akshare 1.14.91__py3-none-any.whl → 1.14.93__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of akshare might be problematic. Click here for more details.

akshare/__init__.py CHANGED
@@ -2902,9 +2902,11 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
2902
2902
  1.14.89 fix: fix bond_spot_deal interface
2903
2903
  1.14.90 fix: fix stock_board_change_em interface
2904
2904
  1.14.91 fix: fix stock_history_dividend interface
2905
+ 1.14.92 add: add qdii_a_index_jsl interface
2906
+ 1.14.93 fix: fix stock_zt_pool_em interface
2905
2907
  """
2906
2908
 
2907
- __version__ = "1.14.91"
2909
+ __version__ = "1.14.93"
2908
2910
  __author__ = "AKFamily"
2909
2911
 
2910
2912
  import sys
@@ -2926,6 +2928,11 @@ if sys.version_info < (3, 9):
2926
2928
 
2927
2929
  del sys
2928
2930
 
2931
+ """
2932
+ QDII
2933
+ """
2934
+ from akshare.qdii.qdii_jsl import qdii_a_index_jsl, qdii_e_index_jsl, qdii_e_comm_jsl
2935
+
2929
2936
  """
2930
2937
  财新网-财新数据通
2931
2938
  """
@@ -167,7 +167,7 @@ def option_czce_daily(
167
167
  :param trade_date: 交易日
168
168
  :type trade_date: str
169
169
  :param symbol: choice of {"白糖期权", "棉花期权", "甲醇期权", "PTA期权", "菜籽粕期权", "动力煤期权", "短纤期权",
170
- "菜籽油期权", "花生期权", "棉花期权", "短纤期权", "纯碱期权", "锰硅期权", "硅铁期权", "尿素期权", "对二甲苯期权",
170
+ "菜籽油期权", "花生期权", "纯碱期权", "锰硅期权", "硅铁期权", "尿素期权", "对二甲苯期权", "苹果期权", "红枣期权"
171
171
  "烧碱期权", "玻璃期权"}
172
172
  :type symbol: str
173
173
  :return: 日频行情数据
@@ -188,14 +188,18 @@ def option_czce_daily(
188
188
  temp_df = table_df[table_df.iloc[:, 0].str.contains("SR")]
189
189
  temp_df.reset_index(inplace=True, drop=True)
190
190
  return temp_df.iloc[:-1, :]
191
- elif symbol == "PTA期权":
192
- temp_df = table_df[table_df.iloc[:, 0].str.contains("TA")]
191
+ elif symbol == "棉花期权":
192
+ temp_df = table_df[table_df.iloc[:, 0].str.contains("CF")]
193
193
  temp_df.reset_index(inplace=True, drop=True)
194
194
  return temp_df.iloc[:-1, :]
195
195
  elif symbol == "甲醇期权":
196
196
  temp_df = table_df[table_df.iloc[:, 0].str.contains("MA")]
197
197
  temp_df.reset_index(inplace=True, drop=True)
198
198
  return temp_df.iloc[:-1, :]
199
+ elif symbol == "PTA期权":
200
+ temp_df = table_df[table_df.iloc[:, 0].str.contains("TA")]
201
+ temp_df.reset_index(inplace=True, drop=True)
202
+ return temp_df.iloc[:-1, :]
199
203
  elif symbol == "菜籽粕期权":
200
204
  temp_df = table_df[table_df.iloc[:, 0].str.contains("RM")]
201
205
  temp_df.reset_index(inplace=True, drop=True)
@@ -204,6 +208,10 @@ def option_czce_daily(
204
208
  temp_df = table_df[table_df.iloc[:, 0].str.contains("ZC")]
205
209
  temp_df.reset_index(inplace=True, drop=True)
206
210
  return temp_df.iloc[:-1, :]
211
+ elif symbol == "短纤期权":
212
+ temp_df = table_df[table_df.iloc[:, 0].str.contains("PF")]
213
+ temp_df.reset_index(inplace=True, drop=True)
214
+ return temp_df.iloc[:-1, :]
207
215
  elif symbol == "菜籽油期权":
208
216
  temp_df = table_df[table_df.iloc[:, 0].str.contains("OI")]
209
217
  temp_df.reset_index(inplace=True, drop=True)
@@ -212,14 +220,6 @@ def option_czce_daily(
212
220
  temp_df = table_df[table_df.iloc[:, 0].str.contains("PK")]
213
221
  temp_df.reset_index(inplace=True, drop=True)
214
222
  return temp_df.iloc[:-1, :]
215
- elif symbol == "棉花期权":
216
- temp_df = table_df[table_df.iloc[:, 0].str.contains("CF")]
217
- temp_df.reset_index(inplace=True, drop=True)
218
- return temp_df.iloc[:-1, :]
219
- elif symbol == "短纤期权":
220
- temp_df = table_df[table_df.iloc[:, 0].str.contains("PF")]
221
- temp_df.reset_index(inplace=True, drop=True)
222
- return temp_df.iloc[:-1, :]
223
223
  elif symbol == "纯碱期权":
224
224
  temp_df = table_df[table_df.iloc[:, 0].str.contains("SA")]
225
225
  temp_df.reset_index(inplace=True, drop=True)
@@ -236,6 +236,14 @@ def option_czce_daily(
236
236
  temp_df = table_df[table_df.iloc[:, 0].str.contains("UR")]
237
237
  temp_df.reset_index(inplace=True, drop=True)
238
238
  return temp_df.iloc[:-1, :]
239
+ elif symbol == "苹果期权":
240
+ temp_df = table_df[table_df.iloc[:, 0].str.contains("AP")]
241
+ temp_df.reset_index(inplace=True, drop=True)
242
+ return temp_df.iloc[:-1, :]
243
+ elif symbol == "红枣期权":
244
+ temp_df = table_df[table_df.iloc[:, 0].str.contains("CJ")]
245
+ temp_df.reset_index(inplace=True, drop=True)
246
+ return temp_df.iloc[:-1, :]
239
247
  elif symbol == "对二甲苯期权":
240
248
  temp_df = table_df[table_df.iloc[:, 0].str.contains("PX")]
241
249
  temp_df.reset_index(inplace=True, drop=True)
@@ -248,14 +256,6 @@ def option_czce_daily(
248
256
  temp_df = table_df[table_df.iloc[:, 0].str.contains("FG")]
249
257
  temp_df.reset_index(inplace=True, drop=True)
250
258
  return temp_df.iloc[:-1, :]
251
- elif symbol == "短纤期权":
252
- temp_df = table_df[table_df.iloc[:, 0].str.contains("PF")]
253
- temp_df.reset_index(inplace=True, drop=True)
254
- return temp_df.iloc[:-1, :]
255
- else:
256
- temp_df = table_df[table_df.iloc[:, 0].str.contains("AP")]
257
- temp_df.reset_index(inplace=True, drop=True)
258
- return temp_df.iloc[:-1, :]
259
259
  except: # noqa: E722
260
260
  return pd.DataFrame()
261
261
 
@@ -557,5 +557,5 @@ if __name__ == "__main__":
557
557
  )
558
558
  print(option_gfex_vol_daily_df)
559
559
 
560
- option_czce_daily_df = option_czce_daily(symbol="短纤期权", trade_date="20231116")
560
+ option_czce_daily_df = option_czce_daily(symbol="苹果期权", trade_date="20240930")
561
561
  print(option_czce_daily_df)
File without changes
@@ -0,0 +1,235 @@
1
+ #!/usr/bin/env python
2
+ # -*- coding:utf-8 -*-
3
+ """
4
+ Date: 2024/10/6 17:00
5
+ Desc: 集思录-T+0 QDII
6
+ 集思录:https://www.jisilu.cn/data/qdii/#qdiie
7
+ """
8
+
9
+ import pandas as pd
10
+ import requests
11
+
12
+
13
+ def qdii_e_index_jsl() -> pd.DataFrame:
14
+ """
15
+ 集思录-T+0 QDII-欧美市场-欧美指数
16
+ https://www.jisilu.cn/data/qdii/#qdiia
17
+ :return: T+0 QDII-亚洲市场
18
+ :rtype: pandas.DataFrame
19
+ """
20
+ url = "https://www.jisilu.cn/data/qdii/qdii_list/E"
21
+ params = {
22
+ "___jsl": "LST___t=1728207798534",
23
+ "rp": "22",
24
+ }
25
+ r = requests.get(url, params=params)
26
+ data_json = r.json()
27
+ temp_df = pd.DataFrame([item["cell"] for item in data_json["rows"]])
28
+ temp_df.rename(
29
+ columns={
30
+ "fund_id": "代码",
31
+ "fund_nm": "名称",
32
+ "price": "现价",
33
+ "increase_rt": "涨幅",
34
+ "volume": "成交",
35
+ "amount": "场内份额",
36
+ "amount_incr": "场内新增",
37
+ "fund_nav": "T-2净值",
38
+ "nav_dt": "净值日期",
39
+ "estimate_value": "T-1估值",
40
+ "last_est_dt": "估值日期",
41
+ "discount_rt": "T-1溢价率",
42
+ "index_nm": "相关标的",
43
+ "ref_increase_rt": "T-1指数涨幅",
44
+ "apply_fee": "申购费",
45
+ "redeem_fee": "赎回费",
46
+ "mt_fee": "托管费",
47
+ "issuer_nm": "基金公司",
48
+ },
49
+ inplace=True,
50
+ )
51
+ temp_df = temp_df[
52
+ [
53
+ "代码",
54
+ "名称",
55
+ "现价",
56
+ "涨幅",
57
+ "成交",
58
+ "场内份额",
59
+ "场内新增",
60
+ "T-2净值",
61
+ "净值日期",
62
+ "T-1估值",
63
+ "估值日期",
64
+ "T-1溢价率",
65
+ "相关标的",
66
+ "T-1指数涨幅",
67
+ "申购费",
68
+ "赎回费",
69
+ "托管费",
70
+ "基金公司",
71
+ ]
72
+ ]
73
+ temp_df["净值日期"] = pd.to_datetime(temp_df["净值日期"], errors="coerce").dt.date
74
+ temp_df["估值日期"] = pd.to_datetime(temp_df["估值日期"], errors="coerce").dt.date
75
+ temp_df["现价"] = pd.to_numeric(temp_df["现价"], errors="coerce")
76
+ temp_df["成交"] = pd.to_numeric(temp_df["成交"], errors="coerce")
77
+ temp_df["场内份额"] = pd.to_numeric(temp_df["场内份额"], errors="coerce")
78
+ temp_df["场内新增"] = pd.to_numeric(temp_df["场内新增"], errors="coerce")
79
+ temp_df["T-2净值"] = pd.to_numeric(temp_df["T-2净值"], errors="coerce")
80
+ temp_df["T-1估值"] = pd.to_numeric(temp_df["T-1估值"], errors="coerce")
81
+ temp_df["托管费"] = pd.to_numeric(temp_df["托管费"], errors="coerce")
82
+ return temp_df
83
+
84
+
85
+ def qdii_e_comm_jsl() -> pd.DataFrame:
86
+ """
87
+ 集思录-T+0 QDII-欧美市场-商品
88
+ https://www.jisilu.cn/data/qdii/#qdiia
89
+ :return: T+0 QDII-欧美市场-商品
90
+ :rtype: pandas.DataFrame
91
+ """
92
+ url = "https://www.jisilu.cn/data/qdii/qdii_list/C"
93
+ params = {
94
+ "___jsl": "LST___t=1728207798534",
95
+ "rp": "22",
96
+ }
97
+ r = requests.get(url, params=params)
98
+ data_json = r.json()
99
+ temp_df = pd.DataFrame([item["cell"] for item in data_json["rows"]])
100
+ temp_df.rename(
101
+ columns={
102
+ "fund_id": "代码",
103
+ "fund_nm": "名称",
104
+ "price": "现价",
105
+ "increase_rt": "涨幅",
106
+ "volume": "成交",
107
+ "amount": "场内份额",
108
+ "amount_incr": "场内新增",
109
+ "fund_nav": "T-2净值",
110
+ "nav_dt": "净值日期",
111
+ "estimate_value": "T-1估值",
112
+ "last_est_dt": "估值日期",
113
+ "discount_rt": "T-1溢价率",
114
+ "index_nm": "相关标的",
115
+ "ref_increase_rt": "T-1指数涨幅",
116
+ "apply_fee": "申购费",
117
+ "redeem_fee": "赎回费",
118
+ "mt_fee": "托管费",
119
+ "issuer_nm": "基金公司",
120
+ },
121
+ inplace=True,
122
+ )
123
+ temp_df = temp_df[
124
+ [
125
+ "代码",
126
+ "名称",
127
+ "现价",
128
+ "涨幅",
129
+ "成交",
130
+ "场内份额",
131
+ "场内新增",
132
+ "T-2净值",
133
+ "净值日期",
134
+ "T-1估值",
135
+ "估值日期",
136
+ "T-1溢价率",
137
+ "相关标的",
138
+ "T-1指数涨幅",
139
+ "申购费",
140
+ "赎回费",
141
+ "托管费",
142
+ "基金公司",
143
+ ]
144
+ ]
145
+ temp_df["净值日期"] = pd.to_datetime(temp_df["净值日期"], errors="coerce").dt.date
146
+ temp_df["估值日期"] = pd.to_datetime(temp_df["估值日期"], errors="coerce").dt.date
147
+ temp_df["现价"] = pd.to_numeric(temp_df["现价"], errors="coerce")
148
+ temp_df["成交"] = pd.to_numeric(temp_df["成交"], errors="coerce")
149
+ temp_df["场内份额"] = pd.to_numeric(temp_df["场内份额"], errors="coerce")
150
+ temp_df["场内新增"] = pd.to_numeric(temp_df["场内新增"], errors="coerce")
151
+ temp_df["T-2净值"] = pd.to_numeric(temp_df["T-2净值"], errors="coerce")
152
+ temp_df["T-1估值"] = pd.to_numeric(temp_df["T-1估值"], errors="coerce")
153
+ temp_df["托管费"] = pd.to_numeric(temp_df["托管费"], errors="coerce")
154
+ return temp_df
155
+
156
+
157
+ def qdii_a_index_jsl() -> pd.DataFrame:
158
+ """
159
+ 集思录-T+0 QDII-亚洲市场-亚洲指数
160
+ https://www.jisilu.cn/data/qdii/#qdiia
161
+ :return: T+0 QDII-亚洲市场-亚洲指数
162
+ :rtype: pandas.DataFrame
163
+ """
164
+ url = "https://www.jisilu.cn/data/qdii/qdii_list/A"
165
+ params = {
166
+ "___jsl": "LST___t=1728206439242",
167
+ "rp": "22",
168
+ }
169
+ r = requests.get(url, params=params)
170
+ data_json = r.json()
171
+ temp_df = pd.DataFrame([item["cell"] for item in data_json["rows"]])
172
+ temp_df.rename(
173
+ columns={
174
+ "fund_id": "代码",
175
+ "fund_nm": "名称",
176
+ "price": "现价",
177
+ "increase_rt": "涨幅",
178
+ "volume": "成交",
179
+ "amount": "场内份额",
180
+ "amount_incr": "场内新增",
181
+ "fund_nav": "净值",
182
+ "nav_dt": "净值日期",
183
+ "estimate_value": "估值",
184
+ "discount_rt": "溢价率",
185
+ "index_nm": "相关标的",
186
+ "ref_increase_rt": "指数涨幅",
187
+ "apply_fee": "申购费",
188
+ "redeem_fee": "赎回费",
189
+ "mt_fee": "托管费",
190
+ "issuer_nm": "基金公司",
191
+ },
192
+ inplace=True,
193
+ )
194
+
195
+ temp_df = temp_df[
196
+ [
197
+ "代码",
198
+ "名称",
199
+ "现价",
200
+ "涨幅",
201
+ "成交",
202
+ "场内份额",
203
+ "场内新增",
204
+ "净值",
205
+ "净值日期",
206
+ "估值",
207
+ "溢价率",
208
+ "相关标的",
209
+ "指数涨幅",
210
+ "申购费",
211
+ "赎回费",
212
+ "托管费",
213
+ "基金公司",
214
+ ]
215
+ ]
216
+ temp_df["净值日期"] = pd.to_datetime(temp_df["净值日期"], errors="coerce").dt.date
217
+ temp_df["现价"] = pd.to_numeric(temp_df["现价"], errors="coerce")
218
+ temp_df["成交"] = pd.to_numeric(temp_df["成交"], errors="coerce")
219
+ temp_df["场内份额"] = pd.to_numeric(temp_df["场内份额"], errors="coerce")
220
+ temp_df["场内新增"] = pd.to_numeric(temp_df["场内新增"], errors="coerce")
221
+ temp_df["净值"] = pd.to_numeric(temp_df["净值"], errors="coerce")
222
+ temp_df["估值"] = pd.to_numeric(temp_df["估值"], errors="coerce")
223
+ temp_df["托管费"] = pd.to_numeric(temp_df["托管费"], errors="coerce")
224
+ return temp_df
225
+
226
+
227
+ if __name__ == "__main__":
228
+ qdii_e_index_jsl_df = qdii_e_index_jsl()
229
+ print(qdii_e_index_jsl_df)
230
+
231
+ qdii_e_comm_jsl_df = qdii_e_comm_jsl()
232
+ print(qdii_e_comm_jsl_df)
233
+
234
+ qdii_a_index_jsl_df = qdii_a_index_jsl()
235
+ print(qdii_a_index_jsl_df)
akshare/stock/stock_xq.py CHANGED
@@ -48,7 +48,7 @@ def stock_individual_spot_xq(
48
48
  """
49
49
  session = requests.Session()
50
50
  headers = {
51
- "cookie": "xq_a_token=927886df384cbb16c88673ae7f519c76650c54b9;",
51
+ "cookie": "xq_a_token=dbc1dc6d13bd101dd06f18c5b7f2fb2eb276fb5a;",
52
52
  "User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 16_6 like Mac OS X) AppleWebKit/605.1.15 "
53
53
  "(KHTML, like Gecko) Version/16.6 Mobile/15E148 Safari/604.1",
54
54
  }
@@ -127,7 +127,7 @@ def stock_individual_spot_xq(
127
127
 
128
128
 
129
129
  if __name__ == "__main__":
130
- stock_individual_spot_xq_df = stock_individual_spot_xq(symbol="SH600000")
130
+ stock_individual_spot_xq_df = stock_individual_spot_xq(symbol="BJ430139")
131
131
  print(stock_individual_spot_xq_df)
132
132
 
133
133
  stock_individual_spot_xq_df = stock_individual_spot_xq(symbol="SH000001")
@@ -21,7 +21,7 @@ import pandas as pd
21
21
  import requests
22
22
 
23
23
 
24
- def stock_zt_pool_em(date: str = "20231129") -> pd.DataFrame:
24
+ def stock_zt_pool_em(date: str = "20241008") -> pd.DataFrame:
25
25
  """
26
26
  东方财富网-行情中心-涨停板行情-涨停股池
27
27
  https://quote.eastmoney.com/ztb/detail#type=ztgc
@@ -516,7 +516,7 @@ def stock_zt_pool_dtgc_em(date: str = "20231129") -> pd.DataFrame:
516
516
 
517
517
 
518
518
  if __name__ == "__main__":
519
- stock_zt_pool_em_df = stock_zt_pool_em(date="20240801")
519
+ stock_zt_pool_em_df = stock_zt_pool_em(date="20241008")
520
520
  print(stock_zt_pool_em_df)
521
521
 
522
522
  stock_zt_pool_previous_em_df = stock_zt_pool_previous_em(date="20240415")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: akshare
3
- Version: 1.14.91
3
+ Version: 1.14.93
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -12,6 +12,7 @@ Classifier: Programming Language :: Python :: 3.9
12
12
  Classifier: Programming Language :: Python :: 3.10
13
13
  Classifier: Programming Language :: Python :: 3.11
14
14
  Classifier: Programming Language :: Python :: 3.12
15
+ Classifier: Programming Language :: Python :: 3.13
15
16
  Classifier: License :: OSI Approved :: MIT License
16
17
  Classifier: Operating System :: OS Independent
17
18
  Requires-Python: >=3.8
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=xgEhcHMEfUNSJnHQ6FeoAddhGwbf57Rup1Q6bz0BnzU,182381
1
+ akshare/__init__.py,sha256=GMhI2GfAnQ9BWXY4D6LsM8HSEZuOW3ZBgFTj62NV5Qw,182569
2
2
  akshare/datasets.py,sha256=-qdwaQjgBlftX84uM74KJqCYJYkQ50PV416_neA4uls,995
3
3
  akshare/air/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
4
4
  akshare/air/air_hebei.py,sha256=xIXNGLK7IGYqrkteM9fxnHAwWqk6PCQs6D9-ggZ7byY,4442
@@ -194,7 +194,7 @@ akshare/nlp/nlp_interface.py,sha256=PyZjT3PkuTbloop-JwLwZ2kNi22zdO-r_pRUWQ5SmgM,
194
194
  akshare/option/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
195
195
  akshare/option/cons.py,sha256=zTRZ62RFwOcAKfmso-7nZJtT3a8Dt1nQbNnEjSqgjpI,4811
196
196
  akshare/option/option_comm_qihuo.py,sha256=kjbdp-94KJJJi1ex5U03abtlgviqwP0Aahb6FwddPkk,3128
197
- akshare/option/option_commodity.py,sha256=D5n-tdNohA7OtgzwG09UI7LtWUkHSHHOOZujCi8BwOg,22038
197
+ akshare/option/option_commodity.py,sha256=KBSPUTddWs7Y2FZFsiM8GZnm-JSkGNuqITbZ_Ps5Mfw,22062
198
198
  akshare/option/option_commodity_sina.py,sha256=r6qK_K7w3A6Uqp5ZtBb4pW7vH04oMyeCEZLLGqi0jpA,7776
199
199
  akshare/option/option_czce.py,sha256=L4i7TVKcOns5ZKoqq-mrSykdx3SGwu6OL4eI77-A_lc,1812
200
200
  akshare/option/option_daily_stats_sse_szse.py,sha256=Ip_vE81qbEGt4ocbtWfUT7XGu0HWU0zKkzauZeq9RJA,4962
@@ -213,6 +213,8 @@ akshare/pro/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
213
213
  akshare/pro/client.py,sha256=p9r3fZYGgfMplQwGLo8oPAen8w65xennP5D1Ca89im4,2248
214
214
  akshare/pro/cons.py,sha256=xckSrLyYcd2pY822GH8BEE9DFo-eu7wIF2XFeIu-uwk,244
215
215
  akshare/pro/data_pro.py,sha256=xeuQ_fcJ8qOeleITkr-Yo0OjyCuWHE0ydq3q8AE5PAY,830
216
+ akshare/qdii/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
217
+ akshare/qdii/qdii_jsl.py,sha256=2zkHCQKTVg31lke9b8aRvFHTBJ3v97ds6V4JmAsnX98,7888
216
218
  akshare/qhkc/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
217
219
  akshare/qhkc/qhkc_api.py,sha256=1dGkMzxdS1p1z5aeXTeIvA2VbQzZAOP1bCZPTySkGDo,8235
218
220
  akshare/qhkc_web/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
@@ -276,7 +278,7 @@ akshare/stock/stock_us_js.py,sha256=wwZpRvVHqjxwd0cb2O5vtRW8Zw90Kdl5O4XNwoevN64,
276
278
  akshare/stock/stock_us_pink.py,sha256=jgkEjPm_qa4zSN1MH0unHJopSkcF-8Rqlp5Kus2KaQ8,3062
277
279
  akshare/stock/stock_us_sina.py,sha256=3bD41Y5GqDTv52bx5jbjrt0psaHZS10UL_e7E2B6wW8,8146
278
280
  akshare/stock/stock_weibo_nlp.py,sha256=eM7ofsNSrKiYeS0g38Qj9CxT6dkJZrn_pmziIiTqp4U,3286
279
- akshare/stock/stock_xq.py,sha256=yFDfuAlO9lzXZPsBUy-1yajBi4vg0qLHPBS-wNoMHEg,4686
281
+ akshare/stock/stock_xq.py,sha256=mQJ2EQhJEESEwauTvymp7YEEoTBm0S77DXs3kvzzjQo,4686
280
282
  akshare/stock/stock_zh_a_sina.py,sha256=gryRmUwqF9PyNl-fPhD72y5nfNmLVEnvzjZDhAe-cpg,18862
281
283
  akshare/stock/stock_zh_a_special.py,sha256=RRXkeZtRWm_maIPWgxvhBdX6eNybECjhSuEesZHRFJI,10294
282
284
  akshare/stock/stock_zh_a_tick_tx.py,sha256=TJUAWLKAeoLEaVVJQlj0t-1smZGoAO0X0rPsUPVhZZ4,2131
@@ -350,7 +352,7 @@ akshare/stock_feature/stock_zdhtmx_em.py,sha256=2BpJQntGgUlEIOmDlepOiOkw-e-tKLRa
350
352
  akshare/stock_feature/stock_zf_pg.py,sha256=nYJ1uLOBdzM_PDyq4MNeWoCTripFMAPoAiaPfhDqkcg,6343
351
353
  akshare/stock_feature/stock_zh_valuation_baidu.py,sha256=oxYIHP68pFvAYyqjCvZp3a9tpczTFiWhSxZ0w4eyo7I,1904
352
354
  akshare/stock_feature/stock_zh_vote_baidu.py,sha256=SsSNnCq7PDFMzWFcPFcC_MSc9rua412P14vHc923gmo,1761
353
- akshare/stock_feature/stock_ztb_em.py,sha256=VaA1Hj0ExzTR7wi5mj_Ruhgvl5bZNyKINiKR2p9n73Y,17019
355
+ akshare/stock_feature/stock_ztb_em.py,sha256=W91RvU6MGVhUS1NK73Dg5QXZ3A4be1MBl43rxEQ8R_g,17019
354
356
  akshare/stock_feature/ths.js,sha256=AWPkHf3L2Il1UUL0F5qDqNn1dfU0OlZBNUbMf8AmI3Y,39664
355
357
  akshare/stock_fundamental/__init__.py,sha256=jiXoO9OXiMxB0wHaPQkuxNckYuoFKtzuhZL1ytnE2nQ,82
356
358
  akshare/stock_fundamental/stock_finance.py,sha256=WuYvLo8xZxH-VS-6P-S31yzsKA1ojrwegcLXP2byle4,30676
@@ -380,8 +382,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
380
382
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
381
383
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
382
384
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
383
- akshare-1.14.91.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
- akshare-1.14.91.dist-info/METADATA,sha256=G5tZI-KJVIRpPq3PB4WAP-ts3hpjbOaineIazx6011s,14112
385
- akshare-1.14.91.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
386
- akshare-1.14.91.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
- akshare-1.14.91.dist-info/RECORD,,
385
+ akshare-1.14.93.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
386
+ akshare-1.14.93.dist-info/METADATA,sha256=C444yVmcca2TsDB3lPQJzo2RAJdCHzA8G7o--IQBnGA,14163
387
+ akshare-1.14.93.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
388
+ akshare-1.14.93.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
389
+ akshare-1.14.93.dist-info/RECORD,,