akshare 1.14.72__py3-none-any.whl → 1.14.73__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of akshare might be problematic. Click here for more details.

akshare/__init__.py CHANGED
@@ -2883,9 +2883,10 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
2883
2883
  1.14.70 fix: fix setup.py
2884
2884
  1.14.71 fix: fix stock_mda_ym interface
2885
2885
  1.14.72 fix: fix fund_etf_hist_min_em interface
2886
+ 1.14.73 fix: fix stock_gpzy_profile_em interface
2886
2887
  """
2887
2888
 
2888
- __version__ = "1.14.72"
2889
+ __version__ = "1.14.73"
2889
2890
  __author__ = "AKFamily"
2890
2891
 
2891
2892
  import sys
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/2/9 11:40
4
+ Date: 2024/9/6 20:40
5
5
  Desc: 东方财富网-数据中心-特色数据-股权质押
6
6
  东方财富网-数据中心-特色数据-股权质押-股权质押市场概况: https://data.eastmoney.com/gpzy/marketProfile.aspx
7
7
  东方财富网-数据中心-特色数据-股权质押-上市公司质押比例: https://data.eastmoney.com/gpzy/pledgeRatio.aspx
@@ -10,6 +10,7 @@ Desc: 东方财富网-数据中心-特色数据-股权质押
10
10
  东方财富网-数据中心-特色数据-股权质押-质押机构分布统计-银行: https://data.eastmoney.com/gpzy/distributeStatistics.aspx
11
11
  东方财富网-数据中心-特色数据-股权质押-行业数据: https://data.eastmoney.com/gpzy/industryData.aspx
12
12
  """
13
+
13
14
  import math
14
15
 
15
16
  import pandas as pd
@@ -28,7 +29,7 @@ def stock_gpzy_profile_em() -> pd.DataFrame:
28
29
  params = {
29
30
  "sortColumns": "TRADE_DATE",
30
31
  "sortTypes": "-1",
31
- "pageSize": "5000",
32
+ "pageSize": "500",
32
33
  "pageNumber": "1",
33
34
  "reportName": "RPT_CSDC_STATISTICS",
34
35
  "columns": "ALL",
@@ -38,8 +39,16 @@ def stock_gpzy_profile_em() -> pd.DataFrame:
38
39
  }
39
40
  r = requests.get(url, params=params)
40
41
  data_json = r.json()
41
- temp_df = pd.DataFrame(data_json["result"]["data"])
42
- temp_df.columns = [
42
+ total_page = data_json["result"]["pages"]
43
+ big_df = pd.DataFrame()
44
+ for page in range(1, total_page + 1):
45
+ params.update({"pageNumber": page})
46
+ r = requests.get(url, params=params)
47
+ data_json = r.json()
48
+ temp_df = pd.DataFrame(data_json["result"]["data"])
49
+ big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
50
+
51
+ big_df.columns = [
43
52
  "交易日期",
44
53
  "质押总股数",
45
54
  "质押总市值",
@@ -49,7 +58,7 @@ def stock_gpzy_profile_em() -> pd.DataFrame:
49
58
  "质押公司数量",
50
59
  "质押笔数",
51
60
  ]
52
- temp_df = temp_df[
61
+ big_df = big_df[
53
62
  [
54
63
  "交易日期",
55
64
  "A股质押总比例",
@@ -61,20 +70,19 @@ def stock_gpzy_profile_em() -> pd.DataFrame:
61
70
  "涨跌幅",
62
71
  ]
63
72
  ]
64
- temp_df["交易日期"] = pd.to_datetime(temp_df["交易日期"]).dt.date
65
- temp_df["A股质押总比例"] = pd.to_numeric(temp_df["A股质押总比例"])
66
- temp_df["质押公司数量"] = pd.to_numeric(temp_df["质押公司数量"])
67
- temp_df["质押笔数"] = pd.to_numeric(temp_df["质押笔数"])
68
- temp_df["质押总股数"] = pd.to_numeric(temp_df["质押总股数"])
69
- temp_df["质押总市值"] = pd.to_numeric(temp_df["质押总市值"])
70
- temp_df["沪深300指数"] = pd.to_numeric(temp_df["沪深300指数"])
71
- temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"])
72
-
73
- temp_df["A股质押总比例"] = temp_df["A股质押总比例"] / 100
74
-
75
- temp_df.sort_values(["交易日期"], inplace=True)
76
- temp_df.reset_index(inplace=True, drop=True)
77
- return temp_df
73
+ big_df["交易日期"] = pd.to_datetime(big_df["交易日期"], errors="coerce").dt.date
74
+ big_df["A股质押总比例"] = pd.to_numeric(big_df["A股质押总比例"], errors="coerce")
75
+ big_df["质押公司数量"] = pd.to_numeric(big_df["质押公司数量"], errors="coerce")
76
+ big_df["质押笔数"] = pd.to_numeric(big_df["质押笔数"], errors="coerce")
77
+ big_df["质押总股数"] = pd.to_numeric(big_df["质押总股数"], errors="coerce")
78
+ big_df["质押总市值"] = pd.to_numeric(big_df["质押总市值"], errors="coerce")
79
+ big_df["沪深300指数"] = pd.to_numeric(big_df["沪深300指数"], errors="coerce")
80
+ big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce")
81
+ big_df["A股质押总比例"] = big_df["A股质押总比例"] / 100
82
+ big_df["A股质押总比例"] = pd.to_numeric(big_df["A股质押总比例"], errors="coerce")
83
+ big_df.sort_values(["交易日期"], inplace=True)
84
+ big_df.reset_index(inplace=True, drop=True)
85
+ return big_df
78
86
 
79
87
 
80
88
  def stock_gpzy_pledge_ratio_em(date: str = "20231020") -> pd.DataFrame:
@@ -109,7 +117,7 @@ def stock_gpzy_pledge_ratio_em(date: str = "20231020") -> pd.DataFrame:
109
117
  r = requests.get(url, params=params)
110
118
  data_json = r.json()
111
119
  temp_df = pd.DataFrame(data_json["result"]["data"])
112
- big_df = pd.concat([big_df, temp_df], ignore_index=True)
120
+ big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
113
121
 
114
122
  big_df.reset_index(inplace=True)
115
123
  big_df["index"] = big_df.index + 1
@@ -278,7 +286,9 @@ def stock_gpzy_pledge_ratio_detail_em() -> pd.DataFrame:
278
286
  big_df["质押日收盘价"] = pd.to_numeric(big_df["质押日收盘价"], errors="coerce")
279
287
  big_df["预估平仓线"] = pd.to_numeric(big_df["预估平仓线"], errors="coerce")
280
288
  big_df["公告日期"] = pd.to_datetime(big_df["公告日期"], errors="coerce").dt.date
281
- big_df["质押开始日期"] = pd.to_datetime(big_df["质押开始日期"], errors="coerce").dt.date
289
+ big_df["质押开始日期"] = pd.to_datetime(
290
+ big_df["质押开始日期"], errors="coerce"
291
+ ).dt.date
282
292
  return big_df
283
293
 
284
294
 
@@ -340,7 +350,9 @@ def stock_gpzy_distribute_statistics_company_em() -> pd.DataFrame:
340
350
  temp_df["质押笔数"] = pd.to_numeric(temp_df["质押笔数"])
341
351
  temp_df["质押数量"] = pd.to_numeric(temp_df["质押数量"])
342
352
  temp_df["未达预警线比例"] = pd.to_numeric(temp_df["未达预警线比例"])
343
- temp_df["达到预警线未达平仓线比例"] = pd.to_numeric(temp_df["达到预警线未达平仓线比例"])
353
+ temp_df["达到预警线未达平仓线比例"] = pd.to_numeric(
354
+ temp_df["达到预警线未达平仓线比例"]
355
+ )
344
356
  temp_df["达到平仓线比例"] = pd.to_numeric(temp_df["达到平仓线比例"])
345
357
  return temp_df
346
358
 
@@ -403,7 +415,9 @@ def stock_gpzy_distribute_statistics_bank_em() -> pd.DataFrame:
403
415
  temp_df["质押笔数"] = pd.to_numeric(temp_df["质押笔数"])
404
416
  temp_df["质押数量"] = pd.to_numeric(temp_df["质押数量"])
405
417
  temp_df["未达预警线比例"] = pd.to_numeric(temp_df["未达预警线比例"])
406
- temp_df["达到预警线未达平仓线比例"] = pd.to_numeric(temp_df["达到预警线未达平仓线比例"])
418
+ temp_df["达到预警线未达平仓线比例"] = pd.to_numeric(
419
+ temp_df["达到预警线未达平仓线比例"]
420
+ )
407
421
  temp_df["达到平仓线比例"] = pd.to_numeric(temp_df["达到平仓线比例"])
408
422
  return temp_df
409
423
 
@@ -421,7 +435,8 @@ def stock_gpzy_industry_data_em() -> pd.DataFrame:
421
435
  "pageSize": "500",
422
436
  "pageNumber": "1",
423
437
  "reportName": "RPT_CSDC_INDUSTRY_STATISTICS",
424
- "columns": "INDUSTRY_CODE,INDUSTRY,TRADE_DATE,AVERAGE_PLEDGE_RATIO,ORG_NUM,PLEDGE_TOTAL_NUM,TOTAL_PLEDGE_SHARES,PLEDGE_TOTAL_MARKETCAP",
438
+ "columns": "INDUSTRY_CODE,INDUSTRY,TRADE_DATE,AVERAGE_PLEDGE_RATIO,ORG_NUM,PLEDGE_TOTAL_NUM,"
439
+ "TOTAL_PLEDGE_SHARES,PLEDGE_TOTAL_MARKETCAP",
425
440
  "quoteColumns": "",
426
441
  "source": "WEB",
427
442
  "client": "WEB",
@@ -443,7 +458,16 @@ def stock_gpzy_industry_data_em() -> pd.DataFrame:
443
458
  "最新质押市值",
444
459
  ]
445
460
  temp_df = temp_df[
446
- ["序号", "行业", "平均质押比例", "公司家数", "质押总笔数", "质押总股本", "最新质押市值", "统计时间"]
461
+ [
462
+ "序号",
463
+ "行业",
464
+ "平均质押比例",
465
+ "公司家数",
466
+ "质押总笔数",
467
+ "质押总股本",
468
+ "最新质押市值",
469
+ "统计时间",
470
+ ]
447
471
  ]
448
472
  temp_df["统计时间"] = pd.to_datetime(temp_df["统计时间"]).dt.date
449
473
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: akshare
3
- Version: 1.14.72
3
+ Version: 1.14.73
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=vx4eQ8EHwJ6IbntftmHeuY5jRMMlW-oN2nMdELUJ2ZQ,181416
1
+ akshare/__init__.py,sha256=pwFI_BlEN0t15xyzObNbyNmZDhgGP_qUS7SR1RFyzVU,181465
2
2
  akshare/datasets.py,sha256=-qdwaQjgBlftX84uM74KJqCYJYkQ50PV416_neA4uls,995
3
3
  akshare/air/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
4
4
  akshare/air/air_hebei.py,sha256=xIXNGLK7IGYqrkteM9fxnHAwWqk6PCQs6D9-ggZ7byY,4442
@@ -311,7 +311,7 @@ akshare/stock_feature/stock_gddh_em.py,sha256=I_MUJhyy0mwjNG46ZsQINEQvHR42EmS7gJ
311
311
  akshare/stock_feature/stock_gdfx_em.py,sha256=vrzyMdcNw8wZabXYH89wjzIAokAVfHDVcpNfC0MHsl4,37825
312
312
  akshare/stock_feature/stock_gdhs.py,sha256=Fkrcs1HEOFNEXdQL4fO2-bMDvKV-Shu-fGECk4h7it0,8801
313
313
  akshare/stock_feature/stock_gdzjc_em.py,sha256=SHJH5iS3_NhvjTqRXF0vPooZl0s_ASeyZmNCC50ZYqs,4426
314
- akshare/stock_feature/stock_gpzy_em.py,sha256=AUl0NCqBixhvIX3Y_cQxu3tKKyVjuYwUDoMj3tCfwk0,16763
314
+ akshare/stock_feature/stock_gpzy_em.py,sha256=ubFynLHM6Kc1h5fr0_UpXpZdExEWlJbSn8QumwyxObw,17445
315
315
  akshare/stock_feature/stock_gxl_lg.py,sha256=I8TpDEpFzadZSSyZisyIk6163mJlRxup91dmlBH4t4U,2641
316
316
  akshare/stock_feature/stock_hist_em.py,sha256=H8bbC0LJBvDTRnrhZvFtrMM8Y6H4LZk-C0KIPar1aQs,69201
317
317
  akshare/stock_feature/stock_hist_tx.py,sha256=WpLsbkG2didSx7lYNkSbTWNTrLhUKbcopfD18WO2Rlc,3397
@@ -380,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
380
380
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
381
381
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
382
382
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
383
- akshare-1.14.72.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
- akshare-1.14.72.dist-info/METADATA,sha256=q6BP4cZ0x7yINwd9gRQWhpXRpL9f87wD7DfWMqu20n8,14112
385
- akshare-1.14.72.dist-info/WHEEL,sha256=uCRv0ZEik_232NlR4YDw4Pv3Ajt5bKvMH13NUU7hFuI,91
386
- akshare-1.14.72.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
- akshare-1.14.72.dist-info/RECORD,,
383
+ akshare-1.14.73.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
+ akshare-1.14.73.dist-info/METADATA,sha256=FQnMZq6GYKBwQJbj_Wlnx-xzezI5j-bdOejLwmoVSb4,14112
385
+ akshare-1.14.73.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
386
+ akshare-1.14.73.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
+ akshare-1.14.73.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (74.1.1)
2
+ Generator: setuptools (74.1.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5