akshare 1.14.84__py3-none-any.whl → 1.14.85__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of akshare might be problematic. Click here for more details.

akshare/__init__.py CHANGED
@@ -2895,9 +2895,10 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
2895
2895
  1.14.82 fix: fix stock_comment_detail_scrd_desire_daily_em interface
2896
2896
  1.14.83 fix: fix stock_comment_detail_zhpj_lspf_em interface
2897
2897
  1.14.84 fix: fix drewry_wci_index interface
2898
+ 1.14.85 fix: fix stock_profit_forecast_em interface
2898
2899
  """
2899
2900
 
2900
- __version__ = "1.14.84"
2901
+ __version__ = "1.14.85"
2901
2902
  __author__ = "AKFamily"
2902
2903
 
2903
2904
  import sys
@@ -5,6 +5,7 @@ Date: 2024/1/6 15:00
5
5
  Desc: 东方财富网-数据中心-研究报告-盈利预测
6
6
  https://data.eastmoney.com/report/profitforecast.jshtml
7
7
  """
8
+
8
9
  import pandas as pd
9
10
  import requests
10
11
 
@@ -15,7 +16,8 @@ def stock_profit_forecast_em(symbol: str = "") -> pd.DataFrame:
15
16
  """
16
17
  东方财富网-数据中心-研究报告-盈利预测
17
18
  https://data.eastmoney.com/report/profitforecast.jshtml
18
- :param symbol: "", 默认为获取全部数据; symbol="船舶制造", 则获取具体行业板块的数据; 行业板块可以通过 ak.stock_board_industry_name_em() 接口获取
19
+ :param symbol: "", 默认为获取全部数据; symbol="船舶制造", 则获取具体行业板块的数据;
20
+ 行业板块可以通过 ak.stock_board_industry_name_em() 接口获取
19
21
  :type symbol: str
20
22
  :return: 盈利预测
21
23
  :rtype: pandas.DataFrame
@@ -34,7 +36,6 @@ def stock_profit_forecast_em(symbol: str = "") -> pd.DataFrame:
34
36
  }
35
37
  if symbol:
36
38
  params.update({"filter": f'(INDUSTRY_BOARD="{symbol}")'})
37
-
38
39
  r = requests.get(url, params=params)
39
40
  data_json = r.json()
40
41
  page_num = int(data_json["result"]["pages"])
@@ -52,7 +53,7 @@ def stock_profit_forecast_em(symbol: str = "") -> pd.DataFrame:
52
53
  r = requests.get(url, params=params)
53
54
  data_json = r.json()
54
55
  temp_df = pd.DataFrame(data_json["result"]["data"])
55
- big_df = pd.concat([big_df, temp_df], ignore_index=True)
56
+ big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
56
57
 
57
58
  big_df.reset_index(inplace=True)
58
59
  big_df["index"] = big_df.index + 1
@@ -94,7 +95,6 @@ def stock_profit_forecast_em(symbol: str = "") -> pd.DataFrame:
94
95
  "_",
95
96
  "_",
96
97
  ]
97
-
98
98
  big_df = big_df[
99
99
  [
100
100
  "序号",
@@ -112,11 +112,12 @@ def stock_profit_forecast_em(symbol: str = "") -> pd.DataFrame:
112
112
  f"{year4}预测每股收益",
113
113
  ]
114
114
  ]
115
- big_df["机构投资评级(近六个月)-买入"].fillna(0, inplace=True)
116
- big_df["机构投资评级(近六个月)-增持"].fillna(0, inplace=True)
117
- big_df["机构投资评级(近六个月)-中性"].fillna(0, inplace=True)
118
- big_df["机构投资评级(近六个月)-减持"].fillna(0, inplace=True)
119
- big_df["机构投资评级(近六个月)-卖出"].fillna(0, inplace=True)
115
+ big_df["机构投资评级(近六个月)-买入"] = big_df[
116
+ "机构投资评级(近六个月)-买入"
117
+ ].fillna(0)
118
+ big_df["机构投资评级(近六个月)-增持"] = big_df[
119
+ "机构投资评级(近六个月)-增持"
120
+ ].fillna(0)
120
121
  big_df["研报数"] = pd.to_numeric(big_df["研报数"], errors="coerce")
121
122
  big_df["机构投资评级(近六个月)-买入"] = pd.to_numeric(
122
123
  big_df["机构投资评级(近六个月)-买入"], errors="coerce"
@@ -133,10 +134,27 @@ def stock_profit_forecast_em(symbol: str = "") -> pd.DataFrame:
133
134
  big_df["机构投资评级(近六个月)-卖出"] = pd.to_numeric(
134
135
  big_df["机构投资评级(近六个月)-卖出"], errors="coerce"
135
136
  )
136
- big_df[f"{year1}预测每股收益"] = pd.to_numeric(big_df[f"{year1}预测每股收益"], errors="coerce")
137
- big_df[f"{year2}预测每股收益"] = pd.to_numeric(big_df[f"{year2}预测每股收益"], errors="coerce")
138
- big_df[f"{year3}预测每股收益"] = pd.to_numeric(big_df[f"{year3}预测每股收益"], errors="coerce")
139
- big_df[f"{year4}预测每股收益"] = pd.to_numeric(big_df[f"{year4}预测每股收益"], errors="coerce")
137
+ big_df["机构投资评级(近六个月)-中性"] = big_df[
138
+ "机构投资评级(近六个月)-中性"
139
+ ].fillna(0)
140
+ big_df["机构投资评级(近六个月)-减持"] = big_df[
141
+ "机构投资评级(近六个月)-减持"
142
+ ].fillna(0)
143
+ big_df["机构投资评级(近六个月)-卖出"] = big_df[
144
+ "机构投资评级(近六个月)-卖出"
145
+ ].fillna(0)
146
+ big_df[f"{year1}预测每股收益"] = pd.to_numeric(
147
+ big_df[f"{year1}预测每股收益"], errors="coerce"
148
+ )
149
+ big_df[f"{year2}预测每股收益"] = pd.to_numeric(
150
+ big_df[f"{year2}预测每股收益"], errors="coerce"
151
+ )
152
+ big_df[f"{year3}预测每股收益"] = pd.to_numeric(
153
+ big_df[f"{year3}预测每股收益"], errors="coerce"
154
+ )
155
+ big_df[f"{year4}预测每股收益"] = pd.to_numeric(
156
+ big_df[f"{year4}预测每股收益"], errors="coerce"
157
+ )
140
158
  big_df.sort_values(["研报数"], ascending=False, inplace=True, ignore_index=True)
141
159
  big_df["序号"] = range(1, len(big_df) + 1)
142
160
  return big_df
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: akshare
3
- Version: 1.14.84
3
+ Version: 1.14.85
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=siaAbZ64GnNdzkScy_hOfwhcG3zhBZGLWEgWtD90PLA,182024
1
+ akshare/__init__.py,sha256=MulOdZRLZ3dHgnJXrmaYb6FvL4myheIwi3tKfK6n8M8,182076
2
2
  akshare/datasets.py,sha256=-qdwaQjgBlftX84uM74KJqCYJYkQ50PV416_neA4uls,995
3
3
  akshare/air/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
4
4
  akshare/air/air_hebei.py,sha256=xIXNGLK7IGYqrkteM9fxnHAwWqk6PCQs6D9-ggZ7byY,4442
@@ -362,7 +362,7 @@ akshare/stock_fundamental/stock_kcb_detail_sse.py,sha256=MBanq3sDvb0OTbUl_gg7avD
362
362
  akshare/stock_fundamental/stock_kcb_sse.py,sha256=4_Bu8Qe6lGvlscH-giIPIJaYXpd4bYKZ1rM-hZiLBaE,1534
363
363
  akshare/stock_fundamental/stock_mda_ym.py,sha256=P5aaNk3ecS6j-12N2niReiOKD3KM9FhaNgTE07j-1Tw,1106
364
364
  akshare/stock_fundamental/stock_notice.py,sha256=tGxGz1Usr3qQzgs1Y71imDPkqJz5ooismz3BiaBwQR0,3928
365
- akshare/stock_fundamental/stock_profit_forecast_em.py,sha256=QP7jgMwto9o1zc1vDl9BBeta_lgxA13NMbijs9eqjRs,5377
365
+ akshare/stock_fundamental/stock_profit_forecast_em.py,sha256=_ZlWkyz-FswlICbjk_YiHjRwrlLftm_piQIPFkZMrjE,5701
366
366
  akshare/stock_fundamental/stock_profit_forecast_hk_etnet.py,sha256=dQaqxi0wXOidIuAxjUzZy_gdy16HEi20I3jEdpNM3qc,5179
367
367
  akshare/stock_fundamental/stock_profit_forecast_ths.py,sha256=ZTShEB5w1y5j6TsHzWT8QR8oatbBTdE1H0IIxPLHn9s,2656
368
368
  akshare/stock_fundamental/stock_recommend.py,sha256=44l1uLofwO-nsDB4oAYWpHQA7_qhXLOo1BurjUvmXzY,4501
@@ -380,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
380
380
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
381
381
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
382
382
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
383
- akshare-1.14.84.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
- akshare-1.14.84.dist-info/METADATA,sha256=dQ1bPRyg9ju6jfQG2hSJhIVA-I7jQLjs20dPBY1Jm0s,14112
385
- akshare-1.14.84.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
386
- akshare-1.14.84.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
- akshare-1.14.84.dist-info/RECORD,,
383
+ akshare-1.14.85.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
+ akshare-1.14.85.dist-info/METADATA,sha256=9W8xqSsdWGmVvbrRH_mmHDSce99iJV1-tyKy_kfVEcQ,14112
385
+ akshare-1.14.85.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
386
+ akshare-1.14.85.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
+ akshare-1.14.85.dist-info/RECORD,,