akshare 1.15.13__py3-none-any.whl → 1.15.15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of akshare might be problematic. Click here for more details.
- akshare/__init__.py +4 -1
- akshare/economic/macro_bank.py +95 -653
- akshare/index/index_stock_zh_csindex.py +6 -4
- {akshare-1.15.13.dist-info → akshare-1.15.15.dist-info}/METADATA +1 -1
- {akshare-1.15.13.dist-info → akshare-1.15.15.dist-info}/RECORD +8 -8
- {akshare-1.15.13.dist-info → akshare-1.15.15.dist-info}/LICENSE +0 -0
- {akshare-1.15.13.dist-info → akshare-1.15.15.dist-info}/WHEEL +0 -0
- {akshare-1.15.13.dist-info → akshare-1.15.15.dist-info}/top_level.txt +0 -0
akshare/__init__.py
CHANGED
|
@@ -2923,9 +2923,11 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
|
|
|
2923
2923
|
1.15.11 fix: fix stock_individual_spot_xq indicator
|
|
2924
2924
|
1.15.12 fix: fix stock_shareholder_change_ths indicator
|
|
2925
2925
|
1.15.13 fix: fix stock_inner_trade_xq indicator
|
|
2926
|
+
1.15.14 fix: fix macro_bank_usa_interest_rate indicator
|
|
2927
|
+
1.15.15 add: add macro_bank_china_interest_rate indicator
|
|
2926
2928
|
"""
|
|
2927
2929
|
|
|
2928
|
-
__version__ = "1.15.
|
|
2930
|
+
__version__ = "1.15.15"
|
|
2929
2931
|
__author__ = "AKFamily"
|
|
2930
2932
|
|
|
2931
2933
|
import sys
|
|
@@ -4838,6 +4840,7 @@ from akshare.economic.macro_bank import (
|
|
|
4838
4840
|
macro_bank_australia_interest_rate,
|
|
4839
4841
|
macro_bank_brazil_interest_rate,
|
|
4840
4842
|
macro_bank_brazil_interest_rate,
|
|
4843
|
+
macro_bank_china_interest_rate,
|
|
4841
4844
|
macro_bank_english_interest_rate,
|
|
4842
4845
|
macro_bank_euro_interest_rate,
|
|
4843
4846
|
macro_bank_india_interest_rate,
|
akshare/economic/macro_bank.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
2
|
# -*- coding:utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Date:
|
|
4
|
+
Date: 2024/11/5 17:11
|
|
5
5
|
Desc: 金十数据中心-经济指标-央行利率-主要央行利率
|
|
6
6
|
https://datacenter.jin10.com/economic
|
|
7
7
|
输出数据格式为 float64
|
|
@@ -17,6 +17,7 @@ https://datacenter.jin10.com/economic
|
|
|
17
17
|
印度央行决议报告
|
|
18
18
|
巴西央行决议报告
|
|
19
19
|
"""
|
|
20
|
+
|
|
20
21
|
import datetime
|
|
21
22
|
import time
|
|
22
23
|
|
|
@@ -24,80 +25,87 @@ import pandas as pd
|
|
|
24
25
|
import requests
|
|
25
26
|
|
|
26
27
|
|
|
27
|
-
|
|
28
|
-
def macro_bank_usa_interest_rate() -> pd.DataFrame:
|
|
28
|
+
def __get_interest_rate_data(attr_id: str, name: str = "利率") -> pd.DataFrame:
|
|
29
29
|
"""
|
|
30
|
-
|
|
30
|
+
利率决议报告公共函数
|
|
31
31
|
https://datacenter.jin10.com/reportType/dc_usa_interest_rate_decision
|
|
32
|
-
|
|
33
|
-
:
|
|
32
|
+
:param attr_id: 内置属性
|
|
33
|
+
:type attr_id: str
|
|
34
|
+
:param name: 利率报告名称
|
|
35
|
+
:type name: str
|
|
36
|
+
:return: 利率决议报告数据
|
|
34
37
|
:rtype: pandas.Series
|
|
35
38
|
"""
|
|
36
39
|
t = time.time()
|
|
37
40
|
headers = {
|
|
38
|
-
"
|
|
39
|
-
"
|
|
40
|
-
"
|
|
41
|
-
"
|
|
42
|
-
"
|
|
43
|
-
"
|
|
44
|
-
"sec-fetch-dest": "empty",
|
|
45
|
-
"sec-fetch-mode": "cors",
|
|
46
|
-
"sec-fetch-site": "same-site",
|
|
47
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
41
|
+
"Accept": "*/*",
|
|
42
|
+
"Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
43
|
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
|
|
44
|
+
"Chrome/120.0.0.0 Safari/537.36",
|
|
45
|
+
"Origin": "https://datacenter.jin10.com",
|
|
46
|
+
"Referer": "https://datacenter.jin10.com/",
|
|
48
47
|
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
49
|
-
"x-csrf-token": "",
|
|
50
48
|
"x-version": "1.0.0",
|
|
51
49
|
}
|
|
52
|
-
|
|
50
|
+
base_url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
53
51
|
params = {
|
|
54
52
|
"max_date": "",
|
|
55
53
|
"category": "ec",
|
|
56
|
-
"attr_id":
|
|
54
|
+
"attr_id": attr_id,
|
|
57
55
|
"_": str(int(round(t * 1000))),
|
|
58
56
|
}
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
break
|
|
65
|
-
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
66
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
67
|
-
last_date_str = temp_df.iat[-1, 0]
|
|
68
|
-
last_date_str = (
|
|
69
|
-
(
|
|
70
|
-
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
71
|
-
- datetime.timedelta(days=1)
|
|
57
|
+
interest_rate_data = []
|
|
58
|
+
try:
|
|
59
|
+
while True:
|
|
60
|
+
response = requests.get(
|
|
61
|
+
url=base_url, params=params, headers=headers, timeout=10
|
|
72
62
|
)
|
|
73
|
-
.
|
|
74
|
-
.
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
63
|
+
data = response.json()
|
|
64
|
+
if not data.get("data", {}).get("values"):
|
|
65
|
+
break
|
|
66
|
+
interest_rate_data.extend(data["data"]["values"])
|
|
67
|
+
|
|
68
|
+
# Update max_date for pagination
|
|
69
|
+
last_date = data["data"]["values"][-1][0]
|
|
70
|
+
next_date = (
|
|
71
|
+
datetime.datetime.strptime(last_date, "%Y-%m-%d").date()
|
|
72
|
+
- datetime.timedelta(days=1)
|
|
73
|
+
).isoformat()
|
|
74
|
+
params["max_date"] = next_date
|
|
75
|
+
|
|
76
|
+
except requests.exceptions.RequestException as e:
|
|
77
|
+
print(f"Error fetching data: {e}")
|
|
78
|
+
return pd.DataFrame()
|
|
79
|
+
|
|
80
|
+
# Convert to DataFrame
|
|
81
|
+
big_df = pd.DataFrame(interest_rate_data)
|
|
82
|
+
|
|
83
|
+
if big_df.empty:
|
|
84
|
+
return pd.DataFrame()
|
|
85
|
+
|
|
86
|
+
# Process DataFrame
|
|
87
|
+
big_df["商品"] = name
|
|
88
|
+
big_df.columns = ["日期", "今值", "预测值", "前值", "商品"]
|
|
89
|
+
big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]]
|
|
90
|
+
|
|
91
|
+
# Convert data types
|
|
94
92
|
big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
big_df.reset_index(
|
|
100
|
-
|
|
93
|
+
numeric_columns = ["今值", "预测值", "前值"]
|
|
94
|
+
for col in numeric_columns:
|
|
95
|
+
big_df[col] = pd.to_numeric(big_df[col], errors="coerce")
|
|
96
|
+
|
|
97
|
+
return big_df.sort_values("日期").reset_index(drop=True)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
# 金十数据中心-经济指标-央行利率-主要央行利率-美联储利率决议报告
|
|
101
|
+
def macro_bank_usa_interest_rate() -> pd.DataFrame:
|
|
102
|
+
"""
|
|
103
|
+
美联储利率决议报告, 数据区间从 19820927-至今
|
|
104
|
+
https://datacenter.jin10.com/reportType/dc_usa_interest_rate_decision
|
|
105
|
+
:return: 美联储利率决议报告-今值(%)
|
|
106
|
+
:rtype: pandas.Series
|
|
107
|
+
"""
|
|
108
|
+
return __get_interest_rate_data(attr_id="24", name="美联储利率决议报告")
|
|
101
109
|
|
|
102
110
|
|
|
103
111
|
# 金十数据中心-经济指标-央行利率-主要央行利率-欧洲央行决议报告
|
|
@@ -109,71 +117,7 @@ def macro_bank_euro_interest_rate() -> pd.DataFrame:
|
|
|
109
117
|
:return: 欧洲央行决议报告-今值(%)
|
|
110
118
|
:rtype: pandas.Series
|
|
111
119
|
"""
|
|
112
|
-
|
|
113
|
-
headers = {
|
|
114
|
-
"accept": "*/*",
|
|
115
|
-
"accept-encoding": "gzip, deflate, br",
|
|
116
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
117
|
-
"cache-control": "no-cache",
|
|
118
|
-
"origin": "https://datacenter.jin10.com",
|
|
119
|
-
"pragma": "no-cache",
|
|
120
|
-
"sec-fetch-dest": "empty",
|
|
121
|
-
"sec-fetch-mode": "cors",
|
|
122
|
-
"sec-fetch-site": "same-site",
|
|
123
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
124
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
125
|
-
"x-csrf-token": "",
|
|
126
|
-
"x-version": "1.0.0",
|
|
127
|
-
}
|
|
128
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
129
|
-
params = {
|
|
130
|
-
"max_date": "",
|
|
131
|
-
"category": "ec",
|
|
132
|
-
"attr_id": "21",
|
|
133
|
-
"_": str(int(round(t * 1000))),
|
|
134
|
-
}
|
|
135
|
-
big_df = pd.DataFrame()
|
|
136
|
-
while True:
|
|
137
|
-
r = requests.get(url, params=params, headers=headers)
|
|
138
|
-
data_json = r.json()
|
|
139
|
-
if not data_json["data"]["values"]:
|
|
140
|
-
break
|
|
141
|
-
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
142
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
143
|
-
last_date_str = temp_df.iat[-1, 0]
|
|
144
|
-
last_date_str = (
|
|
145
|
-
(
|
|
146
|
-
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
147
|
-
- datetime.timedelta(days=1)
|
|
148
|
-
)
|
|
149
|
-
.date()
|
|
150
|
-
.isoformat()
|
|
151
|
-
)
|
|
152
|
-
params.update({"max_date": f"{last_date_str}"})
|
|
153
|
-
big_df["商品"] = "欧元区利率决议"
|
|
154
|
-
big_df.columns = [
|
|
155
|
-
"日期",
|
|
156
|
-
"今值",
|
|
157
|
-
"预测值",
|
|
158
|
-
"前值",
|
|
159
|
-
"商品",
|
|
160
|
-
]
|
|
161
|
-
big_df = big_df[
|
|
162
|
-
[
|
|
163
|
-
"商品",
|
|
164
|
-
"日期",
|
|
165
|
-
"今值",
|
|
166
|
-
"预测值",
|
|
167
|
-
"前值",
|
|
168
|
-
]
|
|
169
|
-
]
|
|
170
|
-
big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date
|
|
171
|
-
big_df["今值"] = pd.to_numeric(big_df["今值"])
|
|
172
|
-
big_df["预测值"] = pd.to_numeric(big_df["预测值"])
|
|
173
|
-
big_df["前值"] = pd.to_numeric(big_df["前值"])
|
|
174
|
-
big_df.sort_values(["日期"], inplace=True)
|
|
175
|
-
big_df.reset_index(inplace=True, drop=True)
|
|
176
|
-
return big_df
|
|
120
|
+
return __get_interest_rate_data(attr_id="21", name="欧洲央行决议报告")
|
|
177
121
|
|
|
178
122
|
|
|
179
123
|
# 金十数据中心-经济指标-央行利率-主要央行利率-新西兰联储决议报告
|
|
@@ -185,71 +129,19 @@ def macro_bank_newzealand_interest_rate() -> pd.DataFrame:
|
|
|
185
129
|
:return: 新西兰联储决议报告-今值(%)
|
|
186
130
|
:rtype: pandas.Series
|
|
187
131
|
"""
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
"x-csrf-token": "",
|
|
202
|
-
"x-version": "1.0.0",
|
|
203
|
-
}
|
|
204
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
205
|
-
params = {
|
|
206
|
-
"max_date": "",
|
|
207
|
-
"category": "ec",
|
|
208
|
-
"attr_id": "23",
|
|
209
|
-
"_": str(int(round(t * 1000))),
|
|
210
|
-
}
|
|
211
|
-
big_df = pd.DataFrame()
|
|
212
|
-
while True:
|
|
213
|
-
r = requests.get(url, params=params, headers=headers)
|
|
214
|
-
data_json = r.json()
|
|
215
|
-
if not data_json["data"]["values"]:
|
|
216
|
-
break
|
|
217
|
-
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
218
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
219
|
-
last_date_str = temp_df.iat[-1, 0]
|
|
220
|
-
last_date_str = (
|
|
221
|
-
(
|
|
222
|
-
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
223
|
-
- datetime.timedelta(days=1)
|
|
224
|
-
)
|
|
225
|
-
.date()
|
|
226
|
-
.isoformat()
|
|
227
|
-
)
|
|
228
|
-
params.update({"max_date": f"{last_date_str}"})
|
|
229
|
-
big_df["商品"] = "新西兰利率决议报告"
|
|
230
|
-
big_df.columns = [
|
|
231
|
-
"日期",
|
|
232
|
-
"今值",
|
|
233
|
-
"预测值",
|
|
234
|
-
"前值",
|
|
235
|
-
"商品",
|
|
236
|
-
]
|
|
237
|
-
big_df = big_df[
|
|
238
|
-
[
|
|
239
|
-
"商品",
|
|
240
|
-
"日期",
|
|
241
|
-
"今值",
|
|
242
|
-
"预测值",
|
|
243
|
-
"前值",
|
|
244
|
-
]
|
|
245
|
-
]
|
|
246
|
-
big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date
|
|
247
|
-
big_df["今值"] = pd.to_numeric(big_df["今值"])
|
|
248
|
-
big_df["预测值"] = pd.to_numeric(big_df["预测值"])
|
|
249
|
-
big_df["前值"] = pd.to_numeric(big_df["前值"])
|
|
250
|
-
big_df.sort_values(["日期"], inplace=True)
|
|
251
|
-
big_df.reset_index(inplace=True, drop=True)
|
|
252
|
-
return big_df
|
|
132
|
+
return __get_interest_rate_data(attr_id="23", name="新西兰利率决议报告")
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
# 金十数据中心-经济指标-央行利率-主要央行利率-中国央行决议报告
|
|
136
|
+
def macro_bank_china_interest_rate() -> pd.DataFrame:
|
|
137
|
+
"""
|
|
138
|
+
新西兰联储决议报告, 数据区间从 19990401-至今
|
|
139
|
+
https://datacenter.jin10.com/reportType/dc_newzealand_interest_rate_decision
|
|
140
|
+
https://cdn.jin10.com/dc/reports/dc_newzealand_interest_rate_decision_all.js?v=1578582075
|
|
141
|
+
:return: 新西兰联储决议报告-今值(%)
|
|
142
|
+
:rtype: pandas.Series
|
|
143
|
+
"""
|
|
144
|
+
return __get_interest_rate_data(attr_id="91", name="中国央行决议报告")
|
|
253
145
|
|
|
254
146
|
|
|
255
147
|
# 金十数据中心-经济指标-央行利率-主要央行利率-瑞士央行决议报告
|
|
@@ -261,71 +153,7 @@ def macro_bank_switzerland_interest_rate() -> pd.DataFrame:
|
|
|
261
153
|
:return: 瑞士央行利率决议报告-今值(%)
|
|
262
154
|
:rtype: pandas.Series
|
|
263
155
|
"""
|
|
264
|
-
|
|
265
|
-
headers = {
|
|
266
|
-
"accept": "*/*",
|
|
267
|
-
"accept-encoding": "gzip, deflate, br",
|
|
268
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
269
|
-
"cache-control": "no-cache",
|
|
270
|
-
"origin": "https://datacenter.jin10.com",
|
|
271
|
-
"pragma": "no-cache",
|
|
272
|
-
"sec-fetch-dest": "empty",
|
|
273
|
-
"sec-fetch-mode": "cors",
|
|
274
|
-
"sec-fetch-site": "same-site",
|
|
275
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
276
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
277
|
-
"x-csrf-token": "",
|
|
278
|
-
"x-version": "1.0.0",
|
|
279
|
-
}
|
|
280
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
281
|
-
params = {
|
|
282
|
-
"max_date": "",
|
|
283
|
-
"category": "ec",
|
|
284
|
-
"attr_id": "25",
|
|
285
|
-
"_": str(int(round(t * 1000))),
|
|
286
|
-
}
|
|
287
|
-
big_df = pd.DataFrame()
|
|
288
|
-
while True:
|
|
289
|
-
r = requests.get(url, params=params, headers=headers)
|
|
290
|
-
data_json = r.json()
|
|
291
|
-
if not data_json["data"]["values"]:
|
|
292
|
-
break
|
|
293
|
-
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
294
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
295
|
-
last_date_str = temp_df.iat[-1, 0]
|
|
296
|
-
last_date_str = (
|
|
297
|
-
(
|
|
298
|
-
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
299
|
-
- datetime.timedelta(days=1)
|
|
300
|
-
)
|
|
301
|
-
.date()
|
|
302
|
-
.isoformat()
|
|
303
|
-
)
|
|
304
|
-
params.update({"max_date": f"{last_date_str}"})
|
|
305
|
-
big_df["商品"] = "瑞士央行利率决议报告"
|
|
306
|
-
big_df.columns = [
|
|
307
|
-
"日期",
|
|
308
|
-
"今值",
|
|
309
|
-
"预测值",
|
|
310
|
-
"前值",
|
|
311
|
-
"商品",
|
|
312
|
-
]
|
|
313
|
-
big_df = big_df[
|
|
314
|
-
[
|
|
315
|
-
"商品",
|
|
316
|
-
"日期",
|
|
317
|
-
"今值",
|
|
318
|
-
"预测值",
|
|
319
|
-
"前值",
|
|
320
|
-
]
|
|
321
|
-
]
|
|
322
|
-
big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date
|
|
323
|
-
big_df["今值"] = pd.to_numeric(big_df["今值"])
|
|
324
|
-
big_df["预测值"] = pd.to_numeric(big_df["预测值"])
|
|
325
|
-
big_df["前值"] = pd.to_numeric(big_df["前值"])
|
|
326
|
-
big_df.sort_values(["日期"], inplace=True)
|
|
327
|
-
big_df.reset_index(inplace=True, drop=True)
|
|
328
|
-
return big_df
|
|
156
|
+
return __get_interest_rate_data(attr_id="25", name="瑞士央行决议报告")
|
|
329
157
|
|
|
330
158
|
|
|
331
159
|
# 金十数据中心-经济指标-央行利率-主要央行利率-英国央行决议报告
|
|
@@ -337,71 +165,7 @@ def macro_bank_english_interest_rate() -> pd.DataFrame:
|
|
|
337
165
|
:return: 英国央行决议报告-今值(%)
|
|
338
166
|
:rtype: pandas.Series
|
|
339
167
|
"""
|
|
340
|
-
|
|
341
|
-
headers = {
|
|
342
|
-
"accept": "*/*",
|
|
343
|
-
"accept-encoding": "gzip, deflate, br",
|
|
344
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
345
|
-
"cache-control": "no-cache",
|
|
346
|
-
"origin": "https://datacenter.jin10.com",
|
|
347
|
-
"pragma": "no-cache",
|
|
348
|
-
"sec-fetch-dest": "empty",
|
|
349
|
-
"sec-fetch-mode": "cors",
|
|
350
|
-
"sec-fetch-site": "same-site",
|
|
351
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
352
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
353
|
-
"x-csrf-token": "",
|
|
354
|
-
"x-version": "1.0.0",
|
|
355
|
-
}
|
|
356
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
357
|
-
params = {
|
|
358
|
-
"max_date": "",
|
|
359
|
-
"category": "ec",
|
|
360
|
-
"attr_id": "26",
|
|
361
|
-
"_": str(int(round(t * 1000))),
|
|
362
|
-
}
|
|
363
|
-
big_df = pd.DataFrame()
|
|
364
|
-
while True:
|
|
365
|
-
r = requests.get(url, params=params, headers=headers)
|
|
366
|
-
data_json = r.json()
|
|
367
|
-
if not data_json["data"]["values"]:
|
|
368
|
-
break
|
|
369
|
-
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
370
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
371
|
-
last_date_str = temp_df.iat[-1, 0]
|
|
372
|
-
last_date_str = (
|
|
373
|
-
(
|
|
374
|
-
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
375
|
-
- datetime.timedelta(days=1)
|
|
376
|
-
)
|
|
377
|
-
.date()
|
|
378
|
-
.isoformat()
|
|
379
|
-
)
|
|
380
|
-
params.update({"max_date": f"{last_date_str}"})
|
|
381
|
-
big_df["商品"] = "英国利率决议报告"
|
|
382
|
-
big_df.columns = [
|
|
383
|
-
"日期",
|
|
384
|
-
"今值",
|
|
385
|
-
"预测值",
|
|
386
|
-
"前值",
|
|
387
|
-
"商品",
|
|
388
|
-
]
|
|
389
|
-
big_df = big_df[
|
|
390
|
-
[
|
|
391
|
-
"商品",
|
|
392
|
-
"日期",
|
|
393
|
-
"今值",
|
|
394
|
-
"预测值",
|
|
395
|
-
"前值",
|
|
396
|
-
]
|
|
397
|
-
]
|
|
398
|
-
big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date
|
|
399
|
-
big_df["今值"] = pd.to_numeric(big_df["今值"])
|
|
400
|
-
big_df["预测值"] = pd.to_numeric(big_df["预测值"])
|
|
401
|
-
big_df["前值"] = pd.to_numeric(big_df["前值"])
|
|
402
|
-
big_df.sort_values(["日期"], inplace=True)
|
|
403
|
-
big_df.reset_index(inplace=True, drop=True)
|
|
404
|
-
return big_df
|
|
168
|
+
return __get_interest_rate_data(attr_id="26", name="英国央行决议报告")
|
|
405
169
|
|
|
406
170
|
|
|
407
171
|
# 金十数据中心-经济指标-央行利率-主要央行利率-澳洲联储决议报告
|
|
@@ -413,71 +177,7 @@ def macro_bank_australia_interest_rate() -> pd.DataFrame:
|
|
|
413
177
|
:return: 澳洲联储决议报告-今值(%)
|
|
414
178
|
:rtype: pandas.Series
|
|
415
179
|
"""
|
|
416
|
-
|
|
417
|
-
headers = {
|
|
418
|
-
"accept": "*/*",
|
|
419
|
-
"accept-encoding": "gzip, deflate, br",
|
|
420
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
421
|
-
"cache-control": "no-cache",
|
|
422
|
-
"origin": "https://datacenter.jin10.com",
|
|
423
|
-
"pragma": "no-cache",
|
|
424
|
-
"sec-fetch-dest": "empty",
|
|
425
|
-
"sec-fetch-mode": "cors",
|
|
426
|
-
"sec-fetch-site": "same-site",
|
|
427
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
428
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
429
|
-
"x-csrf-token": "",
|
|
430
|
-
"x-version": "1.0.0",
|
|
431
|
-
}
|
|
432
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
433
|
-
params = {
|
|
434
|
-
"max_date": "",
|
|
435
|
-
"category": "ec",
|
|
436
|
-
"attr_id": "27",
|
|
437
|
-
"_": str(int(round(t * 1000))),
|
|
438
|
-
}
|
|
439
|
-
big_df = pd.DataFrame()
|
|
440
|
-
while True:
|
|
441
|
-
r = requests.get(url, params=params, headers=headers)
|
|
442
|
-
data_json = r.json()
|
|
443
|
-
if not data_json["data"]["values"]:
|
|
444
|
-
break
|
|
445
|
-
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
446
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
447
|
-
last_date_str = temp_df.iat[-1, 0]
|
|
448
|
-
last_date_str = (
|
|
449
|
-
(
|
|
450
|
-
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
451
|
-
- datetime.timedelta(days=1)
|
|
452
|
-
)
|
|
453
|
-
.date()
|
|
454
|
-
.isoformat()
|
|
455
|
-
)
|
|
456
|
-
params.update({"max_date": f"{last_date_str}"})
|
|
457
|
-
big_df["商品"] = "澳大利亚利率决议报告"
|
|
458
|
-
big_df.columns = [
|
|
459
|
-
"日期",
|
|
460
|
-
"今值",
|
|
461
|
-
"预测值",
|
|
462
|
-
"前值",
|
|
463
|
-
"商品",
|
|
464
|
-
]
|
|
465
|
-
big_df = big_df[
|
|
466
|
-
[
|
|
467
|
-
"商品",
|
|
468
|
-
"日期",
|
|
469
|
-
"今值",
|
|
470
|
-
"预测值",
|
|
471
|
-
"前值",
|
|
472
|
-
]
|
|
473
|
-
]
|
|
474
|
-
big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date
|
|
475
|
-
big_df["今值"] = pd.to_numeric(big_df["今值"])
|
|
476
|
-
big_df["预测值"] = pd.to_numeric(big_df["预测值"])
|
|
477
|
-
big_df["前值"] = pd.to_numeric(big_df["前值"])
|
|
478
|
-
big_df.sort_values(["日期"], inplace=True)
|
|
479
|
-
big_df.reset_index(inplace=True, drop=True)
|
|
480
|
-
return big_df
|
|
180
|
+
return __get_interest_rate_data(attr_id="27", name="澳洲联储决议报告")
|
|
481
181
|
|
|
482
182
|
|
|
483
183
|
# 金十数据中心-经济指标-央行利率-主要央行利率-日本央行决议报告
|
|
@@ -489,71 +189,7 @@ def macro_bank_japan_interest_rate() -> pd.DataFrame:
|
|
|
489
189
|
:return: 日本利率决议报告-今值(%)
|
|
490
190
|
:rtype: pandas.Series
|
|
491
191
|
"""
|
|
492
|
-
|
|
493
|
-
headers = {
|
|
494
|
-
"accept": "*/*",
|
|
495
|
-
"accept-encoding": "gzip, deflate, br",
|
|
496
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
497
|
-
"cache-control": "no-cache",
|
|
498
|
-
"origin": "https://datacenter.jin10.com",
|
|
499
|
-
"pragma": "no-cache",
|
|
500
|
-
"sec-fetch-dest": "empty",
|
|
501
|
-
"sec-fetch-mode": "cors",
|
|
502
|
-
"sec-fetch-site": "same-site",
|
|
503
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
504
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
505
|
-
"x-csrf-token": "",
|
|
506
|
-
"x-version": "1.0.0",
|
|
507
|
-
}
|
|
508
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
509
|
-
params = {
|
|
510
|
-
"max_date": "",
|
|
511
|
-
"category": "ec",
|
|
512
|
-
"attr_id": "22",
|
|
513
|
-
"_": str(int(round(t * 1000))),
|
|
514
|
-
}
|
|
515
|
-
big_df = pd.DataFrame()
|
|
516
|
-
while True:
|
|
517
|
-
r = requests.get(url, params=params, headers=headers)
|
|
518
|
-
data_json = r.json()
|
|
519
|
-
if not data_json["data"]["values"]:
|
|
520
|
-
break
|
|
521
|
-
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
522
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
523
|
-
last_date_str = temp_df.iat[-1, 0]
|
|
524
|
-
last_date_str = (
|
|
525
|
-
(
|
|
526
|
-
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
527
|
-
- datetime.timedelta(days=1)
|
|
528
|
-
)
|
|
529
|
-
.date()
|
|
530
|
-
.isoformat()
|
|
531
|
-
)
|
|
532
|
-
params.update({"max_date": f"{last_date_str}"})
|
|
533
|
-
big_df["商品"] = "日本利率决议报告"
|
|
534
|
-
big_df.columns = [
|
|
535
|
-
"日期",
|
|
536
|
-
"今值",
|
|
537
|
-
"预测值",
|
|
538
|
-
"前值",
|
|
539
|
-
"商品",
|
|
540
|
-
]
|
|
541
|
-
big_df = big_df[
|
|
542
|
-
[
|
|
543
|
-
"商品",
|
|
544
|
-
"日期",
|
|
545
|
-
"今值",
|
|
546
|
-
"预测值",
|
|
547
|
-
"前值",
|
|
548
|
-
]
|
|
549
|
-
]
|
|
550
|
-
big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date
|
|
551
|
-
big_df["今值"] = pd.to_numeric(big_df["今值"])
|
|
552
|
-
big_df["预测值"] = pd.to_numeric(big_df["预测值"])
|
|
553
|
-
big_df["前值"] = pd.to_numeric(big_df["前值"])
|
|
554
|
-
big_df.sort_values(["日期"], inplace=True)
|
|
555
|
-
big_df.reset_index(inplace=True, drop=True)
|
|
556
|
-
return big_df
|
|
192
|
+
return __get_interest_rate_data(attr_id="22", name="日本央行决议报告")
|
|
557
193
|
|
|
558
194
|
|
|
559
195
|
# 金十数据中心-经济指标-央行利率-主要央行利率-俄罗斯央行决议报告
|
|
@@ -565,71 +201,7 @@ def macro_bank_russia_interest_rate() -> pd.DataFrame:
|
|
|
565
201
|
:return: 俄罗斯利率决议报告-今值(%)
|
|
566
202
|
:rtype: pandas.Series
|
|
567
203
|
"""
|
|
568
|
-
|
|
569
|
-
headers = {
|
|
570
|
-
"accept": "*/*",
|
|
571
|
-
"accept-encoding": "gzip, deflate, br",
|
|
572
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
573
|
-
"cache-control": "no-cache",
|
|
574
|
-
"origin": "https://datacenter.jin10.com",
|
|
575
|
-
"pragma": "no-cache",
|
|
576
|
-
"sec-fetch-dest": "empty",
|
|
577
|
-
"sec-fetch-mode": "cors",
|
|
578
|
-
"sec-fetch-site": "same-site",
|
|
579
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
580
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
581
|
-
"x-csrf-token": "",
|
|
582
|
-
"x-version": "1.0.0",
|
|
583
|
-
}
|
|
584
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
585
|
-
params = {
|
|
586
|
-
"max_date": "",
|
|
587
|
-
"category": "ec",
|
|
588
|
-
"attr_id": "64",
|
|
589
|
-
"_": str(int(round(t * 1000))),
|
|
590
|
-
}
|
|
591
|
-
big_df = pd.DataFrame()
|
|
592
|
-
while True:
|
|
593
|
-
r = requests.get(url, params=params, headers=headers)
|
|
594
|
-
data_json = r.json()
|
|
595
|
-
if not data_json["data"]["values"]:
|
|
596
|
-
break
|
|
597
|
-
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
598
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
599
|
-
last_date_str = temp_df.iat[-1, 0]
|
|
600
|
-
last_date_str = (
|
|
601
|
-
(
|
|
602
|
-
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
603
|
-
- datetime.timedelta(days=1)
|
|
604
|
-
)
|
|
605
|
-
.date()
|
|
606
|
-
.isoformat()
|
|
607
|
-
)
|
|
608
|
-
params.update({"max_date": f"{last_date_str}"})
|
|
609
|
-
big_df["商品"] = "俄罗斯利率决议报告"
|
|
610
|
-
big_df.columns = [
|
|
611
|
-
"日期",
|
|
612
|
-
"今值",
|
|
613
|
-
"预测值",
|
|
614
|
-
"前值",
|
|
615
|
-
"商品",
|
|
616
|
-
]
|
|
617
|
-
big_df = big_df[
|
|
618
|
-
[
|
|
619
|
-
"商品",
|
|
620
|
-
"日期",
|
|
621
|
-
"今值",
|
|
622
|
-
"预测值",
|
|
623
|
-
"前值",
|
|
624
|
-
]
|
|
625
|
-
]
|
|
626
|
-
big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date
|
|
627
|
-
big_df["今值"] = pd.to_numeric(big_df["今值"])
|
|
628
|
-
big_df["预测值"] = pd.to_numeric(big_df["预测值"])
|
|
629
|
-
big_df["前值"] = pd.to_numeric(big_df["前值"])
|
|
630
|
-
big_df.sort_values(["日期"], inplace=True)
|
|
631
|
-
big_df.reset_index(inplace=True, drop=True)
|
|
632
|
-
return big_df
|
|
204
|
+
return __get_interest_rate_data(attr_id="64", name="俄罗斯央行决议报告")
|
|
633
205
|
|
|
634
206
|
|
|
635
207
|
# 金十数据中心-经济指标-央行利率-主要央行利率-印度央行决议报告
|
|
@@ -641,71 +213,7 @@ def macro_bank_india_interest_rate() -> pd.DataFrame:
|
|
|
641
213
|
:return: 印度利率决议报告-今值(%)
|
|
642
214
|
:rtype: pandas.Series
|
|
643
215
|
"""
|
|
644
|
-
|
|
645
|
-
headers = {
|
|
646
|
-
"accept": "*/*",
|
|
647
|
-
"accept-encoding": "gzip, deflate, br",
|
|
648
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
649
|
-
"cache-control": "no-cache",
|
|
650
|
-
"origin": "https://datacenter.jin10.com",
|
|
651
|
-
"pragma": "no-cache",
|
|
652
|
-
"sec-fetch-dest": "empty",
|
|
653
|
-
"sec-fetch-mode": "cors",
|
|
654
|
-
"sec-fetch-site": "same-site",
|
|
655
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
656
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
657
|
-
"x-csrf-token": "",
|
|
658
|
-
"x-version": "1.0.0",
|
|
659
|
-
}
|
|
660
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
661
|
-
params = {
|
|
662
|
-
"max_date": "",
|
|
663
|
-
"category": "ec",
|
|
664
|
-
"attr_id": "68",
|
|
665
|
-
"_": str(int(round(t * 1000))),
|
|
666
|
-
}
|
|
667
|
-
big_df = pd.DataFrame()
|
|
668
|
-
while True:
|
|
669
|
-
r = requests.get(url, params=params, headers=headers)
|
|
670
|
-
data_json = r.json()
|
|
671
|
-
if not data_json["data"]["values"]:
|
|
672
|
-
break
|
|
673
|
-
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
674
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
675
|
-
last_date_str = temp_df.iat[-1, 0]
|
|
676
|
-
last_date_str = (
|
|
677
|
-
(
|
|
678
|
-
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
679
|
-
- datetime.timedelta(days=1)
|
|
680
|
-
)
|
|
681
|
-
.date()
|
|
682
|
-
.isoformat()
|
|
683
|
-
)
|
|
684
|
-
params.update({"max_date": f"{last_date_str}"})
|
|
685
|
-
big_df["商品"] = "印度利率决议报告"
|
|
686
|
-
big_df.columns = [
|
|
687
|
-
"日期",
|
|
688
|
-
"今值",
|
|
689
|
-
"预测值",
|
|
690
|
-
"前值",
|
|
691
|
-
"商品",
|
|
692
|
-
]
|
|
693
|
-
big_df = big_df[
|
|
694
|
-
[
|
|
695
|
-
"商品",
|
|
696
|
-
"日期",
|
|
697
|
-
"今值",
|
|
698
|
-
"预测值",
|
|
699
|
-
"前值",
|
|
700
|
-
]
|
|
701
|
-
]
|
|
702
|
-
big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date
|
|
703
|
-
big_df["今值"] = pd.to_numeric(big_df["今值"])
|
|
704
|
-
big_df["预测值"] = pd.to_numeric(big_df["预测值"])
|
|
705
|
-
big_df["前值"] = pd.to_numeric(big_df["前值"])
|
|
706
|
-
big_df.sort_values(["日期"], inplace=True)
|
|
707
|
-
big_df.reset_index(inplace=True, drop=True)
|
|
708
|
-
return big_df
|
|
216
|
+
return __get_interest_rate_data(attr_id="68", name="印度央行决议报告")
|
|
709
217
|
|
|
710
218
|
|
|
711
219
|
# 金十数据中心-经济指标-央行利率-主要央行利率-巴西央行决议报告
|
|
@@ -717,71 +225,7 @@ def macro_bank_brazil_interest_rate() -> pd.DataFrame:
|
|
|
717
225
|
:return: 巴西利率决议报告-今值(%)
|
|
718
226
|
:rtype: pandas.Series
|
|
719
227
|
"""
|
|
720
|
-
|
|
721
|
-
headers = {
|
|
722
|
-
"accept": "*/*",
|
|
723
|
-
"accept-encoding": "gzip, deflate, br",
|
|
724
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
725
|
-
"cache-control": "no-cache",
|
|
726
|
-
"origin": "https://datacenter.jin10.com",
|
|
727
|
-
"pragma": "no-cache",
|
|
728
|
-
"sec-fetch-dest": "empty",
|
|
729
|
-
"sec-fetch-mode": "cors",
|
|
730
|
-
"sec-fetch-site": "same-site",
|
|
731
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
732
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
733
|
-
"x-csrf-token": "",
|
|
734
|
-
"x-version": "1.0.0",
|
|
735
|
-
}
|
|
736
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
737
|
-
params = {
|
|
738
|
-
"max_date": "",
|
|
739
|
-
"category": "ec",
|
|
740
|
-
"attr_id": "55",
|
|
741
|
-
"_": str(int(round(t * 1000))),
|
|
742
|
-
}
|
|
743
|
-
big_df = pd.DataFrame()
|
|
744
|
-
while True:
|
|
745
|
-
r = requests.get(url, params=params, headers=headers)
|
|
746
|
-
data_json = r.json()
|
|
747
|
-
if not data_json["data"]["values"]:
|
|
748
|
-
break
|
|
749
|
-
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
750
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
751
|
-
last_date_str = temp_df.iat[-1, 0]
|
|
752
|
-
last_date_str = (
|
|
753
|
-
(
|
|
754
|
-
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
755
|
-
- datetime.timedelta(days=1)
|
|
756
|
-
)
|
|
757
|
-
.date()
|
|
758
|
-
.isoformat()
|
|
759
|
-
)
|
|
760
|
-
params.update({"max_date": f"{last_date_str}"})
|
|
761
|
-
big_df["商品"] = "巴西利率决议报告"
|
|
762
|
-
big_df.columns = [
|
|
763
|
-
"日期",
|
|
764
|
-
"今值",
|
|
765
|
-
"预测值",
|
|
766
|
-
"前值",
|
|
767
|
-
"商品",
|
|
768
|
-
]
|
|
769
|
-
big_df = big_df[
|
|
770
|
-
[
|
|
771
|
-
"商品",
|
|
772
|
-
"日期",
|
|
773
|
-
"今值",
|
|
774
|
-
"预测值",
|
|
775
|
-
"前值",
|
|
776
|
-
]
|
|
777
|
-
]
|
|
778
|
-
big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date
|
|
779
|
-
big_df["今值"] = pd.to_numeric(big_df["今值"])
|
|
780
|
-
big_df["预测值"] = pd.to_numeric(big_df["预测值"])
|
|
781
|
-
big_df["前值"] = pd.to_numeric(big_df["前值"])
|
|
782
|
-
big_df.sort_values(["日期"], inplace=True)
|
|
783
|
-
big_df.reset_index(inplace=True, drop=True)
|
|
784
|
-
return big_df
|
|
228
|
+
return __get_interest_rate_data(attr_id="55", name="巴西央行决议报告")
|
|
785
229
|
|
|
786
230
|
|
|
787
231
|
if __name__ == "__main__":
|
|
@@ -794,15 +238,15 @@ if __name__ == "__main__":
|
|
|
794
238
|
print(macro_bank_euro_interest_rate_df)
|
|
795
239
|
|
|
796
240
|
# 金十数据中心-经济指标-央行利率-主要央行利率-新西兰联储决议报告
|
|
797
|
-
macro_bank_newzealand_interest_rate_df = (
|
|
798
|
-
macro_bank_newzealand_interest_rate()
|
|
799
|
-
)
|
|
241
|
+
macro_bank_newzealand_interest_rate_df = macro_bank_newzealand_interest_rate()
|
|
800
242
|
print(macro_bank_newzealand_interest_rate_df)
|
|
801
243
|
|
|
244
|
+
# 金十数据中心-经济指标-央行利率-主要央行利率-中国央行决议报告
|
|
245
|
+
macro_bank_china_interest_rate_df = macro_bank_china_interest_rate()
|
|
246
|
+
print(macro_bank_china_interest_rate_df)
|
|
247
|
+
|
|
802
248
|
# 金十数据中心-经济指标-央行利率-主要央行利率-瑞士央行决议报告
|
|
803
|
-
macro_bank_switzerland_interest_rate_df = (
|
|
804
|
-
macro_bank_switzerland_interest_rate()
|
|
805
|
-
)
|
|
249
|
+
macro_bank_switzerland_interest_rate_df = macro_bank_switzerland_interest_rate()
|
|
806
250
|
print(macro_bank_switzerland_interest_rate_df)
|
|
807
251
|
|
|
808
252
|
# 金十数据中心-经济指标-央行利率-主要央行利率-英国央行决议报告
|
|
@@ -810,9 +254,7 @@ if __name__ == "__main__":
|
|
|
810
254
|
print(macro_bank_english_interest_rate_df)
|
|
811
255
|
|
|
812
256
|
# 金十数据中心-经济指标-央行利率-主要央行利率-澳洲联储决议报告
|
|
813
|
-
macro_bank_australia_interest_rate_df = (
|
|
814
|
-
macro_bank_australia_interest_rate()
|
|
815
|
-
)
|
|
257
|
+
macro_bank_australia_interest_rate_df = macro_bank_australia_interest_rate()
|
|
816
258
|
print(macro_bank_australia_interest_rate_df)
|
|
817
259
|
|
|
818
260
|
# 金十数据中心-经济指标-央行利率-主要央行利率-日本央行决议报告
|
|
@@ -382,7 +382,7 @@ def index_value_name_funddb() -> pd.DataFrame:
|
|
|
382
382
|
|
|
383
383
|
|
|
384
384
|
def index_value_hist_funddb(
|
|
385
|
-
symbol: str = "大盘成长", indicator: str = "市盈率"
|
|
385
|
+
symbol: str = "大盘成长", indicator: str = "市盈率", year: str = "-1"
|
|
386
386
|
) -> pd.DataFrame:
|
|
387
387
|
"""
|
|
388
388
|
funddb-指数估值-估值信息
|
|
@@ -391,6 +391,8 @@ def index_value_hist_funddb(
|
|
|
391
391
|
:type symbol: str
|
|
392
392
|
:param indicator: choice of {'市盈率', '市净率', '股息率', '风险溢价'}
|
|
393
393
|
:type indicator: str
|
|
394
|
+
:param year: choice of {'-1': "所有", '3': "近3年", '5': "近5年", '10': "近10年"}
|
|
395
|
+
:type year: str
|
|
394
396
|
:return: 估值信息
|
|
395
397
|
:rtype: pandas.DataFrame
|
|
396
398
|
"""
|
|
@@ -417,12 +419,12 @@ def index_value_hist_funddb(
|
|
|
417
419
|
type="pc",
|
|
418
420
|
ver="new",
|
|
419
421
|
version="2.2.7",
|
|
420
|
-
year
|
|
422
|
+
year=int(year),
|
|
421
423
|
)
|
|
422
424
|
payload = {
|
|
423
425
|
"gu_code": name_code_map[symbol],
|
|
424
426
|
"pe_category": indicator_map[indicator],
|
|
425
|
-
"year":
|
|
427
|
+
"year": int(year),
|
|
426
428
|
"ver": "new",
|
|
427
429
|
"type": "pc",
|
|
428
430
|
"version": "2.2.7",
|
|
@@ -474,6 +476,6 @@ if __name__ == "__main__":
|
|
|
474
476
|
print(index_value_name_funddb_df)
|
|
475
477
|
|
|
476
478
|
index_value_hist_funddb_df = index_value_hist_funddb(
|
|
477
|
-
symbol="大盘成长", indicator="市盈率"
|
|
479
|
+
symbol="大盘成长", indicator="市盈率", year="-1"
|
|
478
480
|
)
|
|
479
481
|
print(index_value_hist_funddb_df)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
akshare/__init__.py,sha256=
|
|
1
|
+
akshare/__init__.py,sha256=Gm0aCJ2qAlBrM7qTZrPTQy0lOSVU7PF6yufTMCMyixc,183422
|
|
2
2
|
akshare/datasets.py,sha256=-qdwaQjgBlftX84uM74KJqCYJYkQ50PV416_neA4uls,995
|
|
3
3
|
akshare/exceptions.py,sha256=WEJjIhSmJ_xXNW6grwV4nufE_cfmmyuhmueVGiN1VAg,878
|
|
4
4
|
akshare/request.py,sha256=HtFFf9MhfEibR-ETWe-1Tts6ELU4VKSqA-ghaXjegQM,4252
|
|
@@ -53,7 +53,7 @@ akshare/data/ths.js,sha256=AWPkHf3L2Il1UUL0F5qDqNn1dfU0OlZBNUbMf8AmI3Y,39664
|
|
|
53
53
|
akshare/economic/__init__.py,sha256=7dWJSrPs7KTj9_Ffs-ZS3aYDrf3v4nOnZYqwUZ3DJms,82
|
|
54
54
|
akshare/economic/cons.py,sha256=0JM61Eiro0xqXGnCaDSoLsw5iQWKAtqhRHcXmDfJgyw,16594
|
|
55
55
|
akshare/economic/macro_australia.py,sha256=JKNaedN19Rw15dn8bPur1yrsQA5j6hfX4tjgh7OCBHY,10801
|
|
56
|
-
akshare/economic/macro_bank.py,sha256=
|
|
56
|
+
akshare/economic/macro_bank.py,sha256=HFQTp2cnO8wPknmNjwIomX7X0Q_WM9Q0A4fCRGbMUR0,11498
|
|
57
57
|
akshare/economic/macro_canada.py,sha256=nNaZ3yZIvgTtRiQhwoEybMX6UpqszPKeixzYITv9ox0,15195
|
|
58
58
|
akshare/economic/macro_china.py,sha256=rQFlQqXKnORhG3ISSW_nlUgNNdTewZGIrUBA2xu0lV0,148646
|
|
59
59
|
akshare/economic/macro_china_hk.py,sha256=dIBc9gAYiHZUjXLF4c3yBK-2s3iLx46GcgJGlVJpv4c,5974
|
|
@@ -172,7 +172,7 @@ akshare/index/index_spot.py,sha256=HrXt2QC9i1pYEh7wyJPKjtexctzSIUyMjEzk5BQq_K8,1
|
|
|
172
172
|
akshare/index/index_stock_hk.py,sha256=nPFzRrjyiUpRK-OSDsdi5AFCKHNKqOVji6WJcQxOvNo,9781
|
|
173
173
|
akshare/index/index_stock_us_sina.py,sha256=IxOk4G49oasv7EfEQenL9-GLuelyUus6c4JPyRlaOzY,1551
|
|
174
174
|
akshare/index/index_stock_zh.py,sha256=WkXd3A8gc1hgPJPR4znRbLfrqMeTivLS7L449TlOBdE,14873
|
|
175
|
-
akshare/index/index_stock_zh_csindex.py,sha256=
|
|
175
|
+
akshare/index/index_stock_zh_csindex.py,sha256=jVF29Byn2guaZ4QsXwwL1C5qtqk_m1ja-dgDnKnfz8s,13267
|
|
176
176
|
akshare/index/index_sugar.py,sha256=B_Nj9Q6JP-Y_d7myZ0C79izTxxrbuZIp1Vv_CilVMOc,5006
|
|
177
177
|
akshare/index/index_sw.py,sha256=n757dUfNEsaZGk_eCxeetZi3pktBBYLVEMM7f9U_XjM,10174
|
|
178
178
|
akshare/index/index_yw.py,sha256=6FF38kooLQulnMTqAd1__TNWip4XC1VA72k3T049xYc,4319
|
|
@@ -383,8 +383,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
|
|
|
383
383
|
akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
|
|
384
384
|
tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
|
|
385
385
|
tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
|
|
386
|
-
akshare-1.15.
|
|
387
|
-
akshare-1.15.
|
|
388
|
-
akshare-1.15.
|
|
389
|
-
akshare-1.15.
|
|
390
|
-
akshare-1.15.
|
|
386
|
+
akshare-1.15.15.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
|
|
387
|
+
akshare-1.15.15.dist-info/METADATA,sha256=ZvVTOZi5YdIC01WIVcGZmLi8GDBVmR0mGo-nUQ5k6NE,14244
|
|
388
|
+
akshare-1.15.15.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
|
|
389
|
+
akshare-1.15.15.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
|
|
390
|
+
akshare-1.15.15.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|