akshare 1.14.48__py3-none-any.whl → 1.14.50__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
akshare/__init__.py CHANGED
@@ -2859,9 +2859,11 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
2859
2859
  1.14.46 add: add spot_hog_soozhu interface
2860
2860
  1.14.47 fix: fix spot_hog_soozhu interface
2861
2861
  1.14.48 add: add spot_hog_year_trend_soozhu interface
2862
+ 1.14.49 fix: fix fortune_rank interface
2863
+ 1.14.50 add: add spot_hog_lean_price_soozhu interface
2862
2864
  """
2863
2865
 
2864
- __version__ = "1.14.48"
2866
+ __version__ = "1.14.50"
2865
2867
  __author__ = "AKFamily"
2866
2868
 
2867
2869
  import sys
@@ -2886,7 +2888,7 @@ del sys
2886
2888
  """
2887
2889
  搜猪-生猪大数据-各省均价实时排行榜
2888
2890
  """
2889
- from akshare.spot.spot_hog_soozhu import spot_hog_soozhu, spot_hog_year_trend_soozhu
2891
+ from akshare.spot.spot_hog_soozhu import spot_hog_soozhu, spot_hog_year_trend_soozhu, spot_hog_lean_price_soozhu
2890
2892
 
2891
2893
  """
2892
2894
  知名港股
@@ -4884,11 +4886,6 @@ from akshare.fund.fund_amac import (
4884
4886
  amac_person_bond_org_list,
4885
4887
  )
4886
4888
 
4887
- """
4888
- 世界五百强公司排名接口
4889
- """
4890
- from akshare.fortune.fortune_500 import fortune_rank, fortune_rank_eng
4891
-
4892
4889
  """
4893
4890
  申万行业一级
4894
4891
  """
@@ -1,13 +1,13 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/3/11 17:22
4
+ Date: 2024/8/4 17:22
5
5
  Desc: 历年世界 500 强榜单数据
6
6
  https://www.fortunechina.com/fortune500/index.htm
7
7
  特殊情况说明:
8
8
  2010年由于网页端没有公布公司所属的国家, 故 2010 年数据没有国家这列
9
9
  """
10
- import json
10
+
11
11
  from functools import lru_cache
12
12
  from io import StringIO
13
13
 
@@ -28,12 +28,12 @@ def _fortune_rank_year_url_map() -> dict:
28
28
  url = "https://www.fortunechina.com/fortune500/index.htm"
29
29
  r = requests.get(url)
30
30
  soup = BeautifulSoup(r.text, features="lxml")
31
- url_2023 = soup.find(name='meta', attrs={"property": "og:url"})['content'].strip()
32
- node_list = soup.find_all(name='div', attrs={"class": "swiper-slide"})
33
- url_list = [item.find("a")['href'] for item in node_list]
31
+ url_2023 = "https://www.fortunechina.com/fortune500/c/2023-08/02/content_436874.htm"
32
+ node_list = soup.find_all(name="div", attrs={"class": "swiper-slide"})
33
+ url_list = [item.find("a")["href"] for item in node_list]
34
34
  year_list = [item.find("a").text for item in node_list]
35
35
  year_url_map = dict(zip(year_list, url_list))
36
- year_url_map['2023'] = url_2023
36
+ year_url_map["2023"] = url_2023
37
37
  return year_url_map
38
38
 
39
39
 
@@ -49,17 +49,17 @@ def fortune_rank(year: str = "2015") -> pd.DataFrame:
49
49
  r = requests.get(url)
50
50
  r.encoding = "utf-8"
51
51
  if int(year) < 2007:
52
- df = pd.read_html(StringIO(r.text))[0].iloc[1:-1, ]
52
+ df = pd.read_html(StringIO(r.text))[0].iloc[1:-1,]
53
53
  df.columns = pd.read_html(StringIO(r.text))[0].iloc[0, :].tolist()
54
54
  return df
55
55
  elif 2006 < int(year) < 2010:
56
- df = pd.read_html(StringIO(r.text))[0].iloc[1:, ]
56
+ df = pd.read_html(StringIO(r.text))[0].iloc[1:,]
57
57
  df.columns = pd.read_html(StringIO(r.text))[0].iloc[0, :].tolist()
58
58
  for page in tqdm(range(2, 11), leave=False):
59
59
  # page =2
60
60
  r = requests.get(url.rsplit(".", maxsplit=1)[0] + "_" + str(page) + ".htm")
61
61
  r.encoding = "utf-8"
62
- temp_df = pd.read_html(StringIO(r.text))[0].iloc[1:, ]
62
+ temp_df = pd.read_html(StringIO(r.text))[0].iloc[1:,]
63
63
  temp_df.columns = pd.read_html(StringIO(r.text))[0].iloc[0, :].tolist()
64
64
  df = pd.concat(objs=[df, temp_df], ignore_index=True)
65
65
  return df
@@ -68,53 +68,20 @@ def fortune_rank(year: str = "2015") -> pd.DataFrame:
68
68
  return df
69
69
 
70
70
 
71
- def fortune_rank_eng(year: str = "2023") -> pd.DataFrame:
72
- """
73
- 注意你的网速
74
- https://fortune.com/ranking/global500/
75
- https://fortune.com/global500/2012/search/
76
- :param year: "1995"
77
- :type year: str
78
- :return: 历年排名
79
- :rtype: pandas.DataFrame
80
- """
81
- url = f"https://fortune.com/ranking/global500/{year}/search/"
82
- res = requests.get(url)
83
- soup = BeautifulSoup(res.text, "lxml")
84
- code = json.loads(soup.find("script", attrs={"type": "application/ld+json"}).string)["identifier"]
85
- url = f"https://content.fortune.com/wp-json/irving/v1/data/franchise-search-results"
86
- params = {
87
- "list_id": code,
88
- "token": "Zm9ydHVuZTpCcHNyZmtNZCN5SndjWkkhNHFqMndEOTM=",
89
- }
90
- res = requests.get(url, params=params)
91
- big_df = pd.DataFrame()
92
- for i in range(len(res.json()[1]["items"][0]['fields'])):
93
- temp_df = pd.DataFrame([item["fields"][i] for item in res.json()[1]["items"]])
94
- big_df[temp_df["key"].values[0]] = temp_df["value"]
95
- big_df["rank"] = big_df["rank"].astype(int)
96
- big_df.sort_values(by="rank", inplace=True)
97
- big_df.reset_index(drop=True, inplace=True)
98
- return big_df
99
-
100
-
101
- if __name__ == '__main__':
102
- fortune_rank_eng_df = fortune_rank_eng(year="2022")
103
- print(fortune_rank_eng_df)
104
-
105
- fortune_rank_df = fortune_rank(year='2023') # 2010 不一样
71
+ if __name__ == "__main__":
72
+ fortune_rank_df = fortune_rank(year="2023") # 2010 不一样
106
73
  print(fortune_rank_df)
107
74
 
108
- fortune_rank_df = fortune_rank(year='2022') # 2010 不一样
75
+ fortune_rank_df = fortune_rank(year="2022") # 2010 不一样
109
76
  print(fortune_rank_df)
110
77
 
111
- fortune_rank_df = fortune_rank(year='2008') # 2010 不一样
78
+ fortune_rank_df = fortune_rank(year="2008") # 2010 不一样
112
79
  print(fortune_rank_df)
113
80
 
114
- fortune_rank_df = fortune_rank(year='2008') # 2010 不一样
81
+ fortune_rank_df = fortune_rank(year="2008") # 2010 不一样
115
82
  print(fortune_rank_df)
116
83
 
117
- fortune_rank_df = fortune_rank(year='2009') # 2010 不一样
84
+ fortune_rank_df = fortune_rank(year="2009") # 2010 不一样
118
85
  print(fortune_rank_df)
119
86
 
120
87
  for item in range(1996, 2008):
@@ -1,9 +1,9 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/3/31 19:00
4
+ Date: 2024/8/3 20:00
5
5
  Desc: 乘联会
6
- http://data.cpcaauto.com/FuelMarket
6
+ http://data.cpcadata.com/FuelMarket
7
7
  """
8
8
 
9
9
  import pandas as pd
@@ -15,7 +15,7 @@ def car_market_total_cpca(
15
15
  ) -> pd.DataFrame:
16
16
  """
17
17
  乘联会-统计数据-总体市场
18
- http://data.cpcaauto.com/TotalMarket
18
+ http://data.cpcadata.com/TotalMarket
19
19
  :param symbol: choice of {"狭义乘用车", "广义乘用车"}
20
20
  :type symbol: str
21
21
  :param indicator: choice of {"产量", "批发", "零售", "出口"}
@@ -23,7 +23,7 @@ def car_market_total_cpca(
23
23
  :return: 统计数据-总体市场
24
24
  :rtype: pandas.DataFrame
25
25
  """
26
- url = "http://data.cpcaauto.com/api/chartlist"
26
+ url = "http://data.cpcadata.com/api/chartlist"
27
27
  params = {"charttype": "1"}
28
28
  r = requests.get(url, params=params)
29
29
  data_json = r.json()
@@ -163,13 +163,13 @@ def car_market_total_cpca(
163
163
  def __car_market_man_rank_cpca_pifa(symbol: str = "狭义乘用车-累计") -> pd.DataFrame:
164
164
  """
165
165
  乘联会-统计数据-厂商排名
166
- http://data.cpcaauto.com/ManRank
166
+ http://data.cpcadata.com/ManRank
167
167
  :param symbol: choice of {"狭义乘用车-单月", "狭义乘用车-累计", "广义乘用车-单月", "广义乘用车-累计"}
168
168
  :type symbol: str
169
169
  :return: 统计数据-厂商排名
170
170
  :rtype: pandas.DataFrame
171
171
  """
172
- url = "http://data.cpcaauto.com/api/chartlist"
172
+ url = "http://data.cpcadata.com/api/chartlist"
173
173
  params = {"charttype": "2"}
174
174
  r = requests.get(url, params=params)
175
175
  data_json = r.json()
@@ -278,13 +278,13 @@ def __car_market_man_rank_cpca_lingshou(
278
278
  ) -> pd.DataFrame:
279
279
  """
280
280
  乘联会-统计数据-厂商排名
281
- http://data.cpcaauto.com/ManRank
281
+ http://data.cpcadata.com/ManRank
282
282
  :param symbol: choice of {"狭义乘用车-单月", "狭义乘用车-累计", "广义乘用车-单月", "广义乘用车-累计"}
283
283
  :type symbol: str
284
284
  :return: 统计数据-厂商排名
285
285
  :rtype: pandas.DataFrame
286
286
  """
287
- url = "http://data.cpcaauto.com/api/chartlist_2"
287
+ url = "http://data.cpcadata.com/api/chartlist_2"
288
288
  params = {"charttype": "2"}
289
289
  r = requests.get(url, params=params)
290
290
  data_json = r.json()
@@ -393,7 +393,7 @@ def car_market_man_rank_cpca(
393
393
  ) -> pd.DataFrame:
394
394
  """
395
395
  乘联会-统计数据-厂商排名
396
- http://data.cpcaauto.com/ManRank
396
+ http://data.cpcadata.com/ManRank
397
397
  :param symbol: choice of {"狭义乘用车-单月", "狭义乘用车-累计", "广义乘用车-单月", "广义乘用车-累计"}
398
398
  :type symbol: str
399
399
  :param indicator: choice of {"批发", "零售"}
@@ -412,13 +412,13 @@ def car_market_man_rank_cpca(
412
412
  def __car_market_cate_cpca_pifa(symbol: str = "MPV") -> pd.DataFrame:
413
413
  """
414
414
  乘联会-统计数据-车型大类
415
- http://data.cpcaauto.com/CategoryMarket
415
+ http://data.cpcadata.com/CategoryMarket
416
416
  :param symbol: choice of {"轿车", "MPV", "SUV", "占比"}
417
417
  :type symbol: str
418
418
  :return: 统计数据-车型大类
419
419
  :rtype: pandas.DataFrame
420
420
  """
421
- url = "http://data.cpcaauto.com/api/chartlist"
421
+ url = "http://data.cpcadata.com/api/chartlist"
422
422
  params = {"charttype": "3"}
423
423
  r = requests.get(url, params=params)
424
424
  data_json = r.json()
@@ -530,13 +530,13 @@ def __car_market_cate_cpca_lingshou(
530
530
  ) -> pd.DataFrame:
531
531
  """
532
532
  乘联会-统计数据-车型大类
533
- http://data.cpcaauto.com/CategoryMarket
533
+ http://data.cpcadata.com/CategoryMarket
534
534
  :param symbol: choice of {"轿车", "MPV", "SUV", "占比"}
535
535
  :type symbol: str
536
536
  :return: 统计数据-车型大类
537
537
  :rtype: pandas.DataFrame
538
538
  """
539
- url = "http://data.cpcaauto.com/api/chartlist"
539
+ url = "http://data.cpcadata.com/api/chartlist"
540
540
  params = {"charttype": "3"}
541
541
  r = requests.get(url, params=params)
542
542
  data_json = r.json()
@@ -646,7 +646,7 @@ def __car_market_cate_cpca_lingshou(
646
646
  def car_market_cate_cpca(symbol: str = "轿车", indicator: str = "批发") -> pd.DataFrame:
647
647
  """
648
648
  乘联会-统计数据-车型大类
649
- http://data.cpcaauto.com/CategoryMarket
649
+ http://data.cpcadata.com/CategoryMarket
650
650
  :param symbol: choice of {"轿车", "MPV", "SUV", "占比"}
651
651
  :type symbol: str
652
652
  :param indicator: choice of {"批发", "零售"}
@@ -665,11 +665,11 @@ def car_market_cate_cpca(symbol: str = "轿车", indicator: str = "批发") -> p
665
665
  def car_market_country_cpca() -> pd.DataFrame:
666
666
  """
667
667
  乘联会-统计数据-国别细分市场
668
- http://data.cpcaauto.com/CountryMarket
668
+ http://data.cpcadata.com/CountryMarket
669
669
  :return: 统计数据-车型大类
670
670
  :rtype: pandas.DataFrame
671
671
  """
672
- url = "http://data.cpcaauto.com/api/chartlist"
672
+ url = "http://data.cpcadata.com/api/chartlist"
673
673
  params = {"charttype": "4"}
674
674
  r = requests.get(url=url, params=params)
675
675
  data_json = r.json()
@@ -685,13 +685,13 @@ def car_market_country_cpca() -> pd.DataFrame:
685
685
  def car_market_segment_cpca(symbol: str = "轿车") -> pd.DataFrame:
686
686
  """
687
687
  乘联会-统计数据-级别细分市场
688
- http://data.cpcaauto.com/SegmentMarket
688
+ http://data.cpcadata.com/SegmentMarket
689
689
  :param symbol: choice of {"轿车", "MPV", "SUV"}
690
690
  :type symbol: str
691
691
  :return: 统计数据-车型大类
692
692
  :rtype: pandas.DataFrame
693
693
  """
694
- url = "http://data.cpcaauto.com/api/chartlist"
694
+ url = "http://data.cpcadata.com/api/chartlist"
695
695
  params = {"charttype": "5"}
696
696
  r = requests.get(url=url, params=params)
697
697
  data_json = r.json()
@@ -724,11 +724,11 @@ def car_market_fuel_cpca(symbol: str = "整体市场") -> pd.DataFrame:
724
724
  乘联会-统计数据-新能源细分市场
725
725
  :param symbol: choice of {"整体市场", "销量占比-PHEV-BEV", "销量占比-ICE-NEV"}
726
726
  :type symbol: str
727
- https://data.cpcaauto.com/FuelMarket
727
+ https://data.cpcadata.com/FuelMarket
728
728
  :return: 新能源细分市场
729
729
  :rtype: pandas.DataFrame
730
730
  """
731
- url = "http://data.cpcaauto.com/api/chartlist"
731
+ url = "http://data.cpcadata.com/api/chartlist"
732
732
  params = {"charttype": "6"}
733
733
  r = requests.get(url, params=params)
734
734
  data_json = r.json()
@@ -62,9 +62,36 @@ def spot_hog_year_trend_soozhu() -> pd.DataFrame:
62
62
  return temp_df
63
63
 
64
64
 
65
+ def spot_hog_lean_price_soozhu() -> pd.DataFrame:
66
+ """
67
+ 搜猪-生猪大数据-全国瘦肉型肉猪
68
+ https://www.soozhu.com/price/data/center/
69
+ :return: 全国瘦肉型肉猪
70
+ :rtype: pd.DataFrame
71
+ """
72
+ session = requests.session()
73
+ url = "https://www.soozhu.com/price/data/center/"
74
+ r = session.get(url)
75
+ soup = BeautifulSoup(r.text, features="lxml")
76
+ token = soup.find(name="input", attrs={"name": "csrfmiddlewaretoken"})["value"]
77
+ url = "https://www.soozhu.com/price/data/center/"
78
+ payload = {"act": "pricetrend", "indid": "", "csrfmiddlewaretoken": token}
79
+ r = session.post(url, data=payload)
80
+ data_json = r.json()
81
+ temp_df = pd.DataFrame(data_json["datalist"])
82
+ temp_df.columns = ["日期", "价格"]
83
+ temp_df["日期"] = pd.to_datetime(temp_df["日期"], errors="coerce").dt.date
84
+ temp_df["价格"] = pd.to_numeric(temp_df["价格"], errors="coerce")
85
+ temp_df.sort_values(by=["日期"], ignore_index=True, inplace=True)
86
+ return temp_df
87
+
88
+
65
89
  if __name__ == "__main__":
66
90
  spot_hog_soozhu_df = spot_hog_soozhu()
67
91
  print(spot_hog_soozhu_df)
68
92
 
69
93
  spot_hog_year_trend_soozhu_df = spot_hog_year_trend_soozhu()
70
94
  print(spot_hog_year_trend_soozhu_df)
95
+
96
+ spot_hog_lean_price_soozhu_df = spot_hog_lean_price_soozhu()
97
+ print(spot_hog_lean_price_soozhu_df)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: akshare
3
- Version: 1.14.48
3
+ Version: 1.14.50
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=yjR0-ThxKTCa789trLHnOn7NP4tsPmdD148RWD04gJ8,180189
1
+ akshare/__init__.py,sha256=EB-XN3cFOWPfD8DVjryY_6O60QLAzi3zjUMBIBLYZx0,180197
2
2
  akshare/datasets.py,sha256=oIu1zC7o_LMHY22lQmdM7vCnryHibKrJLBqJwQiitlI,1167
3
3
  akshare/air/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
4
4
  akshare/air/air_hebei.py,sha256=xIXNGLK7IGYqrkteM9fxnHAwWqk6PCQs6D9-ggZ7byY,4442
@@ -75,7 +75,7 @@ akshare/event/migration.py,sha256=2lR3D_XHRlOKiarBSbjQVEIm3Spj5hbZIwDOvcyKsEU,37
75
75
  akshare/file_fold/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
76
76
  akshare/file_fold/calendar.json,sha256=gKqhd5CrXPGbhfztADaT6WjDDGrxGoxIOKGjB1VUsLk,116370
77
77
  akshare/fortune/__init__.py,sha256=4OCuVKMykUB3Ubm8WogA814U5EGLdrexmfTAOcBnYM4,82
78
- akshare/fortune/fortune_500.py,sha256=2pYu_zZsXehpIdioMggl-QkNSclNOsIhM8_8Z5zHv58,4468
78
+ akshare/fortune/fortune_500.py,sha256=QqF3dLdDiCcSoDxsyEgJf8CHu72Ppsu7u0EajbXr6mg,3197
79
79
  akshare/fortune/fortune_bloomberg.py,sha256=i5HqnICYXKmwy3rOvMLDzJPDJA_am8imKsXzNlLLU6g,3673
80
80
  akshare/fortune/fortune_forbes_500.py,sha256=GiHFZ_dLHkc3K03H1rfVQ0FEGbwOWjdF4CFlRXXWBIM,1437
81
81
  akshare/fortune/fortune_hurun.py,sha256=B2BMDdwsatY5Yo2hX03GBqMJyifPhQzsRTXhelVNs6s,11512
@@ -208,7 +208,7 @@ akshare/option/option_risk_analysis_em.py,sha256=WYwjXzZhIr8WpwoVKXfAnFA7Ylx_vLQ
208
208
  akshare/option/option_risk_indicator_sse.py,sha256=W1_mGrk8M9pbbadzSAy5euWMEGn4-cVWBc8Jk_I2WmI,2484
209
209
  akshare/option/option_value_analysis_em.py,sha256=XAHbSvUvcmyuv6rr2hxxGalWcKK8EqaP2L8G7p8woko,2487
210
210
  akshare/other/__init__.py,sha256=guH4GLhFcE_5iaMHOHtgK7QKa0i7esYdmZFfJMG6E10,82
211
- akshare/other/other_car_cpca.py,sha256=wlB1bPXr2ZnTN-JO_JoYS9AuRyhw8RbrrwV9g3TZeAI,34988
211
+ akshare/other/other_car_cpca.py,sha256=hCBNUrCI2l3OCP3Gqgr_4zpyzhO99XCBoiwkIhUM3r0,34987
212
212
  akshare/other/other_car_gasgoo.py,sha256=KaCMVPydiGJvhJN9eZEvObygYquCsSgsZkQRB0J6srk,3046
213
213
  akshare/pro/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
214
214
  akshare/pro/client.py,sha256=p9r3fZYGgfMplQwGLo8oPAen8w65xennP5D1Ca89im4,2248
@@ -227,7 +227,7 @@ akshare/reits/reits_basic.py,sha256=gxQeP8_K7SYjBT9zkKuVRRi8B4SPOHNqVdXe_UvTWTY,
227
227
  akshare/sport/__init__.py,sha256=aMsxmuOMZFkcI8tGmQanhPyPwyBpdeApAWyCtDRKMeg,81
228
228
  akshare/sport/sport_olympic.py,sha256=CB1cvLpz2BWuadfonhHuQ17Qxt9X_3ks0Zc5Bff2w9k,818
229
229
  akshare/spot/__init__.py,sha256=VGuha94pXYoezmMs3F3Q_ofaN8RZIrkJ2NtVv8hWCjY,83
230
- akshare/spot/spot_hog_soozhu.py,sha256=4l040e30BIaqheivlQv-0H6AqR1zwvN5JKYYrZxfqlk,2641
230
+ akshare/spot/spot_hog_soozhu.py,sha256=5Lo7AUgUP8CvdeDJCmSVpsiRbSpON6jtm61aKmQeS78,3756
231
231
  akshare/spot/spot_price_qh.py,sha256=rRv09vR8K0U_x6x8AiLgGluxytIXkLatFNVkFbIh8eQ,3756
232
232
  akshare/spot/spot_sge.py,sha256=Ta5EHUlGCSpNDlufIJcwgCErsJEUgH6HJHzYxoYtaMk,6313
233
233
  akshare/stock/__init__.py,sha256=jSa9260d6aNZajaW68chI2mpPkDSXLOgi3eXrqo4MQ8,82
@@ -380,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
380
380
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
381
381
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
382
382
  tests/test_func.py,sha256=tfvy_YnYmDra2dkKZ5JvprU1gNW5X9T634PszdSdH1A,944
383
- akshare-1.14.48.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
- akshare-1.14.48.dist-info/METADATA,sha256=mcHKs8J_xq_2PYI_OO9VfH4mnvAE4L7zTclwQF7ddoE,13976
385
- akshare-1.14.48.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
386
- akshare-1.14.48.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
- akshare-1.14.48.dist-info/RECORD,,
383
+ akshare-1.14.50.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
+ akshare-1.14.50.dist-info/METADATA,sha256=W29RB_CxJjxSY2s8iFrlmq1A2G7eiXhJqW95mopNt7U,13976
385
+ akshare-1.14.50.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
386
+ akshare-1.14.50.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
+ akshare-1.14.50.dist-info/RECORD,,