akshare 1.16.32__py3-none-any.whl → 1.16.34__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
akshare/__init__.py CHANGED
@@ -3041,9 +3041,11 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
3041
3041
  1.16.30 add: add forex_hist_em interface
3042
3042
  1.16.31 add: add index_global_hist_em interface
3043
3043
  1.16.32 fix: fix news_economic_baidu interface
3044
+ 1.16.33 fix: fix fund_open_fund_daily_em interface
3045
+ 1.16.34 fix: fix stock_individual_fund_flow_rank interface
3044
3046
  """
3045
3047
 
3046
- __version__ = "1.16.32"
3048
+ __version__ = "1.16.34"
3047
3049
  __author__ = "AKFamily"
3048
3050
 
3049
3051
  import sys
akshare/fund/fund_em.py CHANGED
@@ -282,7 +282,7 @@ def fund_open_fund_daily_em() -> pd.DataFrame:
282
282
  "gsid": "",
283
283
  "text": "",
284
284
  "sort": "zdf,desc",
285
- "page": "1,20000",
285
+ "page": "1,50000",
286
286
  "dt": "1580914040623",
287
287
  "atfc": "",
288
288
  "onlySale": "0",
@@ -9,8 +9,6 @@ https://quote.eastmoney.com/sz000001.html
9
9
  import pandas as pd
10
10
  import requests
11
11
 
12
- from akshare.stock_feature.stock_hist_em import code_id_map_em
13
-
14
12
 
15
13
  def stock_bid_ask_em(symbol: str = "000001") -> pd.DataFrame:
16
14
  """
@@ -22,7 +20,7 @@ def stock_bid_ask_em(symbol: str = "000001") -> pd.DataFrame:
22
20
  :rtype: pandas.DataFrame
23
21
  """
24
22
  url = "https://push2.eastmoney.com/api/qt/stock/get"
25
- code_id_map_em_dict = code_id_map_em()
23
+ market_code = 1 if symbol.startswith("6") else 0
26
24
  params = {
27
25
  "fltt": "2",
28
26
  "invt": "2",
@@ -34,7 +32,7 @@ def stock_bid_ask_em(symbol: str = "000001") -> pd.DataFrame:
34
32
  "f268,f255,f256,f257,f258,f127,f199,f128,f198,f259,f260,f261,f171,f277,f278,"
35
33
  "f279,f288,f152,f250,f251,f252,f253,f254,f269,f270,f271,f272,f273,f274,f275,"
36
34
  "f276,f265,f266,f289,f290,f286,f285,f292,f293,f294,f295",
37
- "secid": f"{code_id_map_em_dict[symbol]}.{symbol}",
35
+ "secid": f"{market_code}.{symbol}",
38
36
  }
39
37
  r = requests.get(url, params=params)
40
38
  data_json = r.json()
@@ -1,17 +1,18 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2025/2/17 14:30
4
+ Date: 2025/3/9 19:00
5
5
  Desc: 东方财富网-数据中心-资金流向
6
6
  https://data.eastmoney.com/zjlx/detail.html
7
7
  """
8
8
 
9
- import json
9
+ import math
10
10
  import time
11
11
  from functools import lru_cache
12
12
 
13
13
  import pandas as pd
14
14
  import requests
15
+ from akshare.utils.tqdm import get_tqdm
15
16
 
16
17
 
17
18
  def stock_individual_fund_flow(
@@ -43,8 +44,8 @@ def stock_individual_fund_flow(
43
44
  "_": int(time.time() * 1000),
44
45
  }
45
46
  r = requests.get(url, params=params, headers=headers)
46
- json_data = r.json()
47
- content_list = json_data["data"]["klines"]
47
+ data_json = r.json()
48
+ content_list = data_json["data"]["klines"]
48
49
  temp_df = pd.DataFrame([item.split(",") for item in content_list])
49
50
  temp_df.columns = [
50
51
  "日期",
@@ -147,9 +148,9 @@ def stock_individual_fund_flow_rank(indicator: str = "5日") -> pd.DataFrame:
147
148
  params = {
148
149
  "fid": indicator_map[indicator][0],
149
150
  "po": "1",
150
- "pz": "50000",
151
+ "pz": "200",
151
152
  "pn": "1",
152
- "np": "2",
153
+ "np": "1",
153
154
  "fltt": "2",
154
155
  "invt": "2",
155
156
  "ut": "b2884a393a59ad64002292a3e90d46a5",
@@ -158,7 +159,20 @@ def stock_individual_fund_flow_rank(indicator: str = "5日") -> pd.DataFrame:
158
159
  }
159
160
  r = requests.get(url, params=params)
160
161
  data_json = r.json()
161
- temp_df = pd.DataFrame(data_json["data"]["diff"]).T
162
+ total_page = math.ceil(data_json["data"]["total"] / 200)
163
+ temp_list = []
164
+ tqdm = get_tqdm()
165
+ for page in tqdm(range(1, total_page + 1), leave=False):
166
+ params.update(
167
+ {
168
+ "pn": page,
169
+ }
170
+ )
171
+ r = requests.get(url, params=params, timeout=15)
172
+ data_json = r.json()
173
+ inner_temp_df = pd.DataFrame(data_json["data"]["diff"])
174
+ temp_list.append(inner_temp_df)
175
+ temp_df = pd.concat(temp_list, ignore_index=True)
162
176
  temp_df.reset_index(inplace=True)
163
177
  temp_df["index"] = range(1, len(temp_df) + 1)
164
178
  if indicator == "今日":
@@ -348,13 +362,11 @@ def stock_market_fund_flow() -> pd.DataFrame:
348
362
  "fields1": "f1,f2,f3,f7",
349
363
  "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61,f62,f63,f64,f65",
350
364
  "ut": "b2884a393a59ad64002292a3e90d46a5",
351
- "cb": "jQuery183003743205523325188_1589197499471",
352
365
  "_": int(time.time() * 1000),
353
366
  }
354
367
  r = requests.get(url, params=params, headers=headers)
355
- text_data = r.text
356
- json_data = json.loads(text_data[text_data.find("{") : -2])
357
- content_list = json_data["data"]["klines"]
368
+ data_json = r.json()
369
+ content_list = data_json["data"]["klines"]
358
370
  temp_df = pd.DataFrame([item.split(",") for item in content_list])
359
371
  temp_df.columns = [
360
372
  "日期",
@@ -468,9 +480,9 @@ def stock_sector_fund_flow_rank(
468
480
  }
469
481
  params = {
470
482
  "pn": "1",
471
- "pz": "5000",
483
+ "pz": "200",
472
484
  "po": "1",
473
- "np": "2",
485
+ "np": "1",
474
486
  "ut": "b2884a393a59ad64002292a3e90d46a5",
475
487
  "fltt": "2",
476
488
  "invt": "2",
@@ -479,13 +491,25 @@ def stock_sector_fund_flow_rank(
479
491
  "stat": indicator_map[indicator][1],
480
492
  "fields": indicator_map[indicator][2],
481
493
  "rt": "52975239",
482
- "cb": "jQuery18308357908311220152_1589256588824",
483
494
  "_": int(time.time() * 1000),
484
495
  }
485
496
  r = requests.get(url, params=params, headers=headers)
486
- data_text = r.text
487
- data_json = json.loads(data_text[data_text.find("{") : -2])
488
- temp_df = pd.DataFrame(data_json["data"]["diff"]).T
497
+ data_json = r.json()
498
+ total_page = math.ceil(data_json["data"]["total"] / 200)
499
+ temp_list = []
500
+ tqdm = get_tqdm()
501
+ for page in tqdm(range(1, total_page + 1), leave=False):
502
+ params.update(
503
+ {
504
+ "pn": page,
505
+ }
506
+ )
507
+ r = requests.get(url, params=params, timeout=15)
508
+ data_json = r.json()
509
+ inner_temp_df = pd.DataFrame(data_json["data"]["diff"])
510
+ temp_list.append(inner_temp_df)
511
+ temp_df = pd.concat(temp_list, ignore_index=True)
512
+
489
513
  if indicator == "今日":
490
514
  temp_df.columns = [
491
515
  "-",
@@ -9,8 +9,6 @@ https://quote.eastmoney.com/concept/sh603777.html?from=classic
9
9
  import pandas as pd
10
10
  import requests
11
11
 
12
- from akshare.stock_feature.stock_hist_em import code_id_map_em
13
-
14
12
 
15
13
  def stock_individual_info_em(
16
14
  symbol: str = "603777", timeout: float = None
@@ -25,8 +23,8 @@ def stock_individual_info_em(
25
23
  :return: 股票信息
26
24
  :rtype: pandas.DataFrame
27
25
  """
28
- code_id_dict = code_id_map_em()
29
26
  url = "https://push2.eastmoney.com/api/qt/stock/get"
27
+ market_code = 1 if symbol.startswith("6") else 0
30
28
  params = {
31
29
  "ut": "fa5fd1943c7b386f172d6893dbfba10b",
32
30
  "fltt": "2",
@@ -38,7 +36,7 @@ def stock_individual_info_em(
38
36
  "f110,f262,f263,f264,f267,f268,f255,f256,f257,f258,f127,f199,f128,f198,f259,f260,f261,"
39
37
  "f171,f277,f278,f279,f288,f152,f250,f251,f252,f253,f254,f269,f270,f271,f272,f273,f274,"
40
38
  "f275,f276,f265,f266,f289,f290,f286,f285,f292,f293,f294,f295",
41
- "secid": f"{code_id_dict[symbol]}.{symbol}",
39
+ "secid": f"{market_code}.{symbol}",
42
40
  "_": "1640157544804",
43
41
  }
44
42
  r = requests.get(url, params=params, timeout=timeout)
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/4/4 19:00
4
+ Date: 2025/3/9 18:30
5
5
  Desc: 东方财富网-概念板-行情中心-日K-筹码分布
6
6
  https://quote.eastmoney.com/concept/sz000001.html
7
7
  """
@@ -13,8 +13,6 @@ import pandas as pd
13
13
  import requests
14
14
  import py_mini_racer
15
15
 
16
- from akshare.stock_feature.stock_hist_em import code_id_map_em
17
-
18
16
 
19
17
  def stock_cyq_em(symbol: str = "000001", adjust: str = "") -> pd.DataFrame:
20
18
  """
@@ -222,10 +220,10 @@ def stock_cyq_em(symbol: str = "000001", adjust: str = "") -> pd.DataFrame:
222
220
  js_code = py_mini_racer.MiniRacer()
223
221
  js_code.eval(html_str)
224
222
  adjust_dict = {"qfq": "1", "hfq": "2", "": "0"}
225
- code_id_dict = code_id_map_em()
223
+ market_code = 1 if symbol.startswith("6") else 0
226
224
  url = "https://push2his.eastmoney.com/api/qt/stock/kline/get"
227
225
  params = {
228
- "secid": f"{code_id_dict[symbol]}.{symbol}",
226
+ "secid": f"{market_code}.{symbol}",
229
227
  "ut": "fa5fd1943c7b386f172d6893dbfba10b",
230
228
  "fields1": "f1,f2,f3,f4,f5,f6",
231
229
  "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61",
@@ -1,15 +1,16 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2025/2/17 14:00
4
+ Date: 2025/3/9 18:00
5
5
  Desc: 东方财富网-行情首页-沪深京 A 股
6
6
  https://quote.eastmoney.com/
7
7
  """
8
8
 
9
- from functools import lru_cache
9
+ import math
10
10
 
11
11
  import pandas as pd
12
12
  import requests
13
+ from akshare.utils.tqdm import get_tqdm
13
14
 
14
15
 
15
16
  def stock_zh_a_spot_em() -> pd.DataFrame:
@@ -22,13 +23,13 @@ def stock_zh_a_spot_em() -> pd.DataFrame:
22
23
  url = "https://82.push2.eastmoney.com/api/qt/clist/get"
23
24
  params = {
24
25
  "pn": "1",
25
- "pz": "20000",
26
+ "pz": "200",
26
27
  "po": "1",
27
- "np": "2",
28
+ "np": "1",
28
29
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
29
30
  "fltt": "2",
30
31
  "invt": "2",
31
- "fid": "f3",
32
+ "fid": "f12",
32
33
  "fs": "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048",
33
34
  "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,"
34
35
  "f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152",
@@ -36,7 +37,20 @@ def stock_zh_a_spot_em() -> pd.DataFrame:
36
37
  }
37
38
  r = requests.get(url, params=params, timeout=15)
38
39
  data_json = r.json()
39
- temp_df = pd.DataFrame(data_json["data"]["diff"]).T
40
+ total_page = math.ceil(data_json["data"]["total"] / 200)
41
+ temp_list = []
42
+ tqdm = get_tqdm()
43
+ for page in tqdm(range(1, total_page + 1), leave=False):
44
+ params.update(
45
+ {
46
+ "pn": page,
47
+ }
48
+ )
49
+ r = requests.get(url, params=params, timeout=15)
50
+ data_json = r.json()
51
+ inner_temp_df = pd.DataFrame(data_json["data"]["diff"])
52
+ temp_list.append(inner_temp_df)
53
+ temp_df = pd.concat(temp_list, ignore_index=True)
40
54
  temp_df.columns = [
41
55
  "_",
42
56
  "最新价",
@@ -937,79 +951,6 @@ def stock_zh_b_spot_em() -> pd.DataFrame:
937
951
  return temp_df
938
952
 
939
953
 
940
- @lru_cache()
941
- def code_id_map_em() -> dict:
942
- """
943
- 东方财富-股票和市场代码
944
- https://quote.eastmoney.com/center/gridlist.html#hs_a_board
945
- :return: 股票和市场代码
946
- :rtype: dict
947
- """
948
- url = "https://80.push2.eastmoney.com/api/qt/clist/get"
949
- params = {
950
- "pn": "1",
951
- "pz": "50000",
952
- "po": "1",
953
- "np": "2",
954
- "ut": "bd1d9ddb04089700cf9c27f6f7426281",
955
- "fltt": "2",
956
- "invt": "2",
957
- "fid": "f3",
958
- "fs": "m:1 t:2,m:1 t:23",
959
- "fields": "f12",
960
- "_": "1623833739532",
961
- }
962
- r = requests.get(url, params=params, timeout=15)
963
- data_json = r.json()
964
- if not data_json["data"]["diff"]:
965
- return dict()
966
- temp_df = pd.DataFrame(data_json["data"]["diff"]).T
967
- temp_df["market_id"] = 1
968
- temp_df.columns = ["sh_code", "sh_id"]
969
- code_id_dict = dict(zip(temp_df["sh_code"], temp_df["sh_id"]))
970
- params = {
971
- "pn": "1",
972
- "pz": "50000",
973
- "po": "1",
974
- "np": "2",
975
- "ut": "bd1d9ddb04089700cf9c27f6f7426281",
976
- "fltt": "2",
977
- "invt": "2",
978
- "fid": "f3",
979
- "fs": "m:0 t:6,m:0 t:80",
980
- "fields": "f12",
981
- "_": "1623833739532",
982
- }
983
- r = requests.get(url, params=params, timeout=15)
984
- data_json = r.json()
985
- if not data_json["data"]["diff"]:
986
- return dict()
987
- temp_df_sz = pd.DataFrame(data_json["data"]["diff"]).T
988
- temp_df_sz["sz_id"] = 0
989
- code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["sz_id"])))
990
- params = {
991
- "pn": "1",
992
- "pz": "50000",
993
- "po": "1",
994
- "np": "2",
995
- "ut": "bd1d9ddb04089700cf9c27f6f7426281",
996
- "fltt": "2",
997
- "invt": "2",
998
- "fid": "f3",
999
- "fs": "m:0 t:81 s:2048",
1000
- "fields": "f12",
1001
- "_": "1623833739532",
1002
- }
1003
- r = requests.get(url, params=params, timeout=15)
1004
- data_json = r.json()
1005
- if not data_json["data"]["diff"]:
1006
- return dict()
1007
- temp_df_sz = pd.DataFrame(data_json["data"]["diff"]).T
1008
- temp_df_sz["bj_id"] = 0
1009
- code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["bj_id"])))
1010
- return code_id_dict
1011
-
1012
-
1013
954
  def stock_zh_a_hist(
1014
955
  symbol: str = "000001",
1015
956
  period: str = "daily",
@@ -1036,7 +977,7 @@ def stock_zh_a_hist(
1036
977
  :return: 每日行情
1037
978
  :rtype: pandas.DataFrame
1038
979
  """
1039
- code_id_dict = code_id_map_em()
980
+ market_code = 1 if symbol.startswith("6") else 0
1040
981
  adjust_dict = {"qfq": "1", "hfq": "2", "": "0"}
1041
982
  period_dict = {"daily": "101", "weekly": "102", "monthly": "103"}
1042
983
  url = "https://push2his.eastmoney.com/api/qt/stock/kline/get"
@@ -1046,7 +987,7 @@ def stock_zh_a_hist(
1046
987
  "ut": "7eea3edcaed734bea9cbfc24409ed989",
1047
988
  "klt": period_dict[period],
1048
989
  "fqt": adjust_dict[adjust],
1049
- "secid": f"{code_id_dict[symbol]}.{symbol}",
990
+ "secid": f"{market_code}.{symbol}",
1050
991
  "beg": start_date,
1051
992
  "end": end_date,
1052
993
  "_": "1623766962675",
@@ -1124,7 +1065,7 @@ def stock_zh_a_hist_min_em(
1124
1065
  :return: 每日分时行情
1125
1066
  :rtype: pandas.DataFrame
1126
1067
  """
1127
- code_id_dict = code_id_map_em()
1068
+ market_code = 1 if symbol.startswith("6") else 0
1128
1069
  adjust_map = {
1129
1070
  "": "0",
1130
1071
  "qfq": "1",
@@ -1138,7 +1079,7 @@ def stock_zh_a_hist_min_em(
1138
1079
  "ut": "7eea3edcaed734bea9cbfc24409ed989",
1139
1080
  "ndays": "5",
1140
1081
  "iscr": "0",
1141
- "secid": f"{code_id_dict[symbol]}.{symbol}",
1082
+ "secid": f"{market_code}.{symbol}",
1142
1083
  "_": "1623766962675",
1143
1084
  }
1144
1085
  r = requests.get(url, timeout=15, params=params)
@@ -1176,7 +1117,7 @@ def stock_zh_a_hist_min_em(
1176
1117
  "ut": "7eea3edcaed734bea9cbfc24409ed989",
1177
1118
  "klt": period,
1178
1119
  "fqt": adjust_map[adjust],
1179
- "secid": f"{code_id_dict[symbol]}.{symbol}",
1120
+ "secid": f"{market_code}.{symbol}",
1180
1121
  "beg": "0",
1181
1122
  "end": "20500000",
1182
1123
  "_": "1630930917857",
@@ -1248,7 +1189,7 @@ def stock_zh_a_hist_pre_min_em(
1248
1189
  :return: 每日分时行情包含盘前数据
1249
1190
  :rtype: pandas.DataFrame
1250
1191
  """
1251
- code_id_dict = code_id_map_em()
1192
+ market_code = 1 if symbol.startswith("6") else 0
1252
1193
  url = "https://push2.eastmoney.com/api/qt/stock/trends2/get"
1253
1194
  params = {
1254
1195
  "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13",
@@ -1257,7 +1198,7 @@ def stock_zh_a_hist_pre_min_em(
1257
1198
  "ndays": "1",
1258
1199
  "iscr": "1",
1259
1200
  "iscca": "0",
1260
- "secid": f"{code_id_dict[symbol]}.{symbol}",
1201
+ "secid": f"{market_code}.{symbol}",
1261
1202
  "_": "1623766962675",
1262
1203
  }
1263
1204
  r = requests.get(url, timeout=15, params=params)
@@ -1928,9 +1869,6 @@ if __name__ == "__main__":
1928
1869
  stock_zh_b_spot_em_df = stock_zh_b_spot_em()
1929
1870
  print(stock_zh_b_spot_em_df)
1930
1871
 
1931
- code_id_map_em_df = code_id_map_em()
1932
- print(code_id_map_em_df)
1933
-
1934
1872
  stock_hk_spot_em_df = stock_hk_spot_em()
1935
1873
  print(stock_hk_spot_em_df)
1936
1874
 
@@ -2008,8 +1946,8 @@ if __name__ == "__main__":
2008
1946
 
2009
1947
  stock_zh_a_hist_min_em_df = stock_zh_a_hist_min_em(
2010
1948
  symbol="300364",
2011
- start_date="2025-02-14 09:30:00",
2012
- end_date="2025-02-14 15:00:00",
1949
+ start_date="2025-03-07 09:30:00",
1950
+ end_date="2025-03-07 15:00:00",
2013
1951
  period="5",
2014
1952
  adjust="hfq",
2015
1953
  )
@@ -2028,8 +1966,8 @@ if __name__ == "__main__":
2028
1966
  symbol="01611",
2029
1967
  period="1",
2030
1968
  adjust="",
2031
- start_date="2024-04-12 09:30:00",
2032
- end_date="2024-04-12 18:32:00",
1969
+ start_date="2025-03-07 09:30:00",
1970
+ end_date="2025-03-07 18:32:00",
2033
1971
  )
2034
1972
  print(stock_hk_hist_min_em_df)
2035
1973
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: akshare
3
- Version: 1.16.32
3
+ Version: 1.16.34
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=dcNGHEfoPmloF34FYwbkqeaWyqPMW0Ak39QTrXr11xw,190182
1
+ akshare/__init__.py,sha256=DutWejDt-Bjv3GwoxVtS2P2QUVlB9bRucy-j0-EH6YQ,190292
2
2
  akshare/datasets.py,sha256=rKuRNZrqi6IMsZ9nyvO3Rx02js0tH3zMLjz8HQNAoPQ,963
3
3
  akshare/exceptions.py,sha256=WEJjIhSmJ_xXNW6grwV4nufE_cfmmyuhmueVGiN1VAg,878
4
4
  akshare/request.py,sha256=HtFFf9MhfEibR-ETWe-1Tts6ELU4VKSqA-ghaXjegQM,4252
@@ -88,7 +88,7 @@ akshare/fund/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
88
88
  akshare/fund/fund_amac.py,sha256=Dml3EgpJhmVgkttb0OdaWN41ynOCIbJ0-1qAPDWF0oo,33800
89
89
  akshare/fund/fund_announcement.py,sha256=g5rcIC9vQ4HapZd0b7cDbFYzHu9V6bOKhwxRHVfmv8k,1848
90
90
  akshare/fund/fund_aum_em.py,sha256=dy1R1-0X48H8S-LPiuggNA5M-6MvQ08fnp5bytvCGPQ,3518
91
- akshare/fund/fund_em.py,sha256=KbgTG_CIaEPykNh5xq-VRod-X0caIiPdNjx5Gv7CdTM,41785
91
+ akshare/fund/fund_em.py,sha256=HDJEhnWjxYN_0yg6p9WRkG3i1-hheBC7CSBzht_-IhQ,41785
92
92
  akshare/fund/fund_etf_em.py,sha256=xswdZoMN8mcDA_q-lN9lvOjKEPUzoPBjOU7Nn0grIHM,17393
93
93
  akshare/fund/fund_etf_sina.py,sha256=YV2KrqKMF_h8kgrywvWvRJx2oy62lhgizvHFk40E4Rk,7042
94
94
  akshare/fund/fund_etf_ths.py,sha256=vb_jy0h2-Kz2dNWUrwBYxPB0MAotv0KZgnFhE98ohSM,3432
@@ -235,7 +235,7 @@ akshare/spot/spot_sge.py,sha256=sXaUGPm8yEXogssNFyFgTlnpf363g7s3U6xO4Zyvk9g,8213
235
235
  akshare/stock/__init__.py,sha256=jSa9260d6aNZajaW68chI2mpPkDSXLOgi3eXrqo4MQ8,82
236
236
  akshare/stock/cons.py,sha256=0oyUW5Pu-iQ3qgh-TFemM_O5f1fAwVe-PsI4Qa8EYpQ,42956
237
237
  akshare/stock/stock_allotment_cninfo.py,sha256=OVjVdWp2XVRNbJvVgtgVVoBmPBJgBB4RyIIgA_9QHM8,6066
238
- akshare/stock/stock_ask_bid_em.py,sha256=nXQhYIpU4k7GUc7nthWC29zVS9GhYb9ppQTLD0gycF4,3438
238
+ akshare/stock/stock_ask_bid_em.py,sha256=bo7VNkp1PmK4Z-GPZuVn_I-IAdzeW8cs3W_75KodxCg,3368
239
239
  akshare/stock/stock_board_concept_em.py,sha256=-ZzrpRCpoiTdOy_yeLtkGEHP_wjKBmKiR5l_EfDhLzg,18554
240
240
  akshare/stock/stock_board_industry_em.py,sha256=Whqgve1JrghcKuaC2F80Vt-z-9oSxQW66GIZwMM0QG8,19170
241
241
  akshare/stock/stock_cg_equity_mortgage.py,sha256=Pui5aWKKPwGuKjF_GNpejDzsMGNPrxiaJviLz3x2e9I,3426
@@ -243,7 +243,7 @@ akshare/stock/stock_cg_guarantee.py,sha256=ts7qcQhhyN1PHB7Q4XlMn38HhfVvubOvky9RZ
243
243
  akshare/stock/stock_cg_lawsuit.py,sha256=6Y92pPw0JgyrInteqHuU07G1jwmdX2wjaDtrJN8y6Hg,4129
244
244
  akshare/stock/stock_dividend_cninfo.py,sha256=_vipLQu94qBDoPkaIWZKRFA0mFfgroUMnn5EdLcjAc4,3195
245
245
  akshare/stock/stock_dzjy_em.py,sha256=QMo2w-_I9UnmCr1IXk_InFeW5ok_GpRE9HdWFDUdGyM,22556
246
- akshare/stock/stock_fund_em.py,sha256=xGbMhFGOaxN7zhDlxcHWjo2WRZ95pu9dsvBSb2tDBYc,48972
246
+ akshare/stock/stock_fund_em.py,sha256=Ki7BC8XvkrJoMSfUf6bgH2t0JqPhTQQ2jgG8C43IjBA,49648
247
247
  akshare/stock/stock_fund_hold.py,sha256=iFEmRFber7MF6aPi0QOJxpvYjO7I26KouUvC-xTQdCk,6056
248
248
  akshare/stock/stock_gsrl_em.py,sha256=oy5vO681ZPTEehZgz10T8jgIQ8dNm_E7MXGr1PGoHqI,1951
249
249
  akshare/stock/stock_hk_famous.py,sha256=uF1iUkrwvMMxvxE3-O7byxQ-oS0SjlMBwOEraTBA41s,3018
@@ -262,7 +262,7 @@ akshare/stock/stock_industry_cninfo.py,sha256=dJ19zPeKRTbUrAoa8fpBB25caZuIjX92Re
262
262
  akshare/stock/stock_industry_pe_cninfo.py,sha256=0OjjsFGG90zJRZEBqaCsjKSpSAgrp3PpXzMtom_ll_s,4287
263
263
  akshare/stock/stock_industry_sw.py,sha256=C0FjDg976EA0EksRS3sChbmJOZmOPEOzKCrHVs2YqTg,1441
264
264
  akshare/stock/stock_info.py,sha256=AqzLzsTlYTSExBtyrZZBjI-D-VROj9e7Sq37WKHJ7XQ,16314
265
- akshare/stock/stock_info_em.py,sha256=F-K8ZzWW70KTzShP82semh8RKklUEot2zxuzNDum20I,2615
265
+ akshare/stock/stock_info_em.py,sha256=9dxvIeRmvfN-1blwivCT5gGWBsOyLQljHEW5TAG0qsU,2559
266
266
  akshare/stock/stock_intraday_em.py,sha256=s3gAzG0-6gYj407WePpoNXVyKUZB-siOOw1xZbBYIF4,4538
267
267
  akshare/stock/stock_intraday_sina.py,sha256=7LzXRwjdPo-BHwvs8244-MFiGriPUCFBJqRW-r9iVB4,2359
268
268
  akshare/stock/stock_ipo_summary_cninfo.py,sha256=Ma-54GsOOhRWxilLH-Qmm0VVbpJQGf2XWKaJ8NBSgAY,3847
@@ -304,7 +304,7 @@ akshare/stock_feature/stock_classify_sina.py,sha256=Lg7ROG5W9HioFRplJI2rZ6tAAHM0
304
304
  akshare/stock_feature/stock_comment_em.py,sha256=uSOS5YmyXB9jSDsZf1fNC0RPGTE6_4RzjwxaewhJQtc,13697
305
305
  akshare/stock_feature/stock_concept_futu.py,sha256=jKJ9mfdJXgXwcMb3gVpbDl5ivr-zcMkuGO7jjgyA3os,6228
306
306
  akshare/stock_feature/stock_congestion_lg.py,sha256=iTEcmL0HoSqWGfxv_gSM-qA4O23aqUH7qHl9asDtoO0,1299
307
- akshare/stock_feature/stock_cyq_em.py,sha256=ijHL6BWGDLI8dctYQ4pYWDK2UHOSfn5mRu0c9E5zwp0,11017
307
+ akshare/stock_feature/stock_cyq_em.py,sha256=bLy01IqlPDbaqcLdAf3ClVQQHF0YB_NxQ-p-Y9Oc0Z8,10961
308
308
  akshare/stock_feature/stock_disclosure_cninfo.py,sha256=1Eje6abqk6HNOlpCueGnaR_r1-aqTv2f51h4QAHCQzo,10661
309
309
  akshare/stock_feature/stock_dxsyl_em.py,sha256=9d5tfHCB9Ls1FQdyOCElZt8YF5ltKwPa4AvnXL8u48o,18789
310
310
  akshare/stock_feature/stock_ebs_lg.py,sha256=rnFbOHnZPZUJ3K7-QdTZXqbIFazL1wSkTvn4Mpwn7bI,1750
@@ -318,7 +318,7 @@ akshare/stock_feature/stock_gdhs.py,sha256=Z6ZMy1A03BqMu9TghcIu2Sd_wwEtpIH7qawHu
318
318
  akshare/stock_feature/stock_gdzjc_em.py,sha256=SHJH5iS3_NhvjTqRXF0vPooZl0s_ASeyZmNCC50ZYqs,4426
319
319
  akshare/stock_feature/stock_gpzy_em.py,sha256=FgyjVgdoxrtMM7WwxdQJxK0mYGJklIHaT9KmMCFmEPM,17869
320
320
  akshare/stock_feature/stock_gxl_lg.py,sha256=I8TpDEpFzadZSSyZisyIk6163mJlRxup91dmlBH4t4U,2641
321
- akshare/stock_feature/stock_hist_em.py,sha256=wNhjRRahEPaan-19vhDY7Nd9xBzxwtqG0emcfJCya8I,69297
321
+ akshare/stock_feature/stock_hist_em.py,sha256=8tR__dts03shNuxBGmEYmotOuVfAQpvUnzT2-m6shA4,67558
322
322
  akshare/stock_feature/stock_hist_tx.py,sha256=WpLsbkG2didSx7lYNkSbTWNTrLhUKbcopfD18WO2Rlc,3397
323
323
  akshare/stock_feature/stock_hk_valuation_baidu.py,sha256=_sErx4UhNsSXJgXyPfrL0aPxkW53Mg1zH9gEKoziaCA,1968
324
324
  akshare/stock_feature/stock_hot_xq.py,sha256=NmoH4x-0hiDztj-YwzMFVIyOICQ2wUUBbhjt91q-tq4,9112
@@ -388,8 +388,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
388
388
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
389
389
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
390
390
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
391
- akshare-1.16.32.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
392
- akshare-1.16.32.dist-info/METADATA,sha256=BZYfY19c10fPWzEIbBcAFMchnzrimBdfKNW65XDE8cs,13653
393
- akshare-1.16.32.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
394
- akshare-1.16.32.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
395
- akshare-1.16.32.dist-info/RECORD,,
391
+ akshare-1.16.34.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
392
+ akshare-1.16.34.dist-info/METADATA,sha256=pddVy6ctAKgEYJFTjzhTNGbHbtTHCRhI-d91Lqg679g,13653
393
+ akshare-1.16.34.dist-info/WHEEL,sha256=EaM1zKIUYa7rQnxGiOCGhzJABRwy4WO57rWMR3_tj4I,91
394
+ akshare-1.16.34.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
395
+ akshare-1.16.34.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.2)
2
+ Generator: setuptools (75.9.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5