akshare 1.15.43__py3-none-any.whl → 1.15.45__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of akshare might be problematic. Click here for more details.

akshare/__init__.py CHANGED
@@ -2953,9 +2953,11 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
2953
2953
  1.15.41 fix: fix macro_china_fdi interface
2954
2954
  1.15.42 fix: fix get_roll_yield_bar interface
2955
2955
  1.15.43 fix: fix macro_china_urban_unemployment interface
2956
+ 1.15.44 fix: fix index_detail_hist_adjust_cni interface
2957
+ 1.15.45 fix: fix stock_jgdy_detail_em interface
2956
2958
  """
2957
2959
 
2958
- __version__ = "1.15.43"
2960
+ __version__ = "1.15.45"
2959
2961
  __author__ = "AKFamily"
2960
2962
 
2961
2963
  import sys
@@ -5274,14 +5276,6 @@ from akshare.economic.macro_china_nbs import (
5274
5276
  macro_china_nbs_region
5275
5277
  )
5276
5278
 
5277
- """
5278
- 全球期货
5279
- """
5280
- from akshare.futures.futures_international import (
5281
- futures_global_commodity_hist,
5282
- futures_global_commodity_name_url_map,
5283
- )
5284
-
5285
5279
  """
5286
5280
  外汇
5287
5281
  """
@@ -5307,23 +5301,6 @@ from akshare.option.option_commodity import (
5307
5301
  option_gfex_daily,
5308
5302
  )
5309
5303
 
5310
- """
5311
- 英为财情-债券
5312
- """
5313
- from akshare.bond.bond_investing import (
5314
- bond_investing_global,
5315
- bond_investing_global_country_name_url,
5316
- )
5317
-
5318
- """
5319
- 英为财情-指数
5320
- """
5321
- from akshare.index.index_investing import (
5322
- index_investing_global,
5323
- index_investing_global_area_index_name_code,
5324
- index_investing_global_area_index_name_url,
5325
- )
5326
-
5327
5304
  """
5328
5305
  99期货-期货库存数据
5329
5306
  """
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/11/28 22:00
4
+ Date: 2024/12/12 17:00
5
5
  Desc: 生意社网站采集大宗商品现货价格及相应基差数据, 数据时间段从 20110104-至今
6
6
  备注:现期差 = 现货价格 - 期货价格(这里的期货价格为结算价)
7
7
  黄金为 元/克, 白银为 元/千克, 玻璃现货为 元/平方米, 鸡蛋现货为 元/公斤, 鸡蛋期货为 元/500千克, 其余为 元/吨.
@@ -124,9 +124,9 @@ def futures_spot_price(
124
124
  return temp_df
125
125
  else:
126
126
  time.sleep(3)
127
- except: # noqa: E722
127
+ except Exception as e: # noqa: E722
128
128
  print(
129
- f"{date.strftime('%Y-%m-%d')}日生意社数据连接失败,第{str(i)}次尝试,最多5次"
129
+ f"{date.strftime('%Y-%m-%d')}日生意社数据连接失败[错误信息:{e}],第{str(i)}次尝试,最多5次"
130
130
  )
131
131
  i += 1
132
132
  if i > 5:
@@ -187,6 +187,8 @@ def _check_information(df_data, date):
187
187
  "郑州商品交易所",
188
188
  "大连商品交易所",
189
189
  "广州期货交易所",
190
+ # 某些天网站没有数据,比如 20180912,此时返回"暂无数据",但并不是网站被墙了
191
+ "暂无数据",
190
192
  ]:
191
193
  symbol = chinese_to_english(news)
192
194
  record = pd.DataFrame(df_data[df_data["symbol"] == string])
@@ -206,6 +208,16 @@ def _check_information(df_data, date):
206
208
  record.loc[:, "spot_price"] = float(record["spot_price"].iloc[0]) * 1000
207
209
  records = pd.concat([records, record])
208
210
 
211
+ # 20241129:如果某日没有数据,直接返回返回空表
212
+ if records.empty:
213
+ records = df_data.iloc[0:0]
214
+ records["near_basis"] = pd.Series(dtype="float")
215
+ records["dom_basis"] = pd.Series(dtype="float")
216
+ records["near_basis_rate"] = pd.Series(dtype="float")
217
+ records["dom_basis_rate"] = pd.Series(dtype="float")
218
+ records["date"] = pd.Series(dtype="object")
219
+ return records
220
+
209
221
  records.loc[:, ["near_contract_price", "dominant_contract_price", "spot_price"]] = (
210
222
  records.loc[
211
223
  :, ["near_contract_price", "dominant_contract_price", "spot_price"]
@@ -259,6 +271,7 @@ def _check_information(df_data, date):
259
271
  records["dom_basis_rate"] = (
260
272
  records["dominant_contract_price"] / records["spot_price"] - 1
261
273
  )
274
+ # records.loc[:, "date"] = date.strftime("%Y%m%d")
262
275
  records.insert(0, "date", date.strftime("%Y%m%d"))
263
276
  return records
264
277
 
@@ -300,8 +313,15 @@ def futures_spot_price_previous(date: str = "20240430") -> pd.DataFrame:
300
313
  values = main[main[4].str.endswith("%")]
301
314
  values.columns = header
302
315
  # Basis
303
- basis = pd.concat(content[2:-1])
316
+ # 对于没有数据的天,xml文件中没有数据,所以content[2:-1]可能为空
317
+ if len(content[2:-1]) > 0:
318
+ basis = pd.concat(content[2:-1])
319
+ else:
320
+ basis = pd.DataFrame(columns=["主力合约基差", "主力合约基差(%)"])
321
+
304
322
  basis.columns = ["主力合约基差", "主力合约基差(%)"]
323
+ # 20241125(jasonudu):因为部分日期,存在多个品种的现货价格,比如20151125的白糖、豆粕、豆油等,如果用商品名来merge,会出现重复列名,所以改用index来merge
324
+ # basis["商品"] = values["商品"].tolist()
305
325
  basis.index = values.index
306
326
  basis = pd.merge(
307
327
  values[["商品", "现货价格", "主力合约代码", "主力合约价格"]],
@@ -338,12 +358,12 @@ def futures_spot_price_previous(date: str = "20240430") -> pd.DataFrame:
338
358
 
339
359
  if __name__ == "__main__":
340
360
  futures_spot_price_daily_df = futures_spot_price_daily(
341
- start_day="20241028", end_day="20241128", vars_list=["CU", "RB"]
361
+ start_day="20240415", end_day="20240418", vars_list=["CU", "RB"]
342
362
  )
343
363
  print(futures_spot_price_daily_df)
344
364
 
345
- futures_spot_price_df = futures_spot_price(date="20241128")
365
+ futures_spot_price_df = futures_spot_price(date="20240430")
346
366
  print(futures_spot_price_df)
347
367
 
348
- futures_spot_price_previous_df = futures_spot_price_previous(date="20241128")
368
+ futures_spot_price_previous_df = futures_spot_price_previous(date="20240430")
349
369
  print(futures_spot_price_previous_df)
@@ -5,13 +5,14 @@ Date: 2023/11/27 18:00
5
5
  Desc: 东方财富网-数据中心-股东分析
6
6
  https://data.eastmoney.com/gdfx/
7
7
  """
8
+
8
9
  import pandas as pd
9
10
  import requests
10
11
  from tqdm import tqdm
11
12
 
12
13
 
13
14
  def stock_gdfx_free_holding_statistics_em(
14
- date: str = "20210630",
15
+ date: str = "20210630",
15
16
  ) -> pd.DataFrame:
16
17
  """
17
18
  东方财富网-数据中心-股东分析-股东持股统计-十大流通股东
@@ -83,15 +84,33 @@ def stock_gdfx_free_holding_statistics_em(
83
84
  ]
84
85
  ]
85
86
  big_df["统计次数"] = pd.to_numeric(big_df["统计次数"])
86
- big_df["公告日后涨幅统计-10个交易日-平均涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-10个交易日-平均涨幅"])
87
- big_df["公告日后涨幅统计-10个交易日-最大涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-10个交易日-最大涨幅"])
88
- big_df["公告日后涨幅统计-10个交易日-最小涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-10个交易日-最小涨幅"])
89
- big_df["公告日后涨幅统计-30个交易日-平均涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-30个交易日-平均涨幅"])
90
- big_df["公告日后涨幅统计-30个交易日-最大涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-30个交易日-最大涨幅"])
91
- big_df["公告日后涨幅统计-30个交易日-最小涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-30个交易日-最小涨幅"])
92
- big_df["公告日后涨幅统计-60个交易日-平均涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-60个交易日-平均涨幅"])
93
- big_df["公告日后涨幅统计-60个交易日-最大涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-60个交易日-最大涨幅"])
94
- big_df["公告日后涨幅统计-60个交易日-最小涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-60个交易日-最小涨幅"])
87
+ big_df["公告日后涨幅统计-10个交易日-平均涨幅"] = pd.to_numeric(
88
+ big_df["公告日后涨幅统计-10个交易日-平均涨幅"]
89
+ )
90
+ big_df["公告日后涨幅统计-10个交易日-最大涨幅"] = pd.to_numeric(
91
+ big_df["公告日后涨幅统计-10个交易日-最大涨幅"]
92
+ )
93
+ big_df["公告日后涨幅统计-10个交易日-最小涨幅"] = pd.to_numeric(
94
+ big_df["公告日后涨幅统计-10个交易日-最小涨幅"]
95
+ )
96
+ big_df["公告日后涨幅统计-30个交易日-平均涨幅"] = pd.to_numeric(
97
+ big_df["公告日后涨幅统计-30个交易日-平均涨幅"]
98
+ )
99
+ big_df["公告日后涨幅统计-30个交易日-最大涨幅"] = pd.to_numeric(
100
+ big_df["公告日后涨幅统计-30个交易日-最大涨幅"]
101
+ )
102
+ big_df["公告日后涨幅统计-30个交易日-最小涨幅"] = pd.to_numeric(
103
+ big_df["公告日后涨幅统计-30个交易日-最小涨幅"]
104
+ )
105
+ big_df["公告日后涨幅统计-60个交易日-平均涨幅"] = pd.to_numeric(
106
+ big_df["公告日后涨幅统计-60个交易日-平均涨幅"]
107
+ )
108
+ big_df["公告日后涨幅统计-60个交易日-最大涨幅"] = pd.to_numeric(
109
+ big_df["公告日后涨幅统计-60个交易日-最大涨幅"]
110
+ )
111
+ big_df["公告日后涨幅统计-60个交易日-最小涨幅"] = pd.to_numeric(
112
+ big_df["公告日后涨幅统计-60个交易日-最小涨幅"]
113
+ )
95
114
  return big_df
96
115
 
97
116
 
@@ -167,15 +186,33 @@ def stock_gdfx_holding_statistics_em(date: str = "20210930") -> pd.DataFrame:
167
186
  ]
168
187
  ]
169
188
  big_df["统计次数"] = pd.to_numeric(big_df["统计次数"])
170
- big_df["公告日后涨幅统计-10个交易日-平均涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-10个交易日-平均涨幅"])
171
- big_df["公告日后涨幅统计-10个交易日-最大涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-10个交易日-最大涨幅"])
172
- big_df["公告日后涨幅统计-10个交易日-最小涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-10个交易日-最小涨幅"])
173
- big_df["公告日后涨幅统计-30个交易日-平均涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-30个交易日-平均涨幅"])
174
- big_df["公告日后涨幅统计-30个交易日-最大涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-30个交易日-最大涨幅"])
175
- big_df["公告日后涨幅统计-30个交易日-最小涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-30个交易日-最小涨幅"])
176
- big_df["公告日后涨幅统计-60个交易日-平均涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-60个交易日-平均涨幅"])
177
- big_df["公告日后涨幅统计-60个交易日-最大涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-60个交易日-最大涨幅"])
178
- big_df["公告日后涨幅统计-60个交易日-最小涨幅"] = pd.to_numeric(big_df["公告日后涨幅统计-60个交易日-最小涨幅"])
189
+ big_df["公告日后涨幅统计-10个交易日-平均涨幅"] = pd.to_numeric(
190
+ big_df["公告日后涨幅统计-10个交易日-平均涨幅"]
191
+ )
192
+ big_df["公告日后涨幅统计-10个交易日-最大涨幅"] = pd.to_numeric(
193
+ big_df["公告日后涨幅统计-10个交易日-最大涨幅"]
194
+ )
195
+ big_df["公告日后涨幅统计-10个交易日-最小涨幅"] = pd.to_numeric(
196
+ big_df["公告日后涨幅统计-10个交易日-最小涨幅"]
197
+ )
198
+ big_df["公告日后涨幅统计-30个交易日-平均涨幅"] = pd.to_numeric(
199
+ big_df["公告日后涨幅统计-30个交易日-平均涨幅"]
200
+ )
201
+ big_df["公告日后涨幅统计-30个交易日-最大涨幅"] = pd.to_numeric(
202
+ big_df["公告日后涨幅统计-30个交易日-最大涨幅"]
203
+ )
204
+ big_df["公告日后涨幅统计-30个交易日-最小涨幅"] = pd.to_numeric(
205
+ big_df["公告日后涨幅统计-30个交易日-最小涨幅"]
206
+ )
207
+ big_df["公告日后涨幅统计-60个交易日-平均涨幅"] = pd.to_numeric(
208
+ big_df["公告日后涨幅统计-60个交易日-平均涨幅"]
209
+ )
210
+ big_df["公告日后涨幅统计-60个交易日-最大涨幅"] = pd.to_numeric(
211
+ big_df["公告日后涨幅统计-60个交易日-最大涨幅"]
212
+ )
213
+ big_df["公告日后涨幅统计-60个交易日-最小涨幅"] = pd.to_numeric(
214
+ big_df["公告日后涨幅统计-60个交易日-最小涨幅"]
215
+ )
179
216
  return big_df
180
217
 
181
218
 
@@ -334,7 +371,7 @@ def stock_gdfx_holding_change_em(date: str = "20210930") -> pd.DataFrame:
334
371
 
335
372
 
336
373
  def stock_gdfx_free_top_10_em(
337
- symbol: str = "sh688686", date: str = "20210630"
374
+ symbol: str = "sh688686", date: str = "20240930"
338
375
  ) -> pd.DataFrame:
339
376
  """
340
377
  东方财富网-个股-十大流通股东
@@ -384,14 +421,16 @@ def stock_gdfx_free_top_10_em(
384
421
  "变动比率",
385
422
  ]
386
423
  ]
387
- temp_df["持股数"] = pd.to_numeric(temp_df["持股数"])
388
- temp_df["占总流通股本持股比例"] = pd.to_numeric(temp_df["占总流通股本持股比例"])
389
- temp_df["变动比率"] = pd.to_numeric(temp_df["变动比率"])
424
+ temp_df["持股数"] = pd.to_numeric(temp_df["持股数"], errors="coerce")
425
+ temp_df["占总流通股本持股比例"] = pd.to_numeric(
426
+ temp_df["占总流通股本持股比例"], errors="coerce"
427
+ )
428
+ temp_df["变动比率"] = pd.to_numeric(temp_df["变动比率"], errors="coerce")
390
429
  return temp_df
391
430
 
392
431
 
393
432
  def stock_gdfx_top_10_em(
394
- symbol: str = "sh688686", date: str = "20210630"
433
+ symbol: str = "sh688686", date: str = "20210630"
395
434
  ) -> pd.DataFrame:
396
435
  """
397
436
  东方财富网-个股-十大股东
@@ -477,24 +516,27 @@ def stock_gdfx_free_holding_detail_em(date: str = "20210930") -> pd.DataFrame:
477
516
 
478
517
  big_df.reset_index(inplace=True)
479
518
  big_df["index"] = big_df.index + 1
480
- big_df.rename(columns={
481
- "index": "序号",
482
- "HOLDER_NAME": "股东名称",
483
- "HOLDER_TYPE": "股东类型",
484
- "SHARES_TYPE": "股份类型",
485
- "HOLDER_RANK": "股东排名",
486
- "SECURITY_CODE": "股票代码",
487
- "SECURITY_NAME_ABBR": "股票简称",
488
- "HOLD_NUM": "期末持股-数量",
489
- "FREE_HOLDNUM_RATIO": "期末持股-持股占流通股比",
490
- "XZCHANGE": "期末持股-数量变化",
491
- "CHANGE_RATIO": "期末持股-数量变化比例",
492
- "HOLDNUM_CHANGE_NAME": "期末持股-持股变动",
493
- "HOLDER_MARKET_CAP": "期末持股-流通市值",
494
- "END_DATE": "报告期",
495
- "UPDATE_DATE": "公告日",
496
- "REPORT_DATE_NAME": "报告名称",
497
- }, inplace=True)
519
+ big_df.rename(
520
+ columns={
521
+ "index": "序号",
522
+ "HOLDER_NAME": "股东名称",
523
+ "HOLDER_TYPE": "股东类型",
524
+ "SHARES_TYPE": "股份类型",
525
+ "HOLDER_RANK": "股东排名",
526
+ "SECURITY_CODE": "股票代码",
527
+ "SECURITY_NAME_ABBR": "股票简称",
528
+ "HOLD_NUM": "期末持股-数量",
529
+ "FREE_HOLDNUM_RATIO": "期末持股-持股占流通股比",
530
+ "XZCHANGE": "期末持股-数量变化",
531
+ "CHANGE_RATIO": "期末持股-数量变化比例",
532
+ "HOLDNUM_CHANGE_NAME": "期末持股-持股变动",
533
+ "HOLDER_MARKET_CAP": "期末持股-流通市值",
534
+ "END_DATE": "报告期",
535
+ "UPDATE_DATE": "公告日",
536
+ "REPORT_DATE_NAME": "报告名称",
537
+ },
538
+ inplace=True,
539
+ )
498
540
 
499
541
  big_df = big_df[
500
542
  [
@@ -515,13 +557,21 @@ def stock_gdfx_free_holding_detail_em(date: str = "20210930") -> pd.DataFrame:
515
557
  big_df["报告期"] = pd.to_datetime(big_df["报告期"], errors="coerce").dt.date
516
558
  big_df["公告日"] = pd.to_datetime(big_df["公告日"], errors="coerce").dt.date
517
559
  big_df["期末持股-数量"] = pd.to_numeric(big_df["期末持股-数量"], errors="coerce")
518
- big_df["期末持股-数量变化"] = pd.to_numeric(big_df["期末持股-数量变化"], errors="coerce")
519
- big_df["期末持股-数量变化比例"] = pd.to_numeric(big_df["期末持股-数量变化比例"], errors="coerce")
520
- big_df["期末持股-流通市值"] = pd.to_numeric(big_df["期末持股-流通市值"], errors="coerce")
560
+ big_df["期末持股-数量变化"] = pd.to_numeric(
561
+ big_df["期末持股-数量变化"], errors="coerce"
562
+ )
563
+ big_df["期末持股-数量变化比例"] = pd.to_numeric(
564
+ big_df["期末持股-数量变化比例"], errors="coerce"
565
+ )
566
+ big_df["期末持股-流通市值"] = pd.to_numeric(
567
+ big_df["期末持股-流通市值"], errors="coerce"
568
+ )
521
569
  return big_df
522
570
 
523
571
 
524
- def stock_gdfx_holding_detail_em(date: str = "20230331", indicator: str = "个人", symbol: str = "新进") -> pd.DataFrame:
572
+ def stock_gdfx_holding_detail_em(
573
+ date: str = "20230331", indicator: str = "个人", symbol: str = "新进"
574
+ ) -> pd.DataFrame:
525
575
  """
526
576
  东方财富网-数据中心-股东分析-股东持股明细-十大股东
527
577
  https://data.eastmoney.com/gdfx/HoldingAnalyse.html
@@ -559,22 +609,24 @@ def stock_gdfx_holding_detail_em(date: str = "20230331", indicator: str = "个
559
609
 
560
610
  big_df.reset_index(inplace=True)
561
611
  big_df["index"] = big_df.index + 1
562
- big_df.rename(columns={
563
- "index": "序号",
564
- "HOLDER_NAME": "股东名称",
565
- "HOLDER_NEWTYPE": "股东类型",
566
- "RANK": "股东排名",
567
- "SECURITY_CODE": "股票代码",
568
- "SECURITY_NAME_ABBR": "股票简称",
569
- "END_DATE": "报告期",
570
- "HOLD_NUM": "期末持股-数量",
571
- "HOLD_NUM_CHANGE": "期末持股-数量变化",
572
- "HOLD_RATIO_CHANGE": "期末持股-数量变化比例",
573
- "HOLDNUM_CHANGE_NAME": "期末持股-持股变动",
574
- "HOLDER_MARKET_CAP": "期末持股-流通市值",
575
- "NOTICE_DATE": "公告日",
576
-
577
- }, inplace=True)
612
+ big_df.rename(
613
+ columns={
614
+ "index": "序号",
615
+ "HOLDER_NAME": "股东名称",
616
+ "HOLDER_NEWTYPE": "股东类型",
617
+ "RANK": "股东排名",
618
+ "SECURITY_CODE": "股票代码",
619
+ "SECURITY_NAME_ABBR": "股票简称",
620
+ "END_DATE": "报告期",
621
+ "HOLD_NUM": "期末持股-数量",
622
+ "HOLD_NUM_CHANGE": "期末持股-数量变化",
623
+ "HOLD_RATIO_CHANGE": "期末持股-数量变化比例",
624
+ "HOLDNUM_CHANGE_NAME": "期末持股-持股变动",
625
+ "HOLDER_MARKET_CAP": "期末持股-流通市值",
626
+ "NOTICE_DATE": "公告日",
627
+ },
628
+ inplace=True,
629
+ )
578
630
 
579
631
  big_df = big_df[
580
632
  [
@@ -596,9 +648,15 @@ def stock_gdfx_holding_detail_em(date: str = "20230331", indicator: str = "个
596
648
  big_df["报告期"] = pd.to_datetime(big_df["报告期"], errors="coerce").dt.date
597
649
  big_df["公告日"] = pd.to_datetime(big_df["公告日"], errors="coerce").dt.date
598
650
  big_df["期末持股-数量"] = pd.to_numeric(big_df["期末持股-数量"], errors="coerce")
599
- big_df["期末持股-数量变化"] = pd.to_numeric(big_df["期末持股-数量变化"], errors="coerce")
600
- big_df["期末持股-数量变化比例"] = pd.to_numeric(big_df["期末持股-数量变化比例"], errors="coerce")
601
- big_df["期末持股-流通市值"] = pd.to_numeric(big_df["期末持股-流通市值"], errors="coerce")
651
+ big_df["期末持股-数量变化"] = pd.to_numeric(
652
+ big_df["期末持股-数量变化"], errors="coerce"
653
+ )
654
+ big_df["期末持股-数量变化比例"] = pd.to_numeric(
655
+ big_df["期末持股-数量变化比例"], errors="coerce"
656
+ )
657
+ big_df["期末持股-流通市值"] = pd.to_numeric(
658
+ big_df["期末持股-流通市值"], errors="coerce"
659
+ )
602
660
  big_df["股东排名"] = pd.to_numeric(big_df["股东排名"], errors="coerce")
603
661
  return big_df
604
662
 
@@ -637,23 +695,26 @@ def stock_gdfx_free_holding_analyse_em(date: str = "20230930") -> pd.DataFrame:
637
695
 
638
696
  big_df.reset_index(inplace=True)
639
697
  big_df["index"] = big_df.index + 1
640
- big_df.rename(columns={
641
- "index": "序号",
642
- "HOLDER_NAME": "股东名称",
643
- "HOLDER_TYPE": "股东类型",
644
- "SECURITY_CODE": "股票代码",
645
- "SECURITY_NAME_ABBR": "股票简称",
646
- "END_DATE": "报告期",
647
- "HOLD_NUM": "期末持股-数量",
648
- "XZCHANGE": "期末持股-数量变化",
649
- "HOLD_RATIO_CHANGE": "期末持股-数量变化比例",
650
- "HOLDNUM_CHANGE_NAME": "期末持股-持股变动",
651
- "HOLDER_MARKET_CAP": "期末持股-流通市值",
652
- "UPDATE_DATE": "公告日",
653
- "D10_ADJCHRATE": "公告日后涨跌幅-10个交易日",
654
- "D30_ADJCHRATE": "公告日后涨跌幅-30个交易日",
655
- "D60_ADJCHRATE": "公告日后涨跌幅-60个交易日",
656
- }, inplace=True)
698
+ big_df.rename(
699
+ columns={
700
+ "index": "序号",
701
+ "HOLDER_NAME": "股东名称",
702
+ "HOLDER_TYPE": "股东类型",
703
+ "SECURITY_CODE": "股票代码",
704
+ "SECURITY_NAME_ABBR": "股票简称",
705
+ "END_DATE": "报告期",
706
+ "HOLD_NUM": "期末持股-数量",
707
+ "XZCHANGE": "期末持股-数量变化",
708
+ "HOLD_RATIO_CHANGE": "期末持股-数量变化比例",
709
+ "HOLDNUM_CHANGE_NAME": "期末持股-持股变动",
710
+ "HOLDER_MARKET_CAP": "期末持股-流通市值",
711
+ "UPDATE_DATE": "公告日",
712
+ "D10_ADJCHRATE": "公告日后涨跌幅-10个交易日",
713
+ "D30_ADJCHRATE": "公告日后涨跌幅-30个交易日",
714
+ "D60_ADJCHRATE": "公告日后涨跌幅-60个交易日",
715
+ },
716
+ inplace=True,
717
+ )
657
718
  big_df = big_df[
658
719
  [
659
720
  "序号",
@@ -676,12 +737,24 @@ def stock_gdfx_free_holding_analyse_em(date: str = "20230930") -> pd.DataFrame:
676
737
  big_df["报告期"] = pd.to_datetime(big_df["报告期"], errors="coerce").dt.date
677
738
  big_df["公告日"] = pd.to_datetime(big_df["公告日"], errors="coerce").dt.date
678
739
  big_df["期末持股-数量"] = pd.to_numeric(big_df["期末持股-数量"], errors="coerce")
679
- big_df["期末持股-数量变化"] = pd.to_numeric(big_df["期末持股-数量变化"], errors="coerce")
680
- big_df["期末持股-数量变化比例"] = pd.to_numeric(big_df["期末持股-数量变化比例"], errors="coerce")
681
- big_df["期末持股-流通市值"] = pd.to_numeric(big_df["期末持股-流通市值"], errors="coerce")
682
- big_df["公告日后涨跌幅-10个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-10个交易日"], errors="coerce")
683
- big_df["公告日后涨跌幅-30个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-30个交易日"], errors="coerce")
684
- big_df["公告日后涨跌幅-60个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-60个交易日"], errors="coerce")
740
+ big_df["期末持股-数量变化"] = pd.to_numeric(
741
+ big_df["期末持股-数量变化"], errors="coerce"
742
+ )
743
+ big_df["期末持股-数量变化比例"] = pd.to_numeric(
744
+ big_df["期末持股-数量变化比例"], errors="coerce"
745
+ )
746
+ big_df["期末持股-流通市值"] = pd.to_numeric(
747
+ big_df["期末持股-流通市值"], errors="coerce"
748
+ )
749
+ big_df["公告日后涨跌幅-10个交易日"] = pd.to_numeric(
750
+ big_df["公告日后涨跌幅-10个交易日"], errors="coerce"
751
+ )
752
+ big_df["公告日后涨跌幅-30个交易日"] = pd.to_numeric(
753
+ big_df["公告日后涨跌幅-30个交易日"], errors="coerce"
754
+ )
755
+ big_df["公告日后涨跌幅-60个交易日"] = pd.to_numeric(
756
+ big_df["公告日后涨跌幅-60个交易日"], errors="coerce"
757
+ )
685
758
  return big_df
686
759
 
687
760
 
@@ -718,7 +791,7 @@ def stock_gdfx_holding_analyse_em(date: str = "20230331") -> pd.DataFrame:
718
791
  big_df = pd.concat([big_df, temp_df], ignore_index=True)
719
792
 
720
793
  big_df.reset_index(inplace=True)
721
- big_df['index'] = big_df['index'] + 1
794
+ big_df["index"] = big_df["index"] + 1
722
795
  big_df.rename(
723
796
  columns={
724
797
  "index": "序号",
@@ -766,12 +839,24 @@ def stock_gdfx_holding_analyse_em(date: str = "20230331") -> pd.DataFrame:
766
839
  big_df["公告日"] = pd.to_datetime(big_df["公告日"]).dt.date
767
840
  big_df["报告期"] = pd.to_datetime(big_df["报告期"]).dt.date
768
841
  big_df["期末持股-数量"] = pd.to_numeric(big_df["期末持股-数量"], errors="coerce")
769
- big_df["期末持股-数量变化"] = pd.to_numeric(big_df["期末持股-数量变化"], errors="coerce")
770
- big_df["期末持股-数量变化比例"] = pd.to_numeric(big_df["期末持股-数量变化比例"], errors="coerce")
771
- big_df["期末持股-流通市值"] = pd.to_numeric(big_df["期末持股-流通市值"], errors="coerce")
772
- big_df["公告日后涨跌幅-10个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-10个交易日"], errors="coerce")
773
- big_df["公告日后涨跌幅-30个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-30个交易日"], errors="coerce")
774
- big_df["公告日后涨跌幅-60个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-60个交易日"], errors="coerce")
842
+ big_df["期末持股-数量变化"] = pd.to_numeric(
843
+ big_df["期末持股-数量变化"], errors="coerce"
844
+ )
845
+ big_df["期末持股-数量变化比例"] = pd.to_numeric(
846
+ big_df["期末持股-数量变化比例"], errors="coerce"
847
+ )
848
+ big_df["期末持股-流通市值"] = pd.to_numeric(
849
+ big_df["期末持股-流通市值"], errors="coerce"
850
+ )
851
+ big_df["公告日后涨跌幅-10个交易日"] = pd.to_numeric(
852
+ big_df["公告日后涨跌幅-10个交易日"], errors="coerce"
853
+ )
854
+ big_df["公告日后涨跌幅-30个交易日"] = pd.to_numeric(
855
+ big_df["公告日后涨跌幅-30个交易日"], errors="coerce"
856
+ )
857
+ big_df["公告日后涨跌幅-60个交易日"] = pd.to_numeric(
858
+ big_df["公告日后涨跌幅-60个交易日"], errors="coerce"
859
+ )
775
860
  return big_df
776
861
 
777
862
 
@@ -7,6 +7,7 @@ http://data.eastmoney.com/jgdy/
7
7
  东方财富网-数据中心-特色数据-机构调研-机构调研统计: http://data.eastmoney.com/jgdy/tj.html
8
8
  东方财富网-数据中心-特色数据-机构调研-机构调研详细: http://data.eastmoney.com/jgdy/xx.html
9
9
  """
10
+
10
11
  import pandas as pd
11
12
  import requests
12
13
  from tqdm import tqdm
@@ -23,26 +24,26 @@ def stock_jgdy_tj_em(date: str = "20220101") -> pd.DataFrame:
23
24
  """
24
25
  url = "http://datacenter-web.eastmoney.com/api/data/v1/get"
25
26
  params = {
26
- 'sortColumns': 'NOTICE_DATE,SUM,RECEIVE_START_DATE,SECURITY_CODE',
27
- 'sortTypes': '-1,-1,-1,1',
28
- 'pageSize': '500',
29
- 'pageNumber': '1',
30
- 'reportName': 'RPT_ORG_SURVEYNEW',
31
- 'columns': 'ALL',
32
- 'quoteColumns': 'f2~01~SECURITY_CODE~CLOSE_PRICE,f3~01~SECURITY_CODE~CHANGE_RATE',
33
- 'source': 'WEB',
34
- 'client': 'WEB',
35
- 'filter': f"""(NUMBERNEW="1")(IS_SOURCE="1")(RECEIVE_START_DATE>'{'-'.join([date[:4], date[4:6], date[6:]])}')"""
27
+ "sortColumns": "NOTICE_DATE,SUM,RECEIVE_START_DATE,SECURITY_CODE",
28
+ "sortTypes": "-1,-1,-1,1",
29
+ "pageSize": "500",
30
+ "pageNumber": "1",
31
+ "reportName": "RPT_ORG_SURVEYNEW",
32
+ "columns": "ALL",
33
+ "quoteColumns": "f2~01~SECURITY_CODE~CLOSE_PRICE,f3~01~SECURITY_CODE~CHANGE_RATE",
34
+ "source": "WEB",
35
+ "client": "WEB",
36
+ "filter": f"""(NUMBERNEW="1")(IS_SOURCE="1")(RECEIVE_START_DATE>'{'-'.join([date[:4], date[4:6], date[6:]])}')""",
36
37
  }
37
38
  r = requests.get(url, params=params)
38
39
  data_json = r.json()
39
- total_page = data_json['result']['pages']
40
+ total_page = data_json["result"]["pages"]
40
41
  big_df = pd.DataFrame()
41
- for page in tqdm(range(1, total_page+1), leave=False):
42
+ for page in tqdm(range(1, total_page + 1), leave=False):
42
43
  params.update({"pageNumber": page})
43
44
  r = requests.get(url, params=params)
44
45
  data_json = r.json()
45
- temp_df = pd.DataFrame(data_json['result']['data'])
46
+ temp_df = pd.DataFrame(data_json["result"]["data"])
46
47
  big_df = pd.concat([big_df, temp_df])
47
48
  big_df.reset_index(inplace=True)
48
49
  big_df["index"] = list(range(1, len(big_df) + 1))
@@ -96,45 +97,47 @@ def stock_jgdy_tj_em(date: str = "20220101") -> pd.DataFrame:
96
97
  "公告日期",
97
98
  ]
98
99
  ]
99
- big_df['最新价'] = pd.to_numeric(big_df['最新价'], errors="coerce")
100
- big_df['涨跌幅'] = pd.to_numeric(big_df['涨跌幅'], errors="coerce")
101
- big_df['接待机构数量'] = pd.to_numeric(big_df['接待机构数量'], errors="coerce")
102
- big_df['接待日期'] = pd.to_datetime(big_df['接待日期']).dt.date
103
- big_df['公告日期'] = pd.to_datetime(big_df['公告日期']).dt.date
100
+ big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce")
101
+ big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce")
102
+ big_df["接待机构数量"] = pd.to_numeric(big_df["接待机构数量"], errors="coerce")
103
+ big_df["接待日期"] = pd.to_datetime(big_df["接待日期"]).dt.date
104
+ big_df["公告日期"] = pd.to_datetime(big_df["公告日期"]).dt.date
104
105
  return big_df
105
106
 
106
107
 
107
- def stock_jgdy_detail_em(date: str = "20220101") -> pd.DataFrame:
108
+ def stock_jgdy_detail_em(date: str = "20241211") -> pd.DataFrame:
108
109
  """
109
110
  东方财富网-数据中心-特色数据-机构调研-机构调研详细
110
- http://data.eastmoney.com/jgdy/xx.html
111
+ https://data.eastmoney.com/jgdy/xx.html
111
112
  :param date: 开始时间
112
113
  :type date: str
113
114
  :return: 机构调研详细
114
115
  :rtype: pandas.DataFrame
115
116
  """
116
- url = "http://datacenter-web.eastmoney.com/api/data/v1/get"
117
+ url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
117
118
  params = {
118
- 'sortColumns': 'NOTICE_DATE,RECEIVE_START_DATE,SECURITY_CODE,NUMBERNEW',
119
- 'sortTypes': '-1,-1,1,-1',
120
- 'pageSize': '50000',
121
- 'pageNumber': '1',
122
- 'reportName': 'RPT_ORG_SURVEY',
123
- 'columns': 'SECUCODE,SECURITY_CODE,SECURITY_NAME_ABBR,NOTICE_DATE,RECEIVE_START_DATE,RECEIVE_OBJECT,RECEIVE_PLACE,RECEIVE_WAY_EXPLAIN,INVESTIGATORS,RECEPTIONIST,ORG_TYPE',
124
- 'quoteColumns': 'f2~01~SECURITY_CODE~CLOSE_PRICE,f3~01~SECURITY_CODE~CHANGE_RATE',
125
- 'source': 'WEB',
126
- 'client': 'WEB',
127
- 'filter': f"""(IS_SOURCE="1")(RECEIVE_START_DATE>'{'-'.join([date[:4], date[4:6], date[6:]])}')"""
119
+ "sortColumns": "NOTICE_DATE,RECEIVE_START_DATE,SECURITY_CODE,NUMBERNEW",
120
+ "sortTypes": "-1,-1,1,-1",
121
+ "pageSize": "50",
122
+ "pageNumber": "1",
123
+ "reportName": "RPT_ORG_SURVEY",
124
+ "columns": "SECUCODE,SECURITY_CODE,SECURITY_NAME_ABBR,NOTICE_DATE,RECEIVE_START_DATE,"
125
+ "RECEIVE_OBJECT,RECEIVE_PLACE,RECEIVE_WAY_EXPLAIN,INVESTIGATORS,RECEPTIONIST,ORG_TYPE",
126
+ "quoteColumns": "f2~01~SECURITY_CODE~CLOSE_PRICE,f3~01~SECURITY_CODE~CHANGE_RATE",
127
+ "quoteType": "0",
128
+ "source": "WEB",
129
+ "client": "WEB",
130
+ "filter": f"""(IS_SOURCE="1")(RECEIVE_START_DATE>'{'-'.join([date[:4], date[4:6], date[6:]])}')""",
128
131
  }
129
132
  r = requests.get(url, params=params)
130
133
  data_json = r.json()
131
- total_page = data_json['result']['pages']
134
+ total_page = data_json["result"]["pages"]
132
135
  big_df = pd.DataFrame()
133
- for page in tqdm(range(1, total_page+1), leave=False):
136
+ for page in tqdm(range(1, total_page + 1), leave=False):
134
137
  params.update({"pageNumber": page})
135
138
  r = requests.get(url, params=params)
136
139
  data_json = r.json()
137
- temp_df = pd.DataFrame(data_json['result']['data'])
140
+ temp_df = pd.DataFrame(data_json["result"]["data"])
138
141
  big_df = pd.concat([big_df, temp_df])
139
142
  big_df.reset_index(inplace=True)
140
143
  big_df["index"] = list(range(1, len(big_df) + 1))
@@ -171,10 +174,10 @@ def stock_jgdy_detail_em(date: str = "20220101") -> pd.DataFrame:
171
174
  "公告日期",
172
175
  ]
173
176
  ]
174
- big_df['最新价'] = pd.to_numeric(big_df['最新价'], errors="coerce")
175
- big_df['涨跌幅'] = pd.to_numeric(big_df['涨跌幅'], errors="coerce")
176
- big_df['调研日期'] = pd.to_datetime(big_df['调研日期']).dt.date
177
- big_df['公告日期'] = pd.to_datetime(big_df['公告日期']).dt.date
177
+ big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce")
178
+ big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce")
179
+ big_df["调研日期"] = pd.to_datetime(big_df["调研日期"], errors="coerce").dt.date
180
+ big_df["公告日期"] = pd.to_datetime(big_df["公告日期"], errors="coerce").dt.date
178
181
  return big_df
179
182
 
180
183
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: akshare
3
- Version: 1.15.43
3
+ Version: 1.15.45
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=uxia6EqdSE8ySJmzG-tkP6xbZEwVKYQXA_jzhb13j84,184843
1
+ akshare/__init__.py,sha256=ACpa0FRN-FBpuz43nJ_CUGfGHwjVNVqqj2wlZZPRxhM,184449
2
2
  akshare/datasets.py,sha256=-qdwaQjgBlftX84uM74KJqCYJYkQ50PV416_neA4uls,995
3
3
  akshare/exceptions.py,sha256=WEJjIhSmJ_xXNW6grwV4nufE_cfmmyuhmueVGiN1VAg,878
4
4
  akshare/request.py,sha256=HtFFf9MhfEibR-ETWe-1Tts6ELU4VKSqA-ghaXjegQM,4252
@@ -27,7 +27,6 @@ akshare/bond/bond_china_money.py,sha256=IInePsQJDby5w0AYd84ipiJL_nbyVAaRC7SaHLWD
27
27
  akshare/bond/bond_convert.py,sha256=9w94nIdSN4BUL27sPbVEUouBaAm30WMBiokYr4yM0sI,12649
28
28
  akshare/bond/bond_em.py,sha256=Ck5hCloZ25I8updarLPzqHYYZPeOsjIFy4g2oaZvFMs,5318
29
29
  akshare/bond/bond_info_cm.py,sha256=VBu9UM9tUcGDRV07pndU9yttLDF_Nk3b0vU0n65qpHs,7890
30
- akshare/bond/bond_investing.py,sha256=nWONMggn-KV8XwUSs5CqIXKHX9F7W1tb4w8umH5rWho,4992
31
30
  akshare/bond/bond_issue_cninfo.py,sha256=tPoZhF-_sIX9ztCKB0K0-Z4Kd9b-389bP3_CdFK7Wb0,21672
32
31
  akshare/bond/bond_nafmii.py,sha256=cekcobyXKMG1zDuM8wHWOn__SuWELxYmUwfGVmLRP40,2155
33
32
  akshare/bond/bond_summary.py,sha256=ECwCRcs5YMIro4I1Yayf6SZ8nz1Hr97RhmKT6aGaQDg,3581
@@ -105,7 +104,7 @@ akshare/fund/fund_xq.py,sha256=AxMZB-940bNY7-BatVLZiseHNxiWA17hQzTfuxGibPU,11306
105
104
  akshare/futures/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
106
105
  akshare/futures/cons.py,sha256=zD2uRQK3v-mywcDZfL28sDdRl6WIeWthHTfu8nrcQAo,16252
107
106
  akshare/futures/cot.py,sha256=Kkza2slS7JQpXndKrQEEykzIjZIT3vhvtZHVJ7P1yac,58573
108
- akshare/futures/futures_basis.py,sha256=WYkGO2nN42figx8dVwendETve21tW3oy8FQyfAbVhGU,14535
107
+ akshare/futures/futures_basis.py,sha256=pmXNXdWnfvJCRs6xKJ0Ed9R2v92-NK2Sp3AjlwecErc,15691
109
108
  akshare/futures/futures_comex_em.py,sha256=V-mkKQkH5N8PyaZWKdyggb2lTnY8DDDxiUPt-1leQu0,3171
110
109
  akshare/futures/futures_comm_ctp.py,sha256=V8TEKO0R0i6LfE8DDFqrMA3JGwNlpmaQCvvMugKZ1I8,1004
111
110
  akshare/futures/futures_comm_qihuo.py,sha256=uQfabZ63qME8sTaxUbIUVQBVi8yTaPPDhD7voR9PEx0,10504
@@ -115,7 +114,6 @@ akshare/futures/futures_foreign.py,sha256=oSIoAg5oy-CIlPWHkQffcvZGu02Y2GWOrt-6aP
115
114
  akshare/futures/futures_hf_em.py,sha256=jne-wUYr2QTUkDq3qAxYKE0Hm90L3H8qUDu3JavKiUg,3338
116
115
  akshare/futures/futures_hq_sina.py,sha256=eK1gEan4DPvpYmln8-tNnzh_J_733s95DBr--NqNYVA,9576
117
116
  akshare/futures/futures_index_ccidx.py,sha256=9Rhk3ps-H69tU-NIV0W2NdLFUDTSUx0bwtePA6gLMZA,4566
118
- akshare/futures/futures_international.py,sha256=EE_JTjQKekx8_FU8M12wHSd1DSlfMXYFiBJ6_wmThfc,6946
119
117
  akshare/futures/futures_inventory_99.py,sha256=Nvw39obGGhgOkk_C4jOrV4gdq78dtHPOnits_B0Ljxk,8450
120
118
  akshare/futures/futures_inventory_em.py,sha256=C5nt4F51WB-oc8o3GrMvEGo0SO2mIq_H1vHVl42vzT0,2340
121
119
  akshare/futures/futures_news_baidu.py,sha256=uqXUgQa7_aNjj1g4IBt6Ic4DhlsuBvjEEYC3OTPeqmA,1544
@@ -161,7 +159,6 @@ akshare/index/index_drewry.py,sha256=BM7V6P8K4QUFQArsdaWRu5qJUZaCoyNz97_b8dmLeCw
161
159
  akshare/index/index_eri.py,sha256=7X0KNDBntEkE_qSb2jb6IBv-S8PsevLFdxGT8nKT3W0,2111
162
160
  akshare/index/index_fear_greed_funddb.py,sha256=7Z6GqYkKPJHNHMEN-uZNu2KnNNLTWvJcVlYpfAShJJc,2378
163
161
  akshare/index/index_hog.py,sha256=kb867BVagt70_ycZMn22ks5Z9jlVbMiuTsvq5ygjeig,1657
164
- akshare/index/index_investing.py,sha256=BPGIAD-_QNhpMivQi7bSGvBF2KWd8gfHsNf0hqHKrR0,8897
165
162
  akshare/index/index_kq_fz.py,sha256=Y-cbxWLpRyGcFcMSDxZZQXdAuD85IuQH5xC2rhtGbRc,3395
166
163
  akshare/index/index_kq_ss.py,sha256=m4hAMNnzHk8JNAnKjkYYVeyG4zUC5zR5i0-u-OxmaGU,3333
167
164
  akshare/index/index_option_qvix.py,sha256=sCx0iiIetkp5ELE9sDwesVFgJNfa_1tAEWVCJI-I2u4,3270
@@ -309,7 +306,7 @@ akshare/stock_feature/stock_fhps_em.py,sha256=85gfdMP3OtA3wsEGlB2RkdHiOEZjFff1ls
309
306
  akshare/stock_feature/stock_fhps_ths.py,sha256=NosH1xyT1Pif4T9tchdtJTBEpe6g1Wq2kjvxJDsZD_Y,1805
310
307
  akshare/stock_feature/stock_fund_flow.py,sha256=cqBqsFrzwmuLP3k3wYQzvW085QUUfHZ4nBW8Zx7egkQ,18669
311
308
  akshare/stock_feature/stock_gddh_em.py,sha256=I_MUJhyy0mwjNG46ZsQINEQvHR42EmS7gJBQujXr5Bw,3467
312
- akshare/stock_feature/stock_gdfx_em.py,sha256=vrzyMdcNw8wZabXYH89wjzIAokAVfHDVcpNfC0MHsl4,37825
309
+ akshare/stock_feature/stock_gdfx_em.py,sha256=rnGnHYmPH7b2mk4R9LJ3xl5XTMUaQqsFyQejje0qhyQ,38645
313
310
  akshare/stock_feature/stock_gdhs.py,sha256=Z6ZMy1A03BqMu9TghcIu2Sd_wwEtpIH7qawHun9G7ns,9036
314
311
  akshare/stock_feature/stock_gdzjc_em.py,sha256=SHJH5iS3_NhvjTqRXF0vPooZl0s_ASeyZmNCC50ZYqs,4426
315
312
  akshare/stock_feature/stock_gpzy_em.py,sha256=8NvLfWbLLQyjTlg6iSpg1LxlIAKLv534JZAiUAVxF1M,17443
@@ -324,7 +321,7 @@ akshare/stock_feature/stock_hsgt_min_em.py,sha256=KLeez7MQwBAcO-RT7n41LOikUfvXDG
324
321
  akshare/stock_feature/stock_info.py,sha256=AQ4ZMXAks3qCxk3lbH_YpsqC-qQHpZ49UGk0Mm08d2E,9192
325
322
  akshare/stock_feature/stock_inner_trade_xq.py,sha256=jsARS5It6_UNn3WL8vnTK4F90Rx1dMvarxtiVbzOLrM,2682
326
323
  akshare/stock_feature/stock_irm_cninfo.py,sha256=xD028gllzaHYj6xU9pRKvSLI_gIkVhCTnFH0dSPv1gY,6112
327
- akshare/stock_feature/stock_jgdy_em.py,sha256=jmXRvmIwk7IY3SKAGaxi5M7WM7V8yY51UOPg94YQR9Q,6003
324
+ akshare/stock_feature/stock_jgdy_em.py,sha256=B39Il7p1a_hx0FXL4zo_Xsxi10Z8W7_EZv8f9nNnwXg,6080
328
325
  akshare/stock_feature/stock_lh_yybpm.py,sha256=7VlqA-UGbfiQ4ez7Ah9znIfUcVI-7Fxxz_V03JO8LTY,3614
329
326
  akshare/stock_feature/stock_lhb_em.py,sha256=vDUeuJp9mRHmgrtjLPLXG-IFb4VVzXkr2-Q4UBzEtzc,34334
330
327
  akshare/stock_feature/stock_lhb_sina.py,sha256=W5F5aPlxAmHzzxcf1AAiJuMVtTK9PlYMo_XamCZ5N1o,9232
@@ -383,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
383
380
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
384
381
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
385
382
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
386
- akshare-1.15.43.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
387
- akshare-1.15.43.dist-info/METADATA,sha256=5B4yFcajS1Zn5CFYJDXvjfhWWYlYIkd_N2qI51xOex8,13423
388
- akshare-1.15.43.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
389
- akshare-1.15.43.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
390
- akshare-1.15.43.dist-info/RECORD,,
383
+ akshare-1.15.45.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
+ akshare-1.15.45.dist-info/METADATA,sha256=i3mygGTuHA_N5-Jvv3KIwajE9NEQ8xqK0oVtuyDyqdA,13423
385
+ akshare-1.15.45.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
386
+ akshare-1.15.45.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
+ akshare-1.15.45.dist-info/RECORD,,
@@ -1,139 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- coding:utf-8 -*-
3
- """
4
- Date: 2021/5/7 13:50
5
- Desc: 英为财情-利率国债-全球政府债券行情与收益率
6
- https://cn.investing.com/rates-bonds/
7
- """
8
- import re
9
-
10
- import pandas as pd
11
- import requests
12
- from bs4 import BeautifulSoup
13
-
14
- from akshare.index.cons import short_headers, long_headers
15
-
16
-
17
- def _get_global_country_name_url() -> dict:
18
- """
19
- 指数数据国家对应的 URL
20
- https://cn.investing.com/rates-bonds/
21
- :return: 指数数据国家对应的 URL
22
- :rtype: dict
23
- """
24
- url = "https://cn.investing.com/rates-bonds/"
25
- res = requests.get(url, headers=short_headers, timeout=30)
26
- soup = BeautifulSoup(res.text, "lxml")
27
- name_url_option_list = soup.find("select", attrs={"name": "country"}).find_all(
28
- "option"
29
- )[1:]
30
- url_list = [item["value"] for item in name_url_option_list]
31
- name_list = [item.get_text() for item in name_url_option_list]
32
- name_code_map_dict = {}
33
- name_code_map_dict.update(zip(name_list, url_list))
34
- return name_code_map_dict
35
-
36
-
37
- def bond_investing_global_country_name_url(country: str = "中国") -> dict:
38
- """
39
- 参考网页: https://cn.investing.com/rates-bonds/
40
- 获取选择国家对应的: 主要指数, 主要行业, 附加指数, 其他指数
41
- :param country: str 中文国家名称, 对应 get_global_country_name_url 函数返回的国家名称
42
- :return: dict
43
- """
44
- name_url_dict = _get_global_country_name_url()
45
- url = f"https://cn.investing.com{name_url_dict[country]}"
46
- res = requests.get(url, headers=short_headers, timeout=30)
47
- soup = BeautifulSoup(res.text, "lxml")
48
- url_list = [
49
- item.find("a")["href"] for item in soup.find_all(attrs={"class": "plusIconTd"})
50
- ]
51
- name_list = [
52
- item.find("a").get_text()
53
- for item in soup.find_all(attrs={"class": "plusIconTd"})
54
- ]
55
- name_code_map_dict = {}
56
- name_code_map_dict.update(zip(name_list, url_list))
57
- return name_code_map_dict
58
-
59
-
60
- def bond_investing_global(
61
- country: str = "中国",
62
- index_name: str = "中国1年期国债",
63
- period: str = "每日",
64
- start_date: str = "20000101",
65
- end_date: str = "20191017",
66
- ) -> pd.DataFrame:
67
- """
68
- 具体国家的具体指数的从 start_date 到 end_date 期间的数据
69
- https://cn.investing.com/rates-bonds/
70
- :param country: 对应函数中的国家名称
71
- :type country: str
72
- :param index_name: 对应函数中的指数名称
73
- :type index_name: str
74
- :param period: choice of {"每日", "每周", "每月"}
75
- :type period: str
76
- :param start_date: '2000-01-01', 注意格式
77
- :type start_date: str
78
- :param end_date: '2019-10-17', 注意格式
79
- :type end_date: str
80
- :return: 指定参数的数据
81
- :rtype: pandas.DataFrame
82
- """
83
- start_date = "/".join([start_date[:4], start_date[4:6], start_date[6:]])
84
- end_date = "/".join([end_date[:4], end_date[4:6], end_date[6:]])
85
- period_map = {"每日": "Daily", "每周": "Weekly", "每月": "Monthly"}
86
- name_code_dict = bond_investing_global_country_name_url(country)
87
- temp_url = f"https://cn.investing.com/{name_code_dict[index_name]}-historical-data"
88
- res = requests.get(temp_url, headers=short_headers, timeout=30)
89
- soup = BeautifulSoup(res.text, "lxml")
90
- title = soup.find("h2", attrs={"class": "float_lang_base_1"}).get_text()
91
- data = soup.find_all(text=re.compile("window.histDataExcessInfo"))[0].strip()
92
- para_data = re.findall(r"\d+", data)
93
- payload = {
94
- "curr_id": para_data[0],
95
- "smlID": para_data[1],
96
- "header": title,
97
- "st_date": start_date,
98
- "end_date": end_date,
99
- "interval_sec": period_map[period],
100
- "sort_col": "date",
101
- "sort_ord": "DESC",
102
- "action": "historical_data",
103
- }
104
- url = "https://cn.investing.com/instruments/HistoricalDataAjax"
105
- res = requests.post(url, data=payload, headers=long_headers, timeout=60)
106
- df_data = pd.read_html(res.text)[0]
107
- df_data.columns = [
108
- "日期",
109
- "收盘",
110
- "开盘",
111
- "高",
112
- "低",
113
- "涨跌幅",
114
- ]
115
- if period == "每月":
116
- df_data.index = pd.to_datetime(df_data["日期"], format="%Y年%m月")
117
- else:
118
- df_data.index = pd.to_datetime(df_data["日期"], format="%Y年%m月%d日")
119
- df_data = df_data[["收盘", "开盘", "高", "低", "涨跌幅"]]
120
- df_data["涨跌幅"] = df_data["涨跌幅"].str.replace("%", "")
121
- df_data["涨跌幅"] = df_data["涨跌幅"].str.replace(",", "")
122
- df_data = df_data.astype(float)
123
- return df_data
124
-
125
-
126
- if __name__ == "__main__":
127
- bond_investing_global_country_name_url_df = bond_investing_global_country_name_url(
128
- "中国"
129
- )
130
- print(bond_investing_global_country_name_url_df)
131
-
132
- bond_investing_global_df = bond_investing_global(
133
- country="中国",
134
- index_name="中国10年期国债",
135
- period="每日",
136
- start_date="20100101",
137
- end_date="20210318",
138
- )
139
- print(bond_investing_global_df)
@@ -1,170 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- coding:utf-8 -*-
3
- """
4
- Date: 2021/5/10 17:06
5
- Desc: 提供英为财情-国际大宗商品期货
6
- https://cn.investing.com/commodities/brent-oil-historical-data
7
- """
8
- import re
9
-
10
- import pandas as pd
11
- import requests
12
- from bs4 import BeautifulSoup
13
-
14
- from akshare.index.cons import short_headers, long_headers
15
-
16
-
17
- def get_sector_symbol_name_url() -> dict:
18
- """
19
- 期货所对应板块的 URL
20
- :return: dict
21
- {'能源': '/commodities/energy',
22
- '金属': '/commodities/metals',
23
- '农业': '/commodities/softs',
24
- '商品指数': '/indices/commodities-indices'}
25
- """
26
- url = "https://cn.investing.com/commodities/"
27
- res = requests.get(url, headers=short_headers)
28
- soup = BeautifulSoup(res.text, "lxml")
29
- name_url_option_list = soup.find_all(attrs={"class": "linkTitle"}) # 去掉-所有国家及地区
30
- url_list = [item.find("a")["href"] for item in name_url_option_list]
31
- name_list = [item.get_text() for item in name_url_option_list]
32
- name_code_map_dict = {}
33
- name_code_map_dict.update(zip(name_list, url_list))
34
- return name_code_map_dict
35
-
36
-
37
- def futures_global_commodity_name_url_map(sector: str = "能源") -> dict:
38
- """
39
- 参考网页: https://cn.investing.com/commodities/
40
- 获取选择板块对应的: 具体期货品种的 url 地址
41
- :param sector: 板块, 对应 get_global_country_name_url 品种名称
42
- :type sector: str
43
- :return: dict of name-url
44
- :rtype: dict
45
- {'伦敦布伦特原油': '/commodities/brent-oil',
46
- 'WTI原油': '/commodities/crude-oil',
47
- '伦敦汽油': '/commodities/london-gas-oil',
48
- '天然气': '/commodities/natural-gas?cid=49787',
49
- '燃料油': '/commodities/heating-oil',
50
- '碳排放': '/commodities/carbon-emissions',
51
- 'RBOB汽油': '/commodities/gasoline-rbob',
52
- '布伦特原油': '/commodities/brent-oil?cid=49769',
53
- '原油': '/commodities/crude-oil?cid=49774'}
54
- """
55
- name_url_dict = get_sector_symbol_name_url()
56
- url = f"https://cn.investing.com{name_url_dict[sector]}"
57
- res = requests.post(url, headers=short_headers)
58
- soup = BeautifulSoup(res.text, "lxml")
59
- url_list = [
60
- item.find("a")["href"].split("?")[0]
61
- for item in soup.find_all(attrs={"class": "plusIconTd"})
62
- ]
63
- name_list = [
64
- item.find("a").get_text()
65
- for item in soup.find_all(attrs={"class": "plusIconTd"})
66
- ]
67
- name_code_map_dict = {}
68
- name_code_map_dict.update(zip(name_list, url_list))
69
- return name_code_map_dict
70
-
71
-
72
- def futures_global_commodity_hist(
73
- sector: str = "能源",
74
- symbol: str = "伦敦布伦特原油",
75
- start_date: str = "20000101",
76
- end_date: str = "20191017",
77
- ) -> pd.DataFrame:
78
- """
79
- 国际大宗商品的历史量价数据
80
- https://cn.investing.com/commodities
81
- :param sector: 板块名称; 调用 futures_global_commodity_name_url_map 函数获取
82
- :type sector: str
83
- :param symbol: 品种名称; 通过访问网站查询
84
- :type symbol: str
85
- :param start_date: 开始日期
86
- :type start_date: str
87
- :param end_date: 结束日期
88
- :type end_date: str
89
- :return: 国际大宗商品的历史量价数据
90
- :rtype: pandas.DataFrame
91
- """
92
- start_date = "/".join([start_date[:4], start_date[4:6], start_date[6:]])
93
- end_date = "/".join([end_date[:4], end_date[4:6], end_date[6:]])
94
- name_code_dict = futures_global_commodity_name_url_map(sector)
95
- temp_url = f"https://cn.investing.com/{name_code_dict[symbol]}-historical-data"
96
- res = requests.post(temp_url, headers=short_headers)
97
- soup = BeautifulSoup(res.text, "lxml")
98
- title = soup.find("h2", attrs={"class": "float_lang_base_1"}).get_text()
99
- res = requests.post(temp_url, headers=short_headers)
100
- soup = BeautifulSoup(res.text, "lxml")
101
- data = soup.find_all(text=re.compile("window.histDataExcessInfo"))[0].strip()
102
- para_data = re.findall(r"\d+", data)
103
- payload = {
104
- "curr_id": para_data[0],
105
- "smlID": para_data[1],
106
- "header": title,
107
- "st_date": start_date,
108
- "end_date": end_date,
109
- "interval_sec": "Daily",
110
- "sort_col": "date",
111
- "sort_ord": "DESC",
112
- "action": "historical_data",
113
- }
114
- url = "https://cn.investing.com/instruments/HistoricalDataAjax"
115
- r = requests.post(url, data=payload, headers=long_headers)
116
- temp_df = pd.read_html(r.text)[0]
117
- temp_df["日期"] = pd.to_datetime(temp_df["日期"], format="%Y年%m月%d日")
118
- if any(temp_df["交易量"].astype(str).str.contains("-")):
119
- temp_df["交易量"][temp_df["交易量"].str.contains("-")] = temp_df["交易量"][
120
- temp_df["交易量"].str.contains("-")
121
- ].replace("-", 0)
122
- if any(temp_df["交易量"].astype(str).str.contains("B")):
123
- temp_df["交易量"][temp_df["交易量"].str.contains("B").fillna(False)] = (
124
- temp_df["交易量"][temp_df["交易量"].str.contains("B").fillna(False)]
125
- .str.replace("B", "")
126
- .astype(float)
127
- * 1000000000
128
- )
129
- if any(temp_df["交易量"].astype(str).str.contains("M")):
130
- temp_df["交易量"][temp_df["交易量"].str.contains("M").fillna(False)] = (
131
- temp_df["交易量"][temp_df["交易量"].str.contains("M").fillna(False)]
132
- .str.replace("M", "")
133
- .astype(float)
134
- * 1000000
135
- )
136
- if any(temp_df["交易量"].astype(str).str.contains("K")):
137
- temp_df["交易量"][temp_df["交易量"].str.contains("K").fillna(False)] = (
138
- temp_df["交易量"][temp_df["交易量"].str.contains("K").fillna(False)]
139
- .str.replace("K", "")
140
- .astype(float)
141
- * 1000
142
- )
143
- temp_df["交易量"] = temp_df["交易量"].astype(float)
144
- temp_df["涨跌幅"] = pd.DataFrame(
145
- round(temp_df["涨跌幅"].str.replace("%", "").astype(float) / 100, 6)
146
- )
147
- temp_df.name = title
148
- temp_df.columns.name = None
149
- temp_df.sort_values(["日期"], ascending=False, inplace=True)
150
- return temp_df
151
-
152
-
153
- if __name__ == "__main__":
154
- temp_dict = futures_global_commodity_name_url_map(sector="能源")
155
- print(temp_dict)
156
-
157
- futures_global_commodity_hist_df = futures_global_commodity_hist(
158
- sector="能源", symbol="伦敦布伦特原油", start_date="19700101", end_date="20210510"
159
- )
160
- print(futures_global_commodity_hist_df)
161
-
162
- # futures_global_commodity_hist_df = futures_global_commodity_hist(
163
- # sector="能源", symbol="伦敦布伦特原油", start_date="1970/01/01", end_date="2021/05/10"
164
- # )
165
- # print(futures_global_commodity_hist_df.to_csv("伦敦布伦特原油_19880627_20080319.csv", encoding="gb2312"))
166
- #
167
- # futures_global_commodity_hist_df = futures_global_commodity_hist(
168
- # sector="能源", symbol="伦敦布伦特原油", start_date="2008/03/19", end_date="2021/05/10"
169
- # )
170
- # print(futures_global_commodity_hist_df.to_csv("伦敦布伦特原油_20080319_20210510.csv", encoding="gb2312"))
@@ -1,232 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- coding:utf-8 -*-
3
- """
4
- Date: 2022/8/8 19:53
5
- Desc: 英为财情-股票指数-全球股指与期货指数数据接口
6
- https://cn.investing.com/indices/volatility-s-p-500-historical-data
7
- """
8
- import json
9
-
10
- import pandas as pd
11
- import requests
12
- from bs4 import BeautifulSoup
13
-
14
- from akshare.index.cons import short_headers
15
-
16
-
17
- def _get_global_index_area_name_code() -> dict:
18
- """
19
- 全球指数-各国的全球指数数据
20
- https://cn.investing.com/indices/global-indices?majorIndices=on&primarySectors=on&bonds=on&additionalIndices=on&otherIndices=on&c_id=37
21
- :return: 国家和代码
22
- :rtype: dict
23
- """
24
- url = "https://cn.investing.com/indices/global-indices"
25
- params = {
26
- "majorIndices": "on",
27
- "primarySectors": "on",
28
- "bonds": "on",
29
- "additionalIndices": "on",
30
- "otherIndices": "on",
31
- }
32
- r = requests.get(url, params=params, headers=short_headers)
33
- data_text = r.text
34
- soup = BeautifulSoup(data_text, "lxml")
35
- name_url_option_list = soup.find_all("option")[1:]
36
- url_list = [
37
- item["value"]
38
- for item in name_url_option_list
39
- if "c_id" in item["value"]
40
- ]
41
- url_list_code = [
42
- item["value"].split("?")[1].split("=")[1]
43
- for item in name_url_option_list
44
- if "c_id" in item["value"]
45
- ]
46
- name_list = [item.get_text() for item in name_url_option_list][
47
- : len(url_list)
48
- ]
49
- _temp_df = pd.DataFrame([name_list, url_list_code]).T
50
- name_code_list = dict(zip(_temp_df.iloc[:, 0], _temp_df.iloc[:, 1]))
51
- return name_code_list
52
-
53
-
54
- def _get_global_country_name_url() -> dict:
55
- """
56
- 可获得指数数据国家对应的 URL
57
- https://cn.investing.com/indices/
58
- :return: 国家和 URL
59
- :rtype: dict
60
- """
61
- url = "https://cn.investing.com/indices/"
62
- res = requests.post(url, headers=short_headers)
63
- soup = BeautifulSoup(res.text, "lxml")
64
- name_url_option_list = soup.find(
65
- "select", attrs={"name": "country"}
66
- ).find_all("option")[
67
- 1:
68
- ] # 去掉-所有国家及地区
69
- url_list = [item["value"] for item in name_url_option_list]
70
- name_list = [item.get_text() for item in name_url_option_list]
71
- name_code_map_dict = {}
72
- name_code_map_dict.update(zip(name_list, url_list))
73
- return name_code_map_dict
74
-
75
-
76
- def index_investing_global_area_index_name_code(area: str = "中国") -> dict:
77
- """
78
- 指定 area 的所有指数和代码
79
- https://cn.investing.com/indices/
80
- :param area: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称
81
- :type area: str
82
- :return: 指定 area 的所有指数和代码
83
- :rtype: dict
84
- """
85
- pd.set_option("mode.chained_assignment", None)
86
- name_url_dict = _get_global_country_name_url()
87
- url = f"https://cn.investing.com{name_url_dict[area]}?&majorIndices=on&primarySectors=on&additionalIndices=on&otherIndices=on"
88
- r = requests.get(url)
89
- soup = BeautifulSoup(r.text, "lxml")
90
- code_list = [
91
- item["data-id"]
92
- for item in soup.find_all("table")[1].find_all(
93
- "span", attrs={"class": "alertBellGrayPlus"}
94
- )
95
- ]
96
- name_list = [
97
- item.find("a").text
98
- for item in soup.find_all("td", attrs={"class": "plusIconTd"})
99
- ]
100
- name_code_map_dict = {}
101
- name_code_map_dict.update(zip(name_list, code_list))
102
- return name_code_map_dict
103
-
104
-
105
- def index_investing_global_area_index_name_url(area: str = "中国") -> dict:
106
- """
107
- 指定 area 的所有指数和 URL 地址
108
- https://cn.investing.com/indices/
109
- :param area: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称
110
- :type area: str
111
- :return: 指定 area 的所有指数和 URL 地址
112
- :rtype: dict
113
- """
114
- pd.set_option("mode.chained_assignment", None)
115
- name_url_dict = _get_global_country_name_url()
116
- url = f"https://cn.investing.com{name_url_dict[area]}?&majorIndices=on&primarySectors=on&additionalIndices=on&otherIndices=on"
117
- r = requests.get(url)
118
- soup = BeautifulSoup(r.text, "lxml")
119
- code_list = [
120
- item.find("a")["href"]
121
- for item in soup.find_all("td", attrs={"class": "plusIconTd"})
122
- ]
123
- name_list = [
124
- item.find("a").text
125
- for item in soup.find_all("td", attrs={"class": "plusIconTd"})
126
- ]
127
- name_code_map_dict = {}
128
- name_code_map_dict.update(zip(name_list, code_list))
129
- return name_code_map_dict
130
-
131
-
132
- def index_investing_global(
133
- area: str = "中国",
134
- symbol: str = "上证指数",
135
- period: str = "每日",
136
- start_date: str = "20100101",
137
- end_date: str = "20211031",
138
- ) -> pd.DataFrame:
139
- """
140
- 具体国家或地区的从 start_date 到 end_date 期间的数据
141
- https://cn.investing.com/indices/ftse-epra-nareit-hong-kong-historical-data
142
- :param area: 对应函数中的国家或地区名称
143
- :type area: str
144
- :param symbol: 对应函数中的指数名称
145
- :type symbol: str
146
- :param period: choice of {"每日", "每周", "每月"}
147
- :type period: str
148
- :param start_date: '20000101', 注意格式
149
- :type start_date: str
150
- :param end_date: '20191017', 注意格式
151
- :type end_date: str
152
- :return: 指定参数的数据
153
- :rtype: pandas.DataFrame
154
- """
155
- start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]])
156
- end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]])
157
- period_map = {"每日": "Daily", "每周": "Weekly", "每月": "Monthly"}
158
- name_code_dict = index_investing_global_area_index_name_code(area)
159
- url = f"https://api.investing.com/api/financialdata/historical/{name_code_dict[symbol]}"
160
- params = {
161
- "start-date": start_date,
162
- "end-date": end_date,
163
- "time-frame": period_map[period],
164
- "add-missing-rows": "false",
165
- }
166
- headers = {
167
- "accept": "application/json, text/plain, */*",
168
- "accept-encoding": "gzip, deflate, br",
169
- "accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
170
- "cache-control": "no-cache",
171
- "domain-id": "cn",
172
- "origin": "https://cn.investing.com",
173
- "pragma": "no-cache",
174
- "referer": "https://cn.investing.com/",
175
- "sec-ch-ua": '"Google Chrome";v="105", "Not)A;Brand";v="8", "Chromium";v="105"',
176
- "sec-ch-ua-mobile": "?0",
177
- "sec-ch-ua-platform": '"Windows"',
178
- "sec-fetch-dest": "empty",
179
- "sec-fetch-mode": "cors",
180
- "sec-fetch-site": "same-site",
181
- "authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE2NjM2NjQ1NzUsImp0aSI6IjIyODA4MDM5MSIsImlhdCI6MTY2MzY2MDk3NSwiaXNzIjoiaW52ZXN0aW5nLmNvbSIsInVzZXJfaWQiOjIyODA4MDM5MSwicHJpbWFyeV9kb21haW5faWQiOiIxIiwiQXV0aG5TeXN0ZW1Ub2tlbiI6IiIsIkF1dGhuU2Vzc2lvblRva2VuIjoiIiwiRGV2aWNlVG9rZW4iOiIiLCJVYXBpVG9rZW4iOiJObmclMkJmMlJyUHpjeWRtdHRaell5TW1JN1pUNWliV1prTURJMVB6czlNeVUySWpVN1lEYzNjV1ZxYWlSZ1kyVjVNamRsWWpRMFptWTFQMkk4TnpCdlBEWXlQbVJrWXo4M01tQnJaMmN3TW1aaU1HVm9ZbWRtWmpBNU5UWTdhRE0lMkJOalUxTW1Cdk56VmxPbW93WUR4bGJUSWdaWGswY0daM05XZGlNamQyYnlnMk9UNSUyRlpEUSUyRllESm1hMjluTURJeFlqRmxQV0l3Wmpjd1pUVXhPenN6S3paOSIsIkF1dGhuSWQiOiIiLCJJc0RvdWJsZUVuY3J5cHRlZCI6ZmFsc2UsIkRldmljZUlkIjoiIiwiUmVmcmVzaEV4cGlyZWRBdCI6MTY2NjE4MDk3NX0.uRLTP1IG3696uxHm3Qq0D8z4o3nfsD3CaIS9cZGjsV0",
182
- "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36",
183
- }
184
- r = requests.get(url, params=params, headers=headers)
185
- r.encoding = "utf-8"
186
- r = requests.get(url, params=params, headers=headers)
187
- data_json = r.json()
188
- df_data = pd.DataFrame(data_json["data"])
189
- df_data.columns = [
190
- "-",
191
- "-",
192
- "-",
193
- "日期",
194
- "-",
195
- "-",
196
- "-",
197
- "-",
198
- "-",
199
- "交易量",
200
- "-",
201
- "收盘",
202
- "开盘",
203
- "高",
204
- "低",
205
- "涨跌幅",
206
- ]
207
- df_data = df_data[["日期", "收盘", "开盘", "高", "低", "交易量", "涨跌幅"]]
208
- df_data["日期"] = pd.to_datetime(df_data["日期"]).dt.date
209
- df_data["收盘"] = pd.to_numeric(df_data["收盘"])
210
- df_data["开盘"] = pd.to_numeric(df_data["开盘"])
211
- df_data["高"] = pd.to_numeric(df_data["高"])
212
- df_data["低"] = pd.to_numeric(df_data["低"])
213
- df_data["交易量"] = pd.to_numeric(df_data["交易量"])
214
- df_data["涨跌幅"] = pd.to_numeric(df_data["涨跌幅"])
215
- df_data.sort_values("日期", inplace=True)
216
- df_data.reset_index(inplace=True, drop=True)
217
- return df_data
218
-
219
-
220
- if __name__ == "__main__":
221
- print(index_investing_global_area_index_name_url("香港"))
222
-
223
- print(index_investing_global_area_index_name_code("香港"))
224
-
225
- index_investing_global_df = index_investing_global(
226
- area="中国",
227
- symbol="富时中国A50指数",
228
- period="每日",
229
- start_date="20100101",
230
- end_date="20220808",
231
- )
232
- print(index_investing_global_df)