akshare 1.14.47__py3-none-any.whl → 1.14.49__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of akshare might be problematic. Click here for more details.
- akshare/__init__.py +4 -7
- akshare/fortune/fortune_500.py +23 -20
- akshare/other/other_car_cpca.py +20 -20
- akshare/spot/spot_hog_soozhu.py +27 -0
- {akshare-1.14.47.dist-info → akshare-1.14.49.dist-info}/METADATA +1 -1
- {akshare-1.14.47.dist-info → akshare-1.14.49.dist-info}/RECORD +9 -10
- akshare/sport/sport_olympic_winter.py +0 -39
- {akshare-1.14.47.dist-info → akshare-1.14.49.dist-info}/LICENSE +0 -0
- {akshare-1.14.47.dist-info → akshare-1.14.49.dist-info}/WHEEL +0 -0
- {akshare-1.14.47.dist-info → akshare-1.14.49.dist-info}/top_level.txt +0 -0
akshare/__init__.py
CHANGED
|
@@ -2858,9 +2858,11 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
|
|
|
2858
2858
|
1.14.45 fix: fix option_lhb_em interface
|
|
2859
2859
|
1.14.46 add: add spot_hog_soozhu interface
|
|
2860
2860
|
1.14.47 fix: fix spot_hog_soozhu interface
|
|
2861
|
+
1.14.48 add: add spot_hog_year_trend_soozhu interface
|
|
2862
|
+
1.14.49 fix: fix fortune_rank interface
|
|
2861
2863
|
"""
|
|
2862
2864
|
|
|
2863
|
-
__version__ = "1.14.
|
|
2865
|
+
__version__ = "1.14.49"
|
|
2864
2866
|
__author__ = "AKFamily"
|
|
2865
2867
|
|
|
2866
2868
|
import sys
|
|
@@ -2885,7 +2887,7 @@ del sys
|
|
|
2885
2887
|
"""
|
|
2886
2888
|
搜猪-生猪大数据-各省均价实时排行榜
|
|
2887
2889
|
"""
|
|
2888
|
-
from akshare.spot.spot_hog_soozhu import spot_hog_soozhu
|
|
2890
|
+
from akshare.spot.spot_hog_soozhu import spot_hog_soozhu, spot_hog_year_trend_soozhu
|
|
2889
2891
|
|
|
2890
2892
|
"""
|
|
2891
2893
|
知名港股
|
|
@@ -3447,11 +3449,6 @@ from akshare.stock.stock_hk_hot_rank_em import (
|
|
|
3447
3449
|
stock_hk_hot_rank_em,
|
|
3448
3450
|
)
|
|
3449
3451
|
|
|
3450
|
-
"""
|
|
3451
|
-
冬奥会历届奖牌榜
|
|
3452
|
-
"""
|
|
3453
|
-
from akshare.sport.sport_olympic_winter import sport_olympic_winter_hist
|
|
3454
|
-
|
|
3455
3452
|
"""
|
|
3456
3453
|
财新指数
|
|
3457
3454
|
"""
|
akshare/fortune/fortune_500.py
CHANGED
|
@@ -7,6 +7,7 @@ https://www.fortunechina.com/fortune500/index.htm
|
|
|
7
7
|
特殊情况说明:
|
|
8
8
|
2010年由于网页端没有公布公司所属的国家, 故 2010 年数据没有国家这列
|
|
9
9
|
"""
|
|
10
|
+
|
|
10
11
|
import json
|
|
11
12
|
from functools import lru_cache
|
|
12
13
|
from io import StringIO
|
|
@@ -28,12 +29,12 @@ def _fortune_rank_year_url_map() -> dict:
|
|
|
28
29
|
url = "https://www.fortunechina.com/fortune500/index.htm"
|
|
29
30
|
r = requests.get(url)
|
|
30
31
|
soup = BeautifulSoup(r.text, features="lxml")
|
|
31
|
-
url_2023 =
|
|
32
|
-
node_list = soup.find_all(name=
|
|
33
|
-
url_list = [item.find("a")[
|
|
32
|
+
url_2023 = "https://www.fortunechina.com/fortune500/c/2023-08/02/content_436874.htm"
|
|
33
|
+
node_list = soup.find_all(name="div", attrs={"class": "swiper-slide"})
|
|
34
|
+
url_list = [item.find("a")["href"] for item in node_list]
|
|
34
35
|
year_list = [item.find("a").text for item in node_list]
|
|
35
36
|
year_url_map = dict(zip(year_list, url_list))
|
|
36
|
-
year_url_map[
|
|
37
|
+
year_url_map["2023"] = url_2023
|
|
37
38
|
return year_url_map
|
|
38
39
|
|
|
39
40
|
|
|
@@ -49,17 +50,17 @@ def fortune_rank(year: str = "2015") -> pd.DataFrame:
|
|
|
49
50
|
r = requests.get(url)
|
|
50
51
|
r.encoding = "utf-8"
|
|
51
52
|
if int(year) < 2007:
|
|
52
|
-
df = pd.read_html(StringIO(r.text))[0].iloc[1:-1,
|
|
53
|
+
df = pd.read_html(StringIO(r.text))[0].iloc[1:-1,]
|
|
53
54
|
df.columns = pd.read_html(StringIO(r.text))[0].iloc[0, :].tolist()
|
|
54
55
|
return df
|
|
55
56
|
elif 2006 < int(year) < 2010:
|
|
56
|
-
df = pd.read_html(StringIO(r.text))[0].iloc[1:,
|
|
57
|
+
df = pd.read_html(StringIO(r.text))[0].iloc[1:,]
|
|
57
58
|
df.columns = pd.read_html(StringIO(r.text))[0].iloc[0, :].tolist()
|
|
58
59
|
for page in tqdm(range(2, 11), leave=False):
|
|
59
60
|
# page =2
|
|
60
61
|
r = requests.get(url.rsplit(".", maxsplit=1)[0] + "_" + str(page) + ".htm")
|
|
61
62
|
r.encoding = "utf-8"
|
|
62
|
-
temp_df = pd.read_html(StringIO(r.text))[0].iloc[1:,
|
|
63
|
+
temp_df = pd.read_html(StringIO(r.text))[0].iloc[1:,]
|
|
63
64
|
temp_df.columns = pd.read_html(StringIO(r.text))[0].iloc[0, :].tolist()
|
|
64
65
|
df = pd.concat(objs=[df, temp_df], ignore_index=True)
|
|
65
66
|
return df
|
|
@@ -79,18 +80,20 @@ def fortune_rank_eng(year: str = "2023") -> pd.DataFrame:
|
|
|
79
80
|
:rtype: pandas.DataFrame
|
|
80
81
|
"""
|
|
81
82
|
url = f"https://fortune.com/ranking/global500/{year}/search/"
|
|
82
|
-
|
|
83
|
-
soup = BeautifulSoup(
|
|
84
|
-
code = json.loads(
|
|
85
|
-
|
|
83
|
+
r = requests.get(url)
|
|
84
|
+
soup = BeautifulSoup(r.text, features="lxml")
|
|
85
|
+
code = json.loads(
|
|
86
|
+
soup.find(name="script", attrs={"type": "application/ld+json"}).string
|
|
87
|
+
)["identifier"]
|
|
88
|
+
url = "https://content.fortune.com/wp-json/irving/v1/data/franchise-search-results"
|
|
86
89
|
params = {
|
|
87
90
|
"list_id": code,
|
|
88
91
|
"token": "Zm9ydHVuZTpCcHNyZmtNZCN5SndjWkkhNHFqMndEOTM=",
|
|
89
92
|
}
|
|
90
|
-
|
|
93
|
+
r = requests.get(url, params=params)
|
|
91
94
|
big_df = pd.DataFrame()
|
|
92
|
-
for i in range(len(
|
|
93
|
-
temp_df = pd.DataFrame([item["fields"][i] for item in
|
|
95
|
+
for i in range(len(r.json()[1]["items"][0]["fields"])):
|
|
96
|
+
temp_df = pd.DataFrame([item["fields"][i] for item in r.json()[1]["items"]])
|
|
94
97
|
big_df[temp_df["key"].values[0]] = temp_df["value"]
|
|
95
98
|
big_df["rank"] = big_df["rank"].astype(int)
|
|
96
99
|
big_df.sort_values(by="rank", inplace=True)
|
|
@@ -98,23 +101,23 @@ def fortune_rank_eng(year: str = "2023") -> pd.DataFrame:
|
|
|
98
101
|
return big_df
|
|
99
102
|
|
|
100
103
|
|
|
101
|
-
if __name__ ==
|
|
104
|
+
if __name__ == "__main__":
|
|
102
105
|
fortune_rank_eng_df = fortune_rank_eng(year="2022")
|
|
103
106
|
print(fortune_rank_eng_df)
|
|
104
107
|
|
|
105
|
-
fortune_rank_df = fortune_rank(year=
|
|
108
|
+
fortune_rank_df = fortune_rank(year="2023") # 2010 不一样
|
|
106
109
|
print(fortune_rank_df)
|
|
107
110
|
|
|
108
|
-
fortune_rank_df = fortune_rank(year=
|
|
111
|
+
fortune_rank_df = fortune_rank(year="2022") # 2010 不一样
|
|
109
112
|
print(fortune_rank_df)
|
|
110
113
|
|
|
111
|
-
fortune_rank_df = fortune_rank(year=
|
|
114
|
+
fortune_rank_df = fortune_rank(year="2008") # 2010 不一样
|
|
112
115
|
print(fortune_rank_df)
|
|
113
116
|
|
|
114
|
-
fortune_rank_df = fortune_rank(year=
|
|
117
|
+
fortune_rank_df = fortune_rank(year="2008") # 2010 不一样
|
|
115
118
|
print(fortune_rank_df)
|
|
116
119
|
|
|
117
|
-
fortune_rank_df = fortune_rank(year=
|
|
120
|
+
fortune_rank_df = fortune_rank(year="2009") # 2010 不一样
|
|
118
121
|
print(fortune_rank_df)
|
|
119
122
|
|
|
120
123
|
for item in range(1996, 2008):
|
akshare/other/other_car_cpca.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
2
|
# -*- coding:utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Date: 2024/3
|
|
4
|
+
Date: 2024/8/3 20:00
|
|
5
5
|
Desc: 乘联会
|
|
6
|
-
http://data.
|
|
6
|
+
http://data.cpcadata.com/FuelMarket
|
|
7
7
|
"""
|
|
8
8
|
|
|
9
9
|
import pandas as pd
|
|
@@ -15,7 +15,7 @@ def car_market_total_cpca(
|
|
|
15
15
|
) -> pd.DataFrame:
|
|
16
16
|
"""
|
|
17
17
|
乘联会-统计数据-总体市场
|
|
18
|
-
http://data.
|
|
18
|
+
http://data.cpcadata.com/TotalMarket
|
|
19
19
|
:param symbol: choice of {"狭义乘用车", "广义乘用车"}
|
|
20
20
|
:type symbol: str
|
|
21
21
|
:param indicator: choice of {"产量", "批发", "零售", "出口"}
|
|
@@ -23,7 +23,7 @@ def car_market_total_cpca(
|
|
|
23
23
|
:return: 统计数据-总体市场
|
|
24
24
|
:rtype: pandas.DataFrame
|
|
25
25
|
"""
|
|
26
|
-
url = "http://data.
|
|
26
|
+
url = "http://data.cpcadata.com/api/chartlist"
|
|
27
27
|
params = {"charttype": "1"}
|
|
28
28
|
r = requests.get(url, params=params)
|
|
29
29
|
data_json = r.json()
|
|
@@ -163,13 +163,13 @@ def car_market_total_cpca(
|
|
|
163
163
|
def __car_market_man_rank_cpca_pifa(symbol: str = "狭义乘用车-累计") -> pd.DataFrame:
|
|
164
164
|
"""
|
|
165
165
|
乘联会-统计数据-厂商排名
|
|
166
|
-
http://data.
|
|
166
|
+
http://data.cpcadata.com/ManRank
|
|
167
167
|
:param symbol: choice of {"狭义乘用车-单月", "狭义乘用车-累计", "广义乘用车-单月", "广义乘用车-累计"}
|
|
168
168
|
:type symbol: str
|
|
169
169
|
:return: 统计数据-厂商排名
|
|
170
170
|
:rtype: pandas.DataFrame
|
|
171
171
|
"""
|
|
172
|
-
url = "http://data.
|
|
172
|
+
url = "http://data.cpcadata.com/api/chartlist"
|
|
173
173
|
params = {"charttype": "2"}
|
|
174
174
|
r = requests.get(url, params=params)
|
|
175
175
|
data_json = r.json()
|
|
@@ -278,13 +278,13 @@ def __car_market_man_rank_cpca_lingshou(
|
|
|
278
278
|
) -> pd.DataFrame:
|
|
279
279
|
"""
|
|
280
280
|
乘联会-统计数据-厂商排名
|
|
281
|
-
http://data.
|
|
281
|
+
http://data.cpcadata.com/ManRank
|
|
282
282
|
:param symbol: choice of {"狭义乘用车-单月", "狭义乘用车-累计", "广义乘用车-单月", "广义乘用车-累计"}
|
|
283
283
|
:type symbol: str
|
|
284
284
|
:return: 统计数据-厂商排名
|
|
285
285
|
:rtype: pandas.DataFrame
|
|
286
286
|
"""
|
|
287
|
-
url = "http://data.
|
|
287
|
+
url = "http://data.cpcadata.com/api/chartlist_2"
|
|
288
288
|
params = {"charttype": "2"}
|
|
289
289
|
r = requests.get(url, params=params)
|
|
290
290
|
data_json = r.json()
|
|
@@ -393,7 +393,7 @@ def car_market_man_rank_cpca(
|
|
|
393
393
|
) -> pd.DataFrame:
|
|
394
394
|
"""
|
|
395
395
|
乘联会-统计数据-厂商排名
|
|
396
|
-
http://data.
|
|
396
|
+
http://data.cpcadata.com/ManRank
|
|
397
397
|
:param symbol: choice of {"狭义乘用车-单月", "狭义乘用车-累计", "广义乘用车-单月", "广义乘用车-累计"}
|
|
398
398
|
:type symbol: str
|
|
399
399
|
:param indicator: choice of {"批发", "零售"}
|
|
@@ -412,13 +412,13 @@ def car_market_man_rank_cpca(
|
|
|
412
412
|
def __car_market_cate_cpca_pifa(symbol: str = "MPV") -> pd.DataFrame:
|
|
413
413
|
"""
|
|
414
414
|
乘联会-统计数据-车型大类
|
|
415
|
-
http://data.
|
|
415
|
+
http://data.cpcadata.com/CategoryMarket
|
|
416
416
|
:param symbol: choice of {"轿车", "MPV", "SUV", "占比"}
|
|
417
417
|
:type symbol: str
|
|
418
418
|
:return: 统计数据-车型大类
|
|
419
419
|
:rtype: pandas.DataFrame
|
|
420
420
|
"""
|
|
421
|
-
url = "http://data.
|
|
421
|
+
url = "http://data.cpcadata.com/api/chartlist"
|
|
422
422
|
params = {"charttype": "3"}
|
|
423
423
|
r = requests.get(url, params=params)
|
|
424
424
|
data_json = r.json()
|
|
@@ -530,13 +530,13 @@ def __car_market_cate_cpca_lingshou(
|
|
|
530
530
|
) -> pd.DataFrame:
|
|
531
531
|
"""
|
|
532
532
|
乘联会-统计数据-车型大类
|
|
533
|
-
http://data.
|
|
533
|
+
http://data.cpcadata.com/CategoryMarket
|
|
534
534
|
:param symbol: choice of {"轿车", "MPV", "SUV", "占比"}
|
|
535
535
|
:type symbol: str
|
|
536
536
|
:return: 统计数据-车型大类
|
|
537
537
|
:rtype: pandas.DataFrame
|
|
538
538
|
"""
|
|
539
|
-
url = "http://data.
|
|
539
|
+
url = "http://data.cpcadata.com/api/chartlist"
|
|
540
540
|
params = {"charttype": "3"}
|
|
541
541
|
r = requests.get(url, params=params)
|
|
542
542
|
data_json = r.json()
|
|
@@ -646,7 +646,7 @@ def __car_market_cate_cpca_lingshou(
|
|
|
646
646
|
def car_market_cate_cpca(symbol: str = "轿车", indicator: str = "批发") -> pd.DataFrame:
|
|
647
647
|
"""
|
|
648
648
|
乘联会-统计数据-车型大类
|
|
649
|
-
http://data.
|
|
649
|
+
http://data.cpcadata.com/CategoryMarket
|
|
650
650
|
:param symbol: choice of {"轿车", "MPV", "SUV", "占比"}
|
|
651
651
|
:type symbol: str
|
|
652
652
|
:param indicator: choice of {"批发", "零售"}
|
|
@@ -665,11 +665,11 @@ def car_market_cate_cpca(symbol: str = "轿车", indicator: str = "批发") -> p
|
|
|
665
665
|
def car_market_country_cpca() -> pd.DataFrame:
|
|
666
666
|
"""
|
|
667
667
|
乘联会-统计数据-国别细分市场
|
|
668
|
-
http://data.
|
|
668
|
+
http://data.cpcadata.com/CountryMarket
|
|
669
669
|
:return: 统计数据-车型大类
|
|
670
670
|
:rtype: pandas.DataFrame
|
|
671
671
|
"""
|
|
672
|
-
url = "http://data.
|
|
672
|
+
url = "http://data.cpcadata.com/api/chartlist"
|
|
673
673
|
params = {"charttype": "4"}
|
|
674
674
|
r = requests.get(url=url, params=params)
|
|
675
675
|
data_json = r.json()
|
|
@@ -685,13 +685,13 @@ def car_market_country_cpca() -> pd.DataFrame:
|
|
|
685
685
|
def car_market_segment_cpca(symbol: str = "轿车") -> pd.DataFrame:
|
|
686
686
|
"""
|
|
687
687
|
乘联会-统计数据-级别细分市场
|
|
688
|
-
http://data.
|
|
688
|
+
http://data.cpcadata.com/SegmentMarket
|
|
689
689
|
:param symbol: choice of {"轿车", "MPV", "SUV"}
|
|
690
690
|
:type symbol: str
|
|
691
691
|
:return: 统计数据-车型大类
|
|
692
692
|
:rtype: pandas.DataFrame
|
|
693
693
|
"""
|
|
694
|
-
url = "http://data.
|
|
694
|
+
url = "http://data.cpcadata.com/api/chartlist"
|
|
695
695
|
params = {"charttype": "5"}
|
|
696
696
|
r = requests.get(url=url, params=params)
|
|
697
697
|
data_json = r.json()
|
|
@@ -724,11 +724,11 @@ def car_market_fuel_cpca(symbol: str = "整体市场") -> pd.DataFrame:
|
|
|
724
724
|
乘联会-统计数据-新能源细分市场
|
|
725
725
|
:param symbol: choice of {"整体市场", "销量占比-PHEV-BEV", "销量占比-ICE-NEV"}
|
|
726
726
|
:type symbol: str
|
|
727
|
-
https://data.
|
|
727
|
+
https://data.cpcadata.com/FuelMarket
|
|
728
728
|
:return: 新能源细分市场
|
|
729
729
|
:rtype: pandas.DataFrame
|
|
730
730
|
"""
|
|
731
|
-
url = "http://data.
|
|
731
|
+
url = "http://data.cpcadata.com/api/chartlist"
|
|
732
732
|
params = {"charttype": "6"}
|
|
733
733
|
r = requests.get(url, params=params)
|
|
734
734
|
data_json = r.json()
|
akshare/spot/spot_hog_soozhu.py
CHANGED
|
@@ -38,6 +38,33 @@ def spot_hog_soozhu() -> pd.DataFrame:
|
|
|
38
38
|
return big_df
|
|
39
39
|
|
|
40
40
|
|
|
41
|
+
def spot_hog_year_trend_soozhu() -> pd.DataFrame:
|
|
42
|
+
"""
|
|
43
|
+
搜猪-生猪大数据-今年以来全国出栏均价走势
|
|
44
|
+
https://www.soozhu.com/price/data/center/
|
|
45
|
+
:return: 今年以来全国出栏均价走势
|
|
46
|
+
:rtype: pd.DataFrame
|
|
47
|
+
"""
|
|
48
|
+
session = requests.session()
|
|
49
|
+
url = "https://www.soozhu.com/price/data/center/"
|
|
50
|
+
r = session.get(url)
|
|
51
|
+
soup = BeautifulSoup(r.text, features="lxml")
|
|
52
|
+
token = soup.find(name="input", attrs={"name": "csrfmiddlewaretoken"})["value"]
|
|
53
|
+
url = "https://www.soozhu.com/price/data/center/"
|
|
54
|
+
payload = {"act": "yeartrend", "csrfmiddlewaretoken": token}
|
|
55
|
+
r = session.post(url, data=payload)
|
|
56
|
+
data_json = r.json()
|
|
57
|
+
temp_df = pd.DataFrame(data_json["nationlist"])
|
|
58
|
+
temp_df.columns = ["日期", "价格"]
|
|
59
|
+
temp_df["日期"] = pd.to_datetime(temp_df["日期"], errors="coerce").dt.date
|
|
60
|
+
temp_df["价格"] = pd.to_numeric(temp_df["价格"], errors="coerce")
|
|
61
|
+
temp_df.sort_values(by=["日期"], ignore_index=True, inplace=True)
|
|
62
|
+
return temp_df
|
|
63
|
+
|
|
64
|
+
|
|
41
65
|
if __name__ == "__main__":
|
|
42
66
|
spot_hog_soozhu_df = spot_hog_soozhu()
|
|
43
67
|
print(spot_hog_soozhu_df)
|
|
68
|
+
|
|
69
|
+
spot_hog_year_trend_soozhu_df = spot_hog_year_trend_soozhu()
|
|
70
|
+
print(spot_hog_year_trend_soozhu_df)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
akshare/__init__.py,sha256=
|
|
1
|
+
akshare/__init__.py,sha256=pEmZLvGV4WCO1j-1Zxi6NeOAG2U-z5g8Rxbq2oxaRv4,180229
|
|
2
2
|
akshare/datasets.py,sha256=oIu1zC7o_LMHY22lQmdM7vCnryHibKrJLBqJwQiitlI,1167
|
|
3
3
|
akshare/air/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
|
|
4
4
|
akshare/air/air_hebei.py,sha256=xIXNGLK7IGYqrkteM9fxnHAwWqk6PCQs6D9-ggZ7byY,4442
|
|
@@ -75,7 +75,7 @@ akshare/event/migration.py,sha256=2lR3D_XHRlOKiarBSbjQVEIm3Spj5hbZIwDOvcyKsEU,37
|
|
|
75
75
|
akshare/file_fold/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
|
|
76
76
|
akshare/file_fold/calendar.json,sha256=gKqhd5CrXPGbhfztADaT6WjDDGrxGoxIOKGjB1VUsLk,116370
|
|
77
77
|
akshare/fortune/__init__.py,sha256=4OCuVKMykUB3Ubm8WogA814U5EGLdrexmfTAOcBnYM4,82
|
|
78
|
-
akshare/fortune/fortune_500.py,sha256=
|
|
78
|
+
akshare/fortune/fortune_500.py,sha256=V3d3KDHn89j3CItVtSDtDvj1RbHX-OJ4rYRhFTMT0kI,4485
|
|
79
79
|
akshare/fortune/fortune_bloomberg.py,sha256=i5HqnICYXKmwy3rOvMLDzJPDJA_am8imKsXzNlLLU6g,3673
|
|
80
80
|
akshare/fortune/fortune_forbes_500.py,sha256=GiHFZ_dLHkc3K03H1rfVQ0FEGbwOWjdF4CFlRXXWBIM,1437
|
|
81
81
|
akshare/fortune/fortune_hurun.py,sha256=B2BMDdwsatY5Yo2hX03GBqMJyifPhQzsRTXhelVNs6s,11512
|
|
@@ -208,7 +208,7 @@ akshare/option/option_risk_analysis_em.py,sha256=WYwjXzZhIr8WpwoVKXfAnFA7Ylx_vLQ
|
|
|
208
208
|
akshare/option/option_risk_indicator_sse.py,sha256=W1_mGrk8M9pbbadzSAy5euWMEGn4-cVWBc8Jk_I2WmI,2484
|
|
209
209
|
akshare/option/option_value_analysis_em.py,sha256=XAHbSvUvcmyuv6rr2hxxGalWcKK8EqaP2L8G7p8woko,2487
|
|
210
210
|
akshare/other/__init__.py,sha256=guH4GLhFcE_5iaMHOHtgK7QKa0i7esYdmZFfJMG6E10,82
|
|
211
|
-
akshare/other/other_car_cpca.py,sha256=
|
|
211
|
+
akshare/other/other_car_cpca.py,sha256=hCBNUrCI2l3OCP3Gqgr_4zpyzhO99XCBoiwkIhUM3r0,34987
|
|
212
212
|
akshare/other/other_car_gasgoo.py,sha256=KaCMVPydiGJvhJN9eZEvObygYquCsSgsZkQRB0J6srk,3046
|
|
213
213
|
akshare/pro/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
214
214
|
akshare/pro/client.py,sha256=p9r3fZYGgfMplQwGLo8oPAen8w65xennP5D1Ca89im4,2248
|
|
@@ -226,9 +226,8 @@ akshare/reits/__init__.py,sha256=0MO0aWWC8jQBth2IPl3W63vZKvuDb1OJqIpHE-sCQVU,82
|
|
|
226
226
|
akshare/reits/reits_basic.py,sha256=gxQeP8_K7SYjBT9zkKuVRRi8B4SPOHNqVdXe_UvTWTY,2730
|
|
227
227
|
akshare/sport/__init__.py,sha256=aMsxmuOMZFkcI8tGmQanhPyPwyBpdeApAWyCtDRKMeg,81
|
|
228
228
|
akshare/sport/sport_olympic.py,sha256=CB1cvLpz2BWuadfonhHuQ17Qxt9X_3ks0Zc5Bff2w9k,818
|
|
229
|
-
akshare/sport/sport_olympic_winter.py,sha256=l_NhDpYfUBJMCLDezIa8un1S5Z_R6giv8EsuTRXgt6E,1473
|
|
230
229
|
akshare/spot/__init__.py,sha256=VGuha94pXYoezmMs3F3Q_ofaN8RZIrkJ2NtVv8hWCjY,83
|
|
231
|
-
akshare/spot/spot_hog_soozhu.py,sha256=
|
|
230
|
+
akshare/spot/spot_hog_soozhu.py,sha256=4l040e30BIaqheivlQv-0H6AqR1zwvN5JKYYrZxfqlk,2641
|
|
232
231
|
akshare/spot/spot_price_qh.py,sha256=rRv09vR8K0U_x6x8AiLgGluxytIXkLatFNVkFbIh8eQ,3756
|
|
233
232
|
akshare/spot/spot_sge.py,sha256=Ta5EHUlGCSpNDlufIJcwgCErsJEUgH6HJHzYxoYtaMk,6313
|
|
234
233
|
akshare/stock/__init__.py,sha256=jSa9260d6aNZajaW68chI2mpPkDSXLOgi3eXrqo4MQ8,82
|
|
@@ -381,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
|
|
|
381
380
|
akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
|
|
382
381
|
tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
|
|
383
382
|
tests/test_func.py,sha256=tfvy_YnYmDra2dkKZ5JvprU1gNW5X9T634PszdSdH1A,944
|
|
384
|
-
akshare-1.14.
|
|
385
|
-
akshare-1.14.
|
|
386
|
-
akshare-1.14.
|
|
387
|
-
akshare-1.14.
|
|
388
|
-
akshare-1.14.
|
|
383
|
+
akshare-1.14.49.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
|
|
384
|
+
akshare-1.14.49.dist-info/METADATA,sha256=XEyUrgLciEc2YOB6U9tmiaD1US6deNhqAPO26RWL3aI,13976
|
|
385
|
+
akshare-1.14.49.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
|
|
386
|
+
akshare-1.14.49.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
|
|
387
|
+
akshare-1.14.49.dist-info/RECORD,,
|
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
# -*- coding:utf-8 -*-
|
|
3
|
-
"""
|
|
4
|
-
Date: 2022/2/8 17:14
|
|
5
|
-
Desc: 腾讯运动-冬奥会-历届奖牌榜
|
|
6
|
-
https://m.sports.qq.com/g/sv3/winter-oly22/winter-olympic-rank.htm?type=0
|
|
7
|
-
"""
|
|
8
|
-
import requests
|
|
9
|
-
import pandas as pd
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
def sport_olympic_winter_hist() -> pd.DataFrame:
|
|
13
|
-
"""
|
|
14
|
-
腾讯运动-冬奥会-历届奖牌榜
|
|
15
|
-
:return: 历届奖牌榜
|
|
16
|
-
:rtype: pandas.DataFrame
|
|
17
|
-
"""
|
|
18
|
-
url = "https://app.sports.qq.com/m/oly/historyMedal"
|
|
19
|
-
r = requests.get(url)
|
|
20
|
-
data_json = r.json()
|
|
21
|
-
temp_df = pd.DataFrame(data_json["data"]["list"])
|
|
22
|
-
temp_df = temp_df.explode("list")
|
|
23
|
-
temp_df["国家及地区"] = temp_df["list"].apply(lambda x: (x["noc"]))
|
|
24
|
-
temp_df["金牌数"] = temp_df["list"].apply(lambda x: (int(x["gold"])))
|
|
25
|
-
temp_df["总奖牌数"] = temp_df["list"].apply(lambda x: (int(x["total"])))
|
|
26
|
-
temp_df["举办年份"] = temp_df["year"].astype("str")
|
|
27
|
-
temp_df["届数"] = temp_df["no"].astype("str")
|
|
28
|
-
temp_df["举办地点"] = temp_df["country"]
|
|
29
|
-
temp_df = temp_df[["举办年份", "届数", "举办地点", "国家及地区", "金牌数", "总奖牌数"]]
|
|
30
|
-
temp_df = temp_df.replace("俄罗斯奥委会", "俄罗斯")
|
|
31
|
-
temp_df.reset_index(inplace=True)
|
|
32
|
-
temp_df["index"] = range(1, len(temp_df) + 1)
|
|
33
|
-
temp_df.rename(columns={"index": "序号"}, inplace=True)
|
|
34
|
-
return temp_df
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
if __name__ == "__main__":
|
|
38
|
-
sport_olympic_winter_hist_df = sport_olympic_winter_hist()
|
|
39
|
-
print(sport_olympic_winter_hist_df)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|