akshare 1.16.11__py3-none-any.whl → 1.16.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
akshare/__init__.py CHANGED
@@ -3020,9 +3020,11 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
3020
3020
  1.16.9 fix: fix stock_sse_deal_daily interface
3021
3021
  1.16.10 fix: fix option_risk_analysis_em interface
3022
3022
  1.16.11 fix: fix stock_intraday_em interface
3023
+ 1.16.12 fix: fix bond_zh_hs_cov_daily interface
3024
+ 1.16.13 fix: fix futures_inventory_99 interface
3023
3025
  """
3024
3026
 
3025
- __version__ = "1.16.11"
3027
+ __version__ = "1.16.13"
3026
3028
  __author__ = "AKFamily"
3027
3029
 
3028
3030
  import sys
@@ -1,12 +1,11 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2025/2/17 12:50
4
+ Date: 2025/2/24 18:50
5
5
  Desc: 新浪财经-债券-沪深可转债-实时行情数据和历史行情数据
6
6
  https://vip.stock.finance.sina.com.cn/mkt/#hskzz_z
7
7
  """
8
8
 
9
- import math
10
9
  import datetime
11
10
  import re
12
11
 
@@ -96,9 +95,9 @@ def _code_id_map() -> dict:
96
95
  url = "https://80.push2.eastmoney.com/api/qt/clist/get"
97
96
  params = {
98
97
  "pn": "1",
99
- "pz": "200",
98
+ "pz": "50000",
100
99
  "po": "1",
101
- "np": "1",
100
+ "np": "2",
102
101
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
103
102
  "fltt": "2",
104
103
  "invt": "2",
@@ -109,28 +108,15 @@ def _code_id_map() -> dict:
109
108
  }
110
109
  r = requests.get(url, params=params)
111
110
  data_json = r.json()
112
- total_page = math.ceil(data_json["data"]["total"] / 200)
113
- temp_list = []
114
- tqdm = get_tqdm()
115
- for page in tqdm(range(1, total_page + 1), leave=False):
116
- params.update(
117
- {
118
- "pn": page,
119
- }
120
- )
121
- r = requests.get(url, params=params, timeout=15)
122
- data_json = r.json()
123
- inner_temp_df = pd.DataFrame(data_json["data"]["diff"])
124
- temp_list.append(inner_temp_df)
125
- temp_df = pd.concat(temp_list, ignore_index=True)
111
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
126
112
  temp_df["market_id"] = 1
127
113
  temp_df.columns = ["sh_code", "sh_id"]
128
114
  code_id_dict = dict(zip(temp_df["sh_code"], temp_df["sh_id"]))
129
115
  params = {
130
116
  "pn": "1",
131
- "pz": "200",
117
+ "pz": "50000",
132
118
  "po": "1",
133
- "np": "1",
119
+ "np": "2",
134
120
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
135
121
  "fltt": "2",
136
122
  "invt": "2",
@@ -141,20 +127,7 @@ def _code_id_map() -> dict:
141
127
  }
142
128
  r = requests.get(url, params=params)
143
129
  data_json = r.json()
144
- total_page = math.ceil(data_json["data"]["total"] / 200)
145
- temp_list = []
146
- tqdm = get_tqdm()
147
- for page in tqdm(range(1, total_page + 1), leave=False):
148
- params.update(
149
- {
150
- "pn": page,
151
- }
152
- )
153
- r = requests.get(url, params=params, timeout=15)
154
- data_json = r.json()
155
- inner_temp_df = pd.DataFrame(data_json["data"]["diff"])
156
- temp_list.append(inner_temp_df)
157
- temp_df_sz = pd.concat(temp_list, ignore_index=True)
130
+ temp_df_sz = pd.DataFrame(data_json["data"]["diff"]).T
158
131
  temp_df_sz["sz_id"] = 0
159
132
  code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["sz_id"])))
160
133
  return code_id_dict
@@ -505,9 +478,9 @@ def bond_cov_comparison() -> pd.DataFrame:
505
478
  url = "https://16.push2.eastmoney.com/api/qt/clist/get"
506
479
  params = {
507
480
  "pn": "1",
508
- "pz": "200",
481
+ "pz": "50000",
509
482
  "po": "1",
510
- "np": "1",
483
+ "np": "2",
511
484
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
512
485
  "fltt": "2",
513
486
  "invt": "2",
@@ -519,21 +492,8 @@ def bond_cov_comparison() -> pd.DataFrame:
519
492
  }
520
493
  r = requests.get(url, params=params)
521
494
  text_data = r.text
522
- data_json = demjson.decode(text_data)
523
- total_page = math.ceil(data_json["data"]["total"] / 200)
524
- temp_list = []
525
- tqdm = get_tqdm()
526
- for page in tqdm(range(1, total_page + 1), leave=False):
527
- params.update(
528
- {
529
- "pn": page,
530
- }
531
- )
532
- r = requests.get(url, params=params, timeout=15)
533
- data_json = r.json()
534
- inner_temp_df = pd.DataFrame(data_json["data"]["diff"])
535
- temp_list.append(inner_temp_df)
536
- temp_df = pd.concat(temp_list, ignore_index=True)
495
+ json_data = demjson.decode(text_data)
496
+ temp_df = pd.DataFrame(json_data["data"]["diff"]).T
537
497
  temp_df.reset_index(inplace=True)
538
498
  temp_df["index"] = range(1, len(temp_df) + 1)
539
499
  temp_df.columns = [
@@ -673,6 +633,8 @@ def bond_zh_cov_info(
673
633
  data_json = r.json()
674
634
  temp_df = pd.DataFrame.from_dict(data_json["result"]["data"])
675
635
  return temp_df
636
+ else:
637
+ return pd.DataFrame()
676
638
 
677
639
 
678
640
  def bond_zh_cov_value_analysis(symbol: str = "113527") -> pd.DataFrame:
@@ -1,14 +1,15 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/12/23 20:00
4
+ Date: 2025/2/24 23:00
5
5
  Desc: 99 期货网-大宗商品库存数据
6
6
  https://www.99qh.com/
7
7
  """
8
8
 
9
9
  import json
10
- from functools import lru_cache
11
10
  from datetime import datetime
11
+ from functools import lru_cache
12
+
12
13
  import pandas as pd
13
14
  import requests
14
15
  from bs4 import BeautifulSoup
@@ -50,7 +51,14 @@ def futures_inventory_99(symbol: str = "豆一") -> pd.DataFrame:
50
51
  :rtype: pandas.DataFrame
51
52
  """
52
53
  temp_df = __get_99_symbol_map()
53
- symbol_map = dict(zip(temp_df["name"], temp_df["productId"]))
54
+ symbol_name_map = dict(zip(temp_df["name"], temp_df["productId"]))
55
+ symbol_code_map = dict(zip(temp_df["code"], temp_df["productId"]))
56
+ if symbol in symbol_name_map: # 如果输入的是中文名称
57
+ product_id = symbol_name_map[symbol]
58
+ elif symbol in symbol_code_map: # 如果输入的是代码
59
+ product_id = symbol_code_map[symbol]
60
+ else:
61
+ raise ValueError(f"未找到品种 {symbol} 对应的编号")
54
62
 
55
63
  url = "https://centerapi.fx168api.com/app/qh/api/stock/trend"
56
64
  headers = {
@@ -62,7 +70,7 @@ def futures_inventory_99(symbol: str = "豆一") -> pd.DataFrame:
62
70
  "referer": "https://www.99qh.com",
63
71
  }
64
72
  params = {
65
- "productId": symbol_map[symbol],
73
+ "productId": product_id,
66
74
  "type": "1",
67
75
  "pageNo": "1",
68
76
  "pageSize": "4000",
@@ -82,5 +90,5 @@ def futures_inventory_99(symbol: str = "豆一") -> pd.DataFrame:
82
90
 
83
91
 
84
92
  if __name__ == "__main__":
85
- futures_inventory_99_df = futures_inventory_99(symbol="豆一")
93
+ futures_inventory_99_df = futures_inventory_99(symbol="pg")
86
94
  print(futures_inventory_99_df)
@@ -1,11 +1,12 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/1/3 17:00
4
+ Date: 2025/2/24 18:00
5
5
  Desc: REITs 行情及信息
6
6
  https://quote.eastmoney.com/center/gridlist.html#fund_reits_all
7
7
  https://www.jisilu.cn/data/cnreits/#CnReits
8
8
  """
9
+
9
10
  import pandas as pd
10
11
  import requests
11
12
 
@@ -17,12 +18,12 @@ def reits_realtime_em() -> pd.DataFrame:
17
18
  :return: 沪深 REITs-实时行情
18
19
  :rtype: pandas.DataFrame
19
20
  """
20
- url = "http://95.push2.eastmoney.com/api/qt/clist/get"
21
+ url = "https://95.push2.eastmoney.com/api/qt/clist/get"
21
22
  params = {
22
23
  "pn": "1",
23
- "pz": "500",
24
+ "pz": "50000",
24
25
  "po": "1",
25
- "np": "1",
26
+ "np": "2",
26
27
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
27
28
  "fltt": "2",
28
29
  "invt": "2",
@@ -33,7 +34,7 @@ def reits_realtime_em() -> pd.DataFrame:
33
34
  }
34
35
  r = requests.get(url, params=params)
35
36
  data_json = r.json()
36
- temp_df = pd.DataFrame(data_json["data"]["diff"])
37
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
37
38
  temp_df.reset_index(inplace=True)
38
39
  temp_df["index"] = range(1, len(temp_df) + 1)
39
40
  temp_df.rename(
@@ -69,15 +70,15 @@ def reits_realtime_em() -> pd.DataFrame:
69
70
  "昨收",
70
71
  ]
71
72
  ]
72
- temp_df['最新价'] = pd.to_numeric(temp_df['最新价'], errors="coerce")
73
- temp_df['涨跌额'] = pd.to_numeric(temp_df['涨跌额'], errors="coerce")
74
- temp_df['涨跌幅'] = pd.to_numeric(temp_df['涨跌幅'], errors="coerce")
75
- temp_df['成交量'] = pd.to_numeric(temp_df['成交量'], errors="coerce")
76
- temp_df['成交额'] = pd.to_numeric(temp_df['成交额'], errors="coerce")
77
- temp_df['开盘价'] = pd.to_numeric(temp_df['开盘价'], errors="coerce")
78
- temp_df['最高价'] = pd.to_numeric(temp_df['最高价'], errors="coerce")
79
- temp_df['最低价'] = pd.to_numeric(temp_df['最低价'], errors="coerce")
80
- temp_df['昨收'] = pd.to_numeric(temp_df['昨收'], errors="coerce")
73
+ temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce")
74
+ temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce")
75
+ temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce")
76
+ temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce")
77
+ temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce")
78
+ temp_df["开盘价"] = pd.to_numeric(temp_df["开盘价"], errors="coerce")
79
+ temp_df["最高价"] = pd.to_numeric(temp_df["最高价"], errors="coerce")
80
+ temp_df["最低价"] = pd.to_numeric(temp_df["最低价"], errors="coerce")
81
+ temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce")
81
82
  return temp_df
82
83
 
83
84
 
@@ -636,7 +636,7 @@ def _get_stock_sector_fund_flow_summary_code() -> dict:
636
636
  }
637
637
  params = {
638
638
  "pn": "1",
639
- "pz": "5000",
639
+ "pz": "50000",
640
640
  "po": "1",
641
641
  "np": "2",
642
642
  "ut": "b2884a393a59ad64002292a3e90d46a5",
@@ -675,9 +675,9 @@ def stock_sector_fund_flow_summary(
675
675
  params = {
676
676
  "fid": "f62",
677
677
  "po": "1",
678
- "pz": "500",
678
+ "pz": "5000",
679
679
  "pn": "1",
680
- "np": "1",
680
+ "np": "2",
681
681
  "fltt": "2",
682
682
  "invt": "2",
683
683
  "fs": f"b:{code_name_map[symbol]}",
@@ -685,9 +685,9 @@ def stock_sector_fund_flow_summary(
685
685
  }
686
686
  r = requests.get(url, params=params)
687
687
  data_json = r.json()
688
- temp_df = pd.DataFrame(data_json["data"]["diff"])
688
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
689
689
  temp_df.reset_index(inplace=True)
690
- temp_df["index"] = temp_df["index"] + 1
690
+ temp_df["index"] = temp_df["index"].astype(int) + 1
691
691
  temp_df.rename(
692
692
  columns={
693
693
  "index": "序号",
@@ -764,9 +764,9 @@ def stock_sector_fund_flow_summary(
764
764
  params = {
765
765
  "fid": "f164",
766
766
  "po": "1",
767
- "pz": "500",
767
+ "pz": "50000",
768
768
  "pn": "1",
769
- "np": "1",
769
+ "np": "2",
770
770
  "fltt": "2",
771
771
  "invt": "2",
772
772
  "fs": f"b:{code_name_map[symbol]}",
@@ -774,9 +774,9 @@ def stock_sector_fund_flow_summary(
774
774
  }
775
775
  r = requests.get(url, params=params)
776
776
  data_json = r.json()
777
- temp_df = pd.DataFrame(data_json["data"]["diff"])
777
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
778
778
  temp_df.reset_index(inplace=True)
779
- temp_df["index"] = temp_df["index"] + 1
779
+ temp_df["index"] = temp_df["index"].astype(int) + 1
780
780
  temp_df.rename(
781
781
  columns={
782
782
  "index": "序号",
@@ -853,9 +853,9 @@ def stock_sector_fund_flow_summary(
853
853
  params = {
854
854
  "fid": "f174",
855
855
  "po": "1",
856
- "pz": "500",
856
+ "pz": "50000",
857
857
  "pn": "1",
858
- "np": "1",
858
+ "np": "2",
859
859
  "fltt": "2",
860
860
  "invt": "2",
861
861
  "fs": f"b:{code_name_map[symbol]}",
@@ -863,9 +863,9 @@ def stock_sector_fund_flow_summary(
863
863
  }
864
864
  r = requests.get(url, params=params)
865
865
  data_json = r.json()
866
- temp_df = pd.DataFrame(data_json["data"]["diff"])
866
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
867
867
  temp_df.reset_index(inplace=True)
868
- temp_df["index"] = temp_df["index"] + 1
868
+ temp_df["index"] = temp_df["index"].astype(int) + 1
869
869
  temp_df.rename(
870
870
  columns={
871
871
  "index": "序号",
@@ -942,7 +942,7 @@ def stock_sector_fund_flow_summary(
942
942
  return pd.DataFrame()
943
943
 
944
944
 
945
- def stock_sector_fund_flow_hist(symbol: str = "电源设备") -> pd.DataFrame:
945
+ def stock_sector_fund_flow_hist(symbol: str = "汽车服务") -> pd.DataFrame:
946
946
  """
947
947
  东方财富网-数据中心-资金流向-行业资金流-行业历史资金流
948
948
  https://data.eastmoney.com/bkzj/BK1034.html
@@ -1045,7 +1045,7 @@ def _get_stock_concept_fund_flow_summary_code() -> dict:
1045
1045
  }
1046
1046
  params = {
1047
1047
  "pn": "1",
1048
- "pz": "5000",
1048
+ "pz": "50000",
1049
1049
  "po": "1",
1050
1050
  "np": "2",
1051
1051
  "fields": "f12,f13,f14,f62",
@@ -1061,7 +1061,7 @@ def _get_stock_concept_fund_flow_summary_code() -> dict:
1061
1061
  return name_code_map
1062
1062
 
1063
1063
 
1064
- def stock_concept_fund_flow_hist(symbol: str = "锂电池") -> pd.DataFrame:
1064
+ def stock_concept_fund_flow_hist(symbol: str = "数据要素") -> pd.DataFrame:
1065
1065
  """
1066
1066
  东方财富网-数据中心-资金流向-概念资金流-概念历史资金流
1067
1067
  https://data.eastmoney.com/bkzj/BK0574.html
@@ -1302,10 +1302,10 @@ if __name__ == "__main__":
1302
1302
  )
1303
1303
  print(stock_sector_fund_flow_summary_df)
1304
1304
 
1305
- stock_sector_fund_flow_hist_df = stock_sector_fund_flow_hist(symbol="电源设备")
1305
+ stock_sector_fund_flow_hist_df = stock_sector_fund_flow_hist(symbol="汽车服务")
1306
1306
  print(stock_sector_fund_flow_hist_df)
1307
1307
 
1308
- stock_concept_fund_flow_hist_df = stock_concept_fund_flow_hist(symbol="电源设备")
1308
+ stock_concept_fund_flow_hist_df = stock_concept_fund_flow_hist(symbol="数据要素")
1309
1309
  print(stock_concept_fund_flow_hist_df)
1310
1310
 
1311
1311
  stock_main_fund_flow_df = stock_main_fund_flow(symbol="全部股票")
@@ -1,10 +1,11 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2021/6/2 16:33
4
+ Date: 2025/2/24 18:33
5
5
  Desc: 两网及退市
6
6
  https://quote.eastmoney.com/center/gridlist.html#staq_net_board
7
7
  """
8
+
8
9
  import pandas as pd
9
10
  import requests
10
11
 
@@ -16,12 +17,12 @@ def stock_staq_net_stop() -> pd.DataFrame:
16
17
  :return: 两网及退市
17
18
  :rtype: pandas.DataFrame
18
19
  """
19
- url = "http://5.push2.eastmoney.com/api/qt/clist/get"
20
+ url = "https://5.push2.eastmoney.com/api/qt/clist/get"
20
21
  params = {
21
22
  "pn": "1",
22
- "pz": "2000",
23
+ "pz": "50000",
23
24
  "po": "1",
24
- "np": "1",
25
+ "np": "2",
25
26
  "ut": "bd1d9ddb04089700cf9c27f6f7426281",
26
27
  "fltt": "2",
27
28
  "invt": "2",
@@ -32,7 +33,7 @@ def stock_staq_net_stop() -> pd.DataFrame:
32
33
  }
33
34
  r = requests.get(url, params=params)
34
35
  data_json = r.json()
35
- temp_df = pd.DataFrame(data_json["data"]["diff"])
36
+ temp_df = pd.DataFrame(data_json["data"]["diff"]).T
36
37
  temp_df.reset_index(inplace=True)
37
38
  temp_df["index"] = temp_df.index + 1
38
39
  temp_df.columns = ["序号", "代码", "名称"]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: akshare
3
- Version: 1.16.11
3
+ Version: 1.16.13
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=14lo_Drvbjv_VQ7Ew7Rlwi7P_TYpICe34QOwcoKnjAE,188075
1
+ akshare/__init__.py,sha256=T7lSL6WaUg5jRzy3Yb66Ot_oWBDV0rtDpdi6_ZmieZo,188171
2
2
  akshare/datasets.py,sha256=rKuRNZrqi6IMsZ9nyvO3Rx02js0tH3zMLjz8HQNAoPQ,963
3
3
  akshare/exceptions.py,sha256=WEJjIhSmJ_xXNW6grwV4nufE_cfmmyuhmueVGiN1VAg,878
4
4
  akshare/request.py,sha256=HtFFf9MhfEibR-ETWe-1Tts6ELU4VKSqA-ghaXjegQM,4252
@@ -30,7 +30,7 @@ akshare/bond/bond_info_cm.py,sha256=VBu9UM9tUcGDRV07pndU9yttLDF_Nk3b0vU0n65qpHs,
30
30
  akshare/bond/bond_issue_cninfo.py,sha256=tPoZhF-_sIX9ztCKB0K0-Z4Kd9b-389bP3_CdFK7Wb0,21672
31
31
  akshare/bond/bond_nafmii.py,sha256=cekcobyXKMG1zDuM8wHWOn__SuWELxYmUwfGVmLRP40,2155
32
32
  akshare/bond/bond_summary.py,sha256=ECwCRcs5YMIro4I1Yayf6SZ8nz1Hr97RhmKT6aGaQDg,3581
33
- akshare/bond/bond_zh_cov.py,sha256=bdTEi-uS4WfvHW59fPn2AJGtrnsqRiKdH3eRKqjHtNM,25085
33
+ akshare/bond/bond_zh_cov.py,sha256=b5TPHCgqdblMPFR8lxUNLwvLWHn90q--IF2GlmCCTTU,23799
34
34
  akshare/bond/bond_zh_sina.py,sha256=msj7upgqaCTzC_MxzhUm7hVKtzHeWRUjlcjvZn2zlbw,4654
35
35
  akshare/bond/cons.py,sha256=SGqjMqRYwJlEb8UczxdcrtcD7I2SAVULXARGEedEQfE,1792
36
36
  akshare/cal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -116,7 +116,7 @@ akshare/futures/futures_hf_em.py,sha256=jne-wUYr2QTUkDq3qAxYKE0Hm90L3H8qUDu3JavK
116
116
  akshare/futures/futures_hist_em.py,sha256=Q8I20qRjp2ujiJMCCNBvTHXmrIth22p2k6KpvbkC3dk,6472
117
117
  akshare/futures/futures_hq_sina.py,sha256=eK1gEan4DPvpYmln8-tNnzh_J_733s95DBr--NqNYVA,9576
118
118
  akshare/futures/futures_index_ccidx.py,sha256=_kgWioCOpFNn8WUcL5qKHGb3rUHzrbrx2AszprKpBh4,4460
119
- akshare/futures/futures_inventory_99.py,sha256=pK1nzPNplRexvb2iFnU6Y_4blINTP8z-OFbQYzR3Q0g,2990
119
+ akshare/futures/futures_inventory_99.py,sha256=0yqqF4oKJvMr0ihcgjB9i5pa5VMM4qVjv7wCqmXY6Pc,3356
120
120
  akshare/futures/futures_inventory_em.py,sha256=C5nt4F51WB-oc8o3GrMvEGo0SO2mIq_H1vHVl42vzT0,2340
121
121
  akshare/futures/futures_news_shmet.py,sha256=1epZ3MwDc-T2n1ie4SSDfvUaBiMpSL0Q_xb2VoZ_llU,2465
122
122
  akshare/futures/futures_roll_yield.py,sha256=RiwN0yYwzYy8zGhmTopBwJ37aUQ7Llwh3eQRzn0apaE,6135
@@ -220,7 +220,7 @@ akshare/qhkc_web/qhkc_tool.py,sha256=pkazsrQQ-pAQgERzHxXWHnEI1iZvo-dGO089c4LGHT8
220
220
  akshare/rate/__init__.py,sha256=gXRhfZhrFm7iIQMmkNkl-ZQUyim2wHyZLVllHQlwO1Q,83
221
221
  akshare/rate/repo_rate.py,sha256=BvTBSQrIwNurGErFwmNW9WjfCbOayJl8dNhs6eqUgE4,4243
222
222
  akshare/reits/__init__.py,sha256=0MO0aWWC8jQBth2IPl3W63vZKvuDb1OJqIpHE-sCQVU,82
223
- akshare/reits/reits_basic.py,sha256=gxQeP8_K7SYjBT9zkKuVRRi8B4SPOHNqVdXe_UvTWTY,2730
223
+ akshare/reits/reits_basic.py,sha256=jTOvS1uS_Yxx8RihXcxOr8BiZZtOFi9SG4Ixanfla2A,2737
224
224
  akshare/sport/__init__.py,sha256=aMsxmuOMZFkcI8tGmQanhPyPwyBpdeApAWyCtDRKMeg,81
225
225
  akshare/sport/sport_olympic.py,sha256=CB1cvLpz2BWuadfonhHuQ17Qxt9X_3ks0Zc5Bff2w9k,818
226
226
  akshare/spot/__init__.py,sha256=VGuha94pXYoezmMs3F3Q_ofaN8RZIrkJ2NtVv8hWCjY,83
@@ -238,7 +238,7 @@ akshare/stock/stock_cg_guarantee.py,sha256=ts7qcQhhyN1PHB7Q4XlMn38HhfVvubOvky9RZ
238
238
  akshare/stock/stock_cg_lawsuit.py,sha256=6Y92pPw0JgyrInteqHuU07G1jwmdX2wjaDtrJN8y6Hg,4129
239
239
  akshare/stock/stock_dividend_cninfo.py,sha256=_vipLQu94qBDoPkaIWZKRFA0mFfgroUMnn5EdLcjAc4,3195
240
240
  akshare/stock/stock_dzjy_em.py,sha256=QMo2w-_I9UnmCr1IXk_InFeW5ok_GpRE9HdWFDUdGyM,22556
241
- akshare/stock/stock_fund_em.py,sha256=ZtDX_llsN4Wxm6IcoGMLV0Xoy0n6CIuDpXVps5OBQS8,48920
241
+ akshare/stock/stock_fund_em.py,sha256=xGbMhFGOaxN7zhDlxcHWjo2WRZ95pu9dsvBSb2tDBYc,48972
242
242
  akshare/stock/stock_fund_hold.py,sha256=iFEmRFber7MF6aPi0QOJxpvYjO7I26KouUvC-xTQdCk,6056
243
243
  akshare/stock/stock_gsrl_em.py,sha256=oy5vO681ZPTEehZgz10T8jgIQ8dNm_E7MXGr1PGoHqI,1951
244
244
  akshare/stock/stock_hk_famous.py,sha256=uF1iUkrwvMMxvxE3-O7byxQ-oS0SjlMBwOEraTBA41s,3018
@@ -267,7 +267,7 @@ akshare/stock/stock_rank_forecast.py,sha256=5U0fa4tzhqKrw5kDRahUCFSrbrEx_aRtlqZq
267
267
  akshare/stock/stock_repurchase_em.py,sha256=XVAUD_yd48wqxbMbfU0Ne2SNFOSG9NBklUhf3pl6cKc,5000
268
268
  akshare/stock/stock_share_changes_cninfo.py,sha256=siy4PiZgYuNQn5jUUg2G7CyZ_yvuXNi3MVUDFhe5npY,4923
269
269
  akshare/stock/stock_share_hold.py,sha256=sKiWH69n8_MQohi0qZ3Br-WQRq9I7S0USrb-tMVinb0,11028
270
- akshare/stock/stock_stop.py,sha256=8HyazJAFj-s12ujUtrxO8VPXyA5bF9-3eNEj0qzGwMg,1185
270
+ akshare/stock/stock_stop.py,sha256=hK6U02jyVyRe2BPmzxBDw1kujy7XgUo_Ky_rjewtBaE,1191
271
271
  akshare/stock/stock_summary.py,sha256=rtJImzACxpGRqYGe9-yNTzsSZDlsG1Uns18sDIgunZY,11204
272
272
  akshare/stock/stock_us_famous.py,sha256=C0JjmaLi1D4fFtTmPSYOnIvetW2mSbRCalwHjZnv638,3658
273
273
  akshare/stock/stock_us_js.py,sha256=wwZpRvVHqjxwd0cb2O5vtRW8Zw90Kdl5O4XNwoevN64,2502
@@ -380,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
380
380
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
381
381
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
382
382
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
383
- akshare-1.16.11.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
- akshare-1.16.11.dist-info/METADATA,sha256=1TtMqh-7v-Oi8CSDhSJuzPGZmEZ2xHb13bpIFe6hHSE,13679
385
- akshare-1.16.11.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
386
- akshare-1.16.11.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
- akshare-1.16.11.dist-info/RECORD,,
383
+ akshare-1.16.13.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
+ akshare-1.16.13.dist-info/METADATA,sha256=CvkTn0TKSweaYp3SI0igTiwoTH_I6yyRXpFaXa27RJs,13679
385
+ akshare-1.16.13.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
386
+ akshare-1.16.13.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
+ akshare-1.16.13.dist-info/RECORD,,