init__.py,sha256=c2VDBGyg8nWZYLvtnnSqUoQ92Cu6dJ7UFOeJsB2Gff8,82
294
296
  akshare/stock_feature/cons.py,sha256=UgwXlae3UpVRuhTt33nP-jmhNyug2mZLzuMgLja6pbA,465
@@ -390,10 +392,10 @@ akshare/utils/func.py,sha256=4cwmXFztU86yJNONJ40KJLvsIEQHBbct4iMm3zT2v30,2315
390
392
  akshare/utils/multi_decrypt.py,sha256=aWoL2iEPeuXHJg8-n7OtMKixLnIhfzepACgxfrfmQB4,1657
391
393
  akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOeQ,666
392
394
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
393
- akshare-1.16.58.dist-info/licenses/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
395
+ akshare-1.16.60.dist-info/licenses/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
394
396
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
395
397
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
396
- akshare-1.16.58.dist-info/METADATA,sha256=MKk3PER98CGsVkfTnW0tZKD_u4FK4lV_7tK6Aju23dY,13767
397
- akshare-1.16.58.dist-info/WHEEL,sha256=tTnHoFhvKQHCh4jz3yCn0WPTYIy7wXx3CJtJ7SJGV7c,91
398
- akshare-1.16.58.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
399
- akshare-1.16.58.dist-info/RECORD,,
398
+ akshare-1.16.60.dist-info/METADATA,sha256=v9xEmqFvkD_za59kLO9KUkzg1ZiCSI0Co1XDf1vlVjo,13767
399
+ akshare-1.16.60.dist-info/WHEEL,sha256=1tXe9gY0PYatrMPMDd6jXqjfpz_B-Wqm32CPfRC58XU,91
400
+ akshare-1.16.60.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
401
+ akshare-1.16.60.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (77.0.1)
2
+ Generator: setuptools (77.0.3)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5