akshare 1.12.99__py3-none-any.whl → 1.15.73__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of akshare might be problematic. Click here for more details.
- akshare/__init__.py +442 -138
- akshare/air/air_hebei.py +79 -53
- akshare/air/air_zhenqi.py +29 -43
- akshare/air/sunrise_tad.py +32 -17
- akshare/bank/bank_cbirc_2020.py +12 -9
- akshare/bond/bond_cb_ths.py +17 -9
- akshare/bond/bond_china.py +38 -39
- akshare/bond/bond_china_money.py +75 -48
- akshare/bond/bond_info_cm.py +28 -8
- akshare/bond/bond_issue_cninfo.py +73 -30
- akshare/bond/bond_zh_cov.py +1 -1
- akshare/bond/bond_zh_sina.py +57 -51
- akshare/cal/__init__.py +0 -0
- akshare/cal/rv.py +170 -0
- akshare/cost/cost_living.py +7 -5
- akshare/currency/currency_safe.py +7 -6
- akshare/data/cninfo.js +15 -0
- akshare/datasets.py +10 -21
- akshare/economic/macro_bank.py +95 -653
- akshare/economic/macro_china.py +772 -1024
- akshare/economic/macro_china_hk.py +65 -243
- akshare/economic/macro_china_nbs.py +24 -7
- akshare/economic/macro_constitute.py +17 -12
- akshare/economic/macro_euro.py +13 -6
- akshare/economic/macro_finance_ths.py +133 -0
- akshare/economic/macro_info_ws.py +100 -0
- akshare/economic/macro_japan.py +5 -4
- akshare/economic/macro_other.py +12 -9
- akshare/economic/macro_usa.py +376 -1940
- akshare/economic/marco_cnbs.py +11 -6
- akshare/energy/energy_carbon.py +94 -125
- akshare/event/migration.py +3 -2
- akshare/exceptions.py +43 -0
- akshare/file_fold/calendar.json +245 -2
- akshare/fortune/fortune_500.py +15 -48
- akshare/fund/fund_amac.py +157 -75
- akshare/fund/fund_em.py +191 -184
- akshare/fund/fund_etf_em.py +16 -15
- akshare/fund/fund_etf_sina.py +71 -23
- akshare/fund/fund_etf_ths.py +93 -0
- akshare/fund/fund_fee_em.py +98 -0
- akshare/fund/fund_portfolio_em.py +60 -50
- akshare/fund/fund_rank_em.py +91 -82
- akshare/fund/fund_report_cninfo.py +63 -48
- akshare/fund/fund_scale_sina.py +20 -10
- akshare/fund/fund_xq.py +139 -109
- akshare/futures/cons.py +8 -31
- akshare/futures/cot.py +185 -137
- akshare/futures/futures_basis.py +97 -32
- akshare/futures/futures_comm_ctp.py +37 -0
- akshare/futures/futures_comm_qihuo.py +74 -45
- akshare/futures/futures_daily_bar.py +121 -184
- akshare/futures/futures_hf_em.py +66 -61
- akshare/futures/futures_hq_sina.py +79 -61
- akshare/futures/futures_index_ccidx.py +6 -3
- akshare/futures/futures_inventory_99.py +61 -272
- akshare/futures/futures_news_shmet.py +4 -2
- akshare/futures/futures_roll_yield.py +12 -25
- akshare/futures/futures_spot_stock_em.py +19 -13
- akshare/futures/futures_stock_js.py +14 -12
- akshare/futures/futures_to_spot.py +38 -33
- akshare/futures/futures_warehouse_receipt.py +75 -71
- akshare/futures/futures_zh_sina.py +5 -5
- akshare/futures/symbol_var.py +18 -13
- akshare/futures_derivative/futures_contract_info_czce.py +60 -52
- akshare/futures_derivative/futures_contract_info_ine.py +43 -34
- akshare/futures_derivative/futures_contract_info_shfe.py +46 -35
- akshare/futures_derivative/futures_cot_sina.py +26 -19
- akshare/futures_derivative/futures_spot_sys.py +21 -8
- akshare/fx/currency_investing.py +19 -285
- akshare/index/index_cflp.py +29 -26
- akshare/index/index_cni.py +86 -88
- akshare/index/index_cons.py +26 -10
- akshare/index/index_cx.py +248 -47
- akshare/index/index_drewry.py +17 -16
- akshare/index/index_option_qvix.py +329 -0
- akshare/index/index_research_fund_sw.py +134 -0
- akshare/index/{index_sw_research.py → index_research_sw.py} +122 -58
- akshare/index/index_spot.py +9 -5
- akshare/index/index_stock_hk.py +35 -16
- akshare/index/index_stock_us_sina.py +1 -1
- akshare/index/index_stock_zh.py +180 -89
- akshare/index/index_stock_zh_csindex.py +15 -369
- akshare/index/index_sw.py +62 -34
- akshare/index/index_yw.py +46 -23
- akshare/index/index_zh_a_scope.py +48 -0
- akshare/index/index_zh_em.py +6 -4
- akshare/interest_rate/interbank_rate_em.py +14 -9
- akshare/movie/artist_yien.py +32 -5
- akshare/movie/movie_yien.py +92 -18
- akshare/movie/video_yien.py +28 -5
- akshare/news/news_baidu.py +78 -44
- akshare/news/news_cctv.py +38 -38
- akshare/news/news_stock.py +6 -3
- akshare/nlp/nlp_interface.py +7 -8
- akshare/option/cons.py +11 -11
- akshare/option/option_comm_qihuo.py +86 -0
- akshare/option/option_commodity.py +178 -51
- akshare/option/option_daily_stats_sse_szse.py +146 -0
- akshare/option/option_em.py +147 -138
- akshare/option/option_finance_sina.py +160 -137
- akshare/option/option_lhb_em.py +62 -56
- akshare/option/option_risk_indicator_sse.py +17 -14
- akshare/other/other_car_cpca.py +934 -0
- akshare/other/{other_car.py → other_car_gasgoo.py} +15 -54
- akshare/qdii/__init__.py +0 -0
- akshare/qdii/qdii_jsl.py +233 -0
- akshare/request.py +117 -0
- akshare/spot/spot_hog_soozhu.py +232 -0
- akshare/spot/spot_price_qh.py +121 -0
- akshare/spot/spot_sge.py +63 -10
- akshare/stock/stock_allotment_cninfo.py +10 -9
- akshare/stock/stock_board_concept_em.py +23 -14
- akshare/stock/stock_board_industry_em.py +40 -34
- akshare/stock/stock_cg_equity_mortgage.py +15 -11
- akshare/stock/stock_cg_guarantee.py +41 -51
- akshare/stock/stock_cg_lawsuit.py +36 -35
- akshare/stock/stock_dividend_cninfo.py +12 -6
- akshare/stock/stock_dzjy_em.py +347 -260
- akshare/stock/stock_fund_em.py +332 -84
- akshare/stock/stock_hk_famous.py +108 -0
- akshare/stock/stock_hk_sina.py +8 -7
- akshare/stock/stock_hold_control_cninfo.py +100 -15
- akshare/stock/stock_hold_control_em.py +4 -3
- akshare/stock/stock_hold_num_cninfo.py +18 -12
- akshare/stock/stock_hot_rank_em.py +2 -1
- akshare/stock/stock_hot_search_baidu.py +5 -2
- akshare/stock/stock_industry_cninfo.py +24 -18
- akshare/stock/stock_industry_pe_cninfo.py +45 -31
- akshare/stock/stock_industry_sw.py +9 -10
- akshare/stock/stock_info.py +25 -15
- akshare/stock/stock_info_em.py +5 -2
- akshare/stock/stock_intraday_em.py +5 -2
- akshare/stock/stock_intraday_sina.py +22 -18
- akshare/stock/stock_ipo_summary_cninfo.py +25 -10
- akshare/stock/stock_new_cninfo.py +32 -19
- akshare/stock/stock_news_cx.py +39 -0
- akshare/stock/stock_profile_cninfo.py +9 -8
- akshare/stock/stock_rank_forecast.py +8 -6
- akshare/stock/stock_share_changes_cninfo.py +18 -14
- akshare/stock/stock_share_hold.py +24 -19
- akshare/stock/stock_summary.py +54 -26
- akshare/stock/stock_us_famous.py +15 -6
- akshare/stock/stock_us_pink.py +7 -5
- akshare/stock/stock_us_sina.py +15 -12
- akshare/stock/stock_xq.py +38 -12
- akshare/stock/stock_zh_a_sina.py +53 -78
- akshare/stock/stock_zh_b_sina.py +32 -55
- akshare/stock/stock_zh_kcb_report.py +11 -9
- akshare/stock/stock_zh_kcb_sina.py +67 -64
- akshare/stock_feature/stock_a_below_net_asset_statistics.py +5 -2
- akshare/stock_feature/stock_a_high_low.py +5 -2
- akshare/stock_feature/stock_a_indicator.py +12 -9
- akshare/stock_feature/stock_a_pe_and_pb.py +27 -6
- akshare/stock_feature/stock_account_em.py +58 -40
- akshare/stock_feature/stock_analyst_em.py +36 -27
- akshare/stock_feature/stock_board_industry_ths.py +136 -400
- akshare/stock_feature/stock_comment_em.py +118 -85
- akshare/stock_feature/stock_concept_futu.py +183 -0
- akshare/stock_feature/stock_cyq_em.py +58 -54
- akshare/stock_feature/stock_disclosure_cninfo.py +147 -102
- akshare/stock_feature/stock_esg_sina.py +216 -11
- akshare/stock_feature/stock_fhps_em.py +60 -25
- akshare/stock_feature/stock_fhps_ths.py +25 -6
- akshare/stock_feature/stock_fund_flow.py +38 -25
- akshare/stock_feature/stock_gdfx_em.py +180 -95
- akshare/stock_feature/stock_gdhs.py +73 -49
- akshare/stock_feature/stock_gpzy_em.py +78 -46
- akshare/stock_feature/stock_hist_em.py +55 -23
- akshare/stock_feature/stock_hk_valuation_baidu.py +20 -8
- akshare/stock_feature/stock_hsgt_em.py +184 -452
- akshare/stock_feature/stock_info.py +52 -29
- akshare/stock_feature/stock_inner_trade_xq.py +39 -31
- akshare/stock_feature/stock_irm_cninfo.py +32 -9
- akshare/stock_feature/stock_jgdy_em.py +41 -38
- akshare/stock_feature/stock_lh_yybpm.py +36 -37
- akshare/stock_feature/stock_lhb_em.py +135 -71
- akshare/stock_feature/stock_lhb_sina.py +93 -46
- akshare/stock_feature/stock_margin_em.py +102 -0
- akshare/stock_feature/{stock_sse_margin.py → stock_margin_sse.py} +21 -15
- akshare/stock_feature/{stock_szse_margin.py → stock_margin_szse.py} +23 -19
- akshare/stock_feature/stock_market_legu.py +13 -8
- akshare/stock_feature/stock_pankou_em.py +72 -34
- akshare/stock_feature/stock_report_em.py +244 -54
- akshare/stock_feature/stock_research_report_em.py +48 -19
- akshare/stock_feature/stock_sns_sseinfo.py +15 -12
- akshare/stock_feature/stock_sy_em.py +86 -33
- akshare/stock_feature/stock_technology_ths.py +152 -120
- akshare/stock_feature/stock_tfp_em.py +35 -13
- akshare/stock_feature/stock_three_report_em.py +119 -77
- akshare/stock_feature/stock_ttm_lyr.py +4 -7
- akshare/stock_feature/stock_value_em.py +83 -0
- akshare/stock_feature/stock_wencai.py +21 -9
- akshare/stock_feature/stock_yjyg_em.py +63 -28
- akshare/stock_feature/stock_zf_pg.py +61 -38
- akshare/stock_feature/stock_zh_valuation_baidu.py +3 -2
- akshare/stock_feature/stock_ztb_em.py +62 -40
- akshare/stock_fundamental/stock_finance.py +150 -58
- akshare/stock_fundamental/stock_finance_ths.py +116 -31
- akshare/stock_fundamental/stock_mda_ym.py +5 -3
- akshare/stock_fundamental/stock_notice.py +29 -15
- akshare/stock_fundamental/stock_profit_forecast_em.py +31 -13
- akshare/stock_fundamental/stock_profit_forecast_ths.py +19 -10
- akshare/stock_fundamental/stock_register_em.py +448 -0
- akshare/stock_fundamental/stock_restricted_em.py +79 -32
- akshare/stock_fundamental/stock_zygc.py +10 -8
- akshare/stock_fundamental/stock_zyjs_ths.py +5 -3
- akshare/tool/trade_date_hist.py +4 -3
- akshare/utils/cons.py +10 -0
- akshare/utils/context.py +43 -0
- akshare/utils/demjson.py +2 -2
- akshare/utils/func.py +26 -0
- akshare/utils/tqdm.py +13 -3
- {akshare-1.12.99.dist-info → akshare-1.15.73.dist-info}/METADATA +52 -69
- akshare-1.15.73.dist-info/RECORD +385 -0
- {akshare-1.12.99.dist-info → akshare-1.15.73.dist-info}/WHEEL +1 -1
- tests/test_func.py +3 -5
- akshare/bond/bond_futures.py +0 -50
- akshare/bond/bond_investing.py +0 -139
- akshare/crypto/crypto_hist_investing.py +0 -249
- akshare/fortune/fortune_it_juzi.py +0 -123
- akshare/futures/futures_international.py +0 -170
- akshare/futures/futures_news_baidu.py +0 -54
- akshare/futures/inventory_data.py +0 -100
- akshare/futures_derivative/futures_index_price_nh.py +0 -61
- akshare/futures_derivative/futures_index_return_nh.py +0 -47
- akshare/futures_derivative/futures_index_volatility_nh.py +0 -51
- akshare/futures_derivative/futures_other_index_nh.py +0 -145
- akshare/index/index_fear_greed_funddb.py +0 -71
- akshare/index/index_investing.py +0 -232
- akshare/sport/sport_olympic_winter.py +0 -39
- akshare/stock_feature/stock_board_concept_ths.py +0 -422
- akshare/stock_fundamental/stock_register.py +0 -292
- akshare-1.12.99.dist-info/RECORD +0 -374
- {akshare-1.12.99.dist-info → akshare-1.15.73.dist-info}/LICENSE +0 -0
- {akshare-1.12.99.dist-info → akshare-1.15.73.dist-info}/top_level.txt +0 -0
|
@@ -1,16 +1,17 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
2
|
# -*- coding:utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Date:
|
|
4
|
+
Date: 2024/4/4 19:00
|
|
5
5
|
Desc: 东方财富网-概念板-行情中心-日K-筹码分布
|
|
6
6
|
https://quote.eastmoney.com/concept/sz000001.html
|
|
7
7
|
"""
|
|
8
|
+
|
|
8
9
|
import json
|
|
9
10
|
from datetime import datetime
|
|
10
11
|
|
|
11
12
|
import pandas as pd
|
|
12
13
|
import requests
|
|
13
|
-
|
|
14
|
+
import py_mini_racer
|
|
14
15
|
|
|
15
16
|
from akshare.stock_feature.stock_hist_em import code_id_map_em
|
|
16
17
|
|
|
@@ -34,6 +35,9 @@ def stock_cyq_em(symbol: str = "000001", adjust: str = "") -> pd.DataFrame:
|
|
|
34
35
|
* @param {number} index 当前选中的K线的索引
|
|
35
36
|
* @return {{x: Array.<number>, y: Array.<number>}}
|
|
36
37
|
*/
|
|
38
|
+
/**
|
|
39
|
+
this.range = 120;
|
|
40
|
+
*/
|
|
37
41
|
function CYQCalculator(index, klinedata) {
|
|
38
42
|
var maxprice = 0;
|
|
39
43
|
var minprice = 0;
|
|
@@ -222,35 +226,35 @@ def stock_cyq_em(symbol: str = "000001", adjust: str = "") -> pd.DataFrame:
|
|
|
222
226
|
url = "https://push2his.eastmoney.com/api/qt/stock/kline/get"
|
|
223
227
|
params = {
|
|
224
228
|
"secid": f"{code_id_dict[symbol]}.{symbol}",
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
229
|
+
"ut": "fa5fd1943c7b386f172d6893dbfba10b",
|
|
230
|
+
"fields1": "f1,f2,f3,f4,f5,f6",
|
|
231
|
+
"fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61",
|
|
232
|
+
"klt": "101",
|
|
233
|
+
"fqt": adjust_dict[adjust],
|
|
234
|
+
"end": datetime.now().date().strftime("%Y%m%d"),
|
|
235
|
+
"lmt": "210",
|
|
236
|
+
"cb": "quote_jp1",
|
|
233
237
|
}
|
|
234
238
|
r = requests.get(url, params=params)
|
|
235
239
|
data_json = r.text.strip("quote_jp1(").strip(");")
|
|
236
240
|
data_json = json.loads(data_json)
|
|
237
|
-
temp_df = pd.DataFrame([item.split(",") for item in data_json[
|
|
241
|
+
temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]["klines"]])
|
|
238
242
|
temp_df.columns = [
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
243
|
+
"date",
|
|
244
|
+
"open",
|
|
245
|
+
"close",
|
|
246
|
+
"high",
|
|
247
|
+
"low",
|
|
248
|
+
"volume",
|
|
249
|
+
"volume_money",
|
|
250
|
+
"zf",
|
|
251
|
+
"zdf",
|
|
252
|
+
"zde",
|
|
253
|
+
"hsl",
|
|
250
254
|
]
|
|
251
255
|
for item in temp_df.columns[1:]:
|
|
252
256
|
temp_df[item] = pd.to_numeric(temp_df[item])
|
|
253
|
-
temp_df[
|
|
257
|
+
temp_df["index"] = range(0, len(temp_df))
|
|
254
258
|
records = temp_df.to_dict(orient="records")
|
|
255
259
|
date_list = []
|
|
256
260
|
benefit_part = []
|
|
@@ -263,27 +267,27 @@ def stock_cyq_em(symbol: str = "000001", adjust: str = "") -> pd.DataFrame:
|
|
|
263
267
|
pct_90_con = []
|
|
264
268
|
for i in range(0, len(records)):
|
|
265
269
|
mcode = js_code.call("CYQCalculator", i, records)
|
|
266
|
-
date_list.append(records[i][
|
|
267
|
-
benefit_part.append(mcode[
|
|
268
|
-
avg_cost.append(mcode[
|
|
269
|
-
pct_70_low.append(mcode["percentChips"][
|
|
270
|
-
pct_70_high.append(mcode["percentChips"][
|
|
271
|
-
pct_90_low.append(mcode["percentChips"][
|
|
272
|
-
pct_90_high.append(mcode["percentChips"][
|
|
273
|
-
pct_70_con.append(mcode["percentChips"][
|
|
274
|
-
pct_90_con.append(mcode["percentChips"][
|
|
275
|
-
temp_df = pd.DataFrame(
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
270
|
+
date_list.append(records[i]["date"])
|
|
271
|
+
benefit_part.append(mcode["benefitPart"])
|
|
272
|
+
avg_cost.append(mcode["avgCost"])
|
|
273
|
+
pct_70_low.append(mcode["percentChips"]["70"]["priceRange"][0])
|
|
274
|
+
pct_70_high.append(mcode["percentChips"]["70"]["priceRange"][1])
|
|
275
|
+
pct_90_low.append(mcode["percentChips"]["90"]["priceRange"][0])
|
|
276
|
+
pct_90_high.append(mcode["percentChips"]["90"]["priceRange"][1])
|
|
277
|
+
pct_70_con.append(mcode["percentChips"]["70"]["concentration"])
|
|
278
|
+
pct_90_con.append(mcode["percentChips"]["90"]["concentration"])
|
|
279
|
+
temp_df = pd.DataFrame(
|
|
280
|
+
[
|
|
281
|
+
date_list,
|
|
282
|
+
benefit_part,
|
|
283
|
+
avg_cost,
|
|
284
|
+
pct_90_low,
|
|
285
|
+
pct_90_high,
|
|
286
|
+
pct_90_con,
|
|
287
|
+
pct_70_low,
|
|
288
|
+
pct_70_high,
|
|
289
|
+
pct_70_con,
|
|
290
|
+
]
|
|
287
291
|
).T
|
|
288
292
|
temp_df.columns = [
|
|
289
293
|
"日期",
|
|
@@ -296,20 +300,20 @@ def stock_cyq_em(symbol: str = "000001", adjust: str = "") -> pd.DataFrame:
|
|
|
296
300
|
"70成本-高",
|
|
297
301
|
"70集中度",
|
|
298
302
|
]
|
|
299
|
-
temp_df[
|
|
300
|
-
temp_df[
|
|
301
|
-
temp_df[
|
|
302
|
-
temp_df[
|
|
303
|
-
temp_df[
|
|
304
|
-
temp_df[
|
|
305
|
-
temp_df[
|
|
306
|
-
temp_df[
|
|
307
|
-
temp_df[
|
|
303
|
+
temp_df["日期"] = pd.to_datetime(temp_df["日期"], errors="coerce").dt.date
|
|
304
|
+
temp_df["获利比例"] = pd.to_numeric(temp_df["获利比例"], errors="coerce")
|
|
305
|
+
temp_df["平均成本"] = pd.to_numeric(temp_df["平均成本"], errors="coerce")
|
|
306
|
+
temp_df["90成本-低"] = pd.to_numeric(temp_df["90成本-低"], errors="coerce")
|
|
307
|
+
temp_df["90成本-高"] = pd.to_numeric(temp_df["90成本-高"], errors="coerce")
|
|
308
|
+
temp_df["90集中度"] = pd.to_numeric(temp_df["90集中度"], errors="coerce")
|
|
309
|
+
temp_df["70成本-低"] = pd.to_numeric(temp_df["70成本-低"], errors="coerce")
|
|
310
|
+
temp_df["70成本-高"] = pd.to_numeric(temp_df["70成本-高"], errors="coerce")
|
|
311
|
+
temp_df["70集中度"] = pd.to_numeric(temp_df["70集中度"], errors="coerce")
|
|
308
312
|
temp_df = temp_df.iloc[-90:, :].copy()
|
|
309
313
|
temp_df.reset_index(inplace=True, drop=True)
|
|
310
314
|
return temp_df
|
|
311
315
|
|
|
312
316
|
|
|
313
|
-
if __name__ ==
|
|
317
|
+
if __name__ == "__main__":
|
|
314
318
|
stock_cyq_em_df = stock_cyq_em(symbol="000001", adjust="")
|
|
315
319
|
print(stock_cyq_em_df)
|
|
@@ -1,10 +1,11 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
2
|
# -*- coding:utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Date:
|
|
4
|
+
Date: 2024/5/1 20:00
|
|
5
5
|
Desc: 巨潮资讯-首页-公告查询-信息披露
|
|
6
6
|
http://www.cninfo.com.cn/new/commonUrl/pageOfSearch?url=disclosure/list/search
|
|
7
7
|
"""
|
|
8
|
+
|
|
8
9
|
import math
|
|
9
10
|
from functools import lru_cache
|
|
10
11
|
|
|
@@ -22,33 +23,34 @@ def __get_category_dict() -> dict:
|
|
|
22
23
|
:return: dict
|
|
23
24
|
:rtype: dict
|
|
24
25
|
"""
|
|
25
|
-
big_dict = {
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
26
|
+
big_dict = {
|
|
27
|
+
"年报": "category_ndbg_szsh",
|
|
28
|
+
"半年报": "category_bndbg_szsh",
|
|
29
|
+
"一季报": "category_yjdbg_szsh",
|
|
30
|
+
"三季报": "category_sjdbg_szsh",
|
|
31
|
+
"业绩预告": "category_yjygjxz_szsh",
|
|
32
|
+
"权益分派": "category_qyfpxzcs_szsh",
|
|
33
|
+
"董事会": "category_dshgg_szsh",
|
|
34
|
+
"监事会": "category_jshgg_szsh",
|
|
35
|
+
"股东大会": "category_gddh_szsh",
|
|
36
|
+
"日常经营": "category_rcjy_szsh",
|
|
37
|
+
"公司治理": "category_gszl_szsh",
|
|
38
|
+
"中介报告": "category_zj_szsh",
|
|
39
|
+
"首发": "category_sf_szsh",
|
|
40
|
+
"增发": "category_zf_szsh",
|
|
41
|
+
"股权激励": "category_gqjl_szsh",
|
|
42
|
+
"配股": "category_pg_szsh",
|
|
43
|
+
"解禁": "category_jj_szsh",
|
|
44
|
+
"公司债": "category_gszq_szsh",
|
|
45
|
+
"可转债": "category_kzzq_szsh",
|
|
46
|
+
"其他融资": "category_qtrz_szsh",
|
|
47
|
+
"股权变动": "category_gqbd_szsh",
|
|
48
|
+
"补充更正": "category_bcgz_szsh",
|
|
49
|
+
"澄清致歉": "category_cqdq_szsh",
|
|
50
|
+
"风险提示": "category_fxts_szsh",
|
|
51
|
+
"特别处理和退市": "category_tbclts_szsh",
|
|
52
|
+
"退市整理期": "category_tszlq_szsh",
|
|
53
|
+
}
|
|
52
54
|
return big_dict
|
|
53
55
|
|
|
54
56
|
|
|
@@ -74,16 +76,17 @@ def __get_stock_json(symbol: str = "沪深京") -> dict:
|
|
|
74
76
|
url = "http://www.cninfo.com.cn/new/data/bond_stock.json"
|
|
75
77
|
r = requests.get(url)
|
|
76
78
|
text_json = r.json()
|
|
77
|
-
temp_df = pd.DataFrame([item for item in text_json[
|
|
78
|
-
return dict(zip(temp_df[
|
|
79
|
+
temp_df = pd.DataFrame([item for item in text_json["stockList"]])
|
|
80
|
+
return dict(zip(temp_df["code"], temp_df["orgId"]))
|
|
79
81
|
|
|
80
82
|
|
|
81
83
|
def stock_zh_a_disclosure_report_cninfo(
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
84
|
+
symbol: str = "000001",
|
|
85
|
+
market: str = "沪深京",
|
|
86
|
+
keyword: str = "",
|
|
87
|
+
category: str = "",
|
|
88
|
+
start_date: str = "20230618",
|
|
89
|
+
end_date: str = "20231219",
|
|
87
90
|
) -> pd.DataFrame:
|
|
88
91
|
"""
|
|
89
92
|
巨潮资讯-首页-公告查询-信息披露公告
|
|
@@ -92,7 +95,12 @@ def stock_zh_a_disclosure_report_cninfo(
|
|
|
92
95
|
:type symbol: str
|
|
93
96
|
:param market: choice of {"沪深京", "港股", "三板", "基金", "债券", "监管", "预披露"}
|
|
94
97
|
:type market: str
|
|
95
|
-
:param
|
|
98
|
+
:param keyword: 关键词
|
|
99
|
+
:type keyword: str
|
|
100
|
+
:param category: choice of {'年报', '半年报', '一季报', '三季报', '业绩预告', '权益分派',
|
|
101
|
+
'董事会', '监事会', '股东大会', '日常经营', '公司治理', '中介报告',
|
|
102
|
+
'首发', '增发', '股权激励', '配股', '解禁', '公司债', '可转债', '其他融资',
|
|
103
|
+
'股权变动', '补充更正', '澄清致歉', '风险提示', '特别处理和退市', '退市整理期'}
|
|
96
104
|
:type category: str
|
|
97
105
|
:param start_date: 开始时间
|
|
98
106
|
:type start_date: str
|
|
@@ -110,6 +118,7 @@ def stock_zh_a_disclosure_report_cninfo(
|
|
|
110
118
|
"监管": "regulator",
|
|
111
119
|
"预披露": "pre_disclosure",
|
|
112
120
|
}
|
|
121
|
+
stock_id_map = ""
|
|
113
122
|
if market == "沪深京":
|
|
114
123
|
stock_id_map = __get_stock_json(symbol)
|
|
115
124
|
category_dict = __get_category_dict()
|
|
@@ -117,24 +126,25 @@ def stock_zh_a_disclosure_report_cninfo(
|
|
|
117
126
|
stock_item = "" if symbol == "" else f"{symbol},{stock_id_map[symbol]}"
|
|
118
127
|
category_item = "" if category == "" else f"{category_dict[category]}"
|
|
119
128
|
payload = {
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
'
|
|
132
|
-
|
|
133
|
-
|
|
129
|
+
"pageNum": "1",
|
|
130
|
+
"pageSize": "30",
|
|
131
|
+
"column": column_map[market],
|
|
132
|
+
"tabName": "fulltext",
|
|
133
|
+
"plate": "",
|
|
134
|
+
"stock": stock_item,
|
|
135
|
+
"searchkey": keyword,
|
|
136
|
+
"secid": "",
|
|
137
|
+
"category": category_item,
|
|
138
|
+
"trade": "",
|
|
139
|
+
"seDate": f'{"-".join([start_date[:4], start_date[4:6], start_date[6:]])}~'
|
|
140
|
+
f'{"-".join([end_date[:4], end_date[4:6], end_date[6:]])}',
|
|
141
|
+
"sortName": "",
|
|
142
|
+
"sortType": "",
|
|
143
|
+
"isHLtitle": "true",
|
|
134
144
|
}
|
|
135
|
-
r = requests.post(url,
|
|
145
|
+
r = requests.post(url, params=payload)
|
|
136
146
|
text_json = r.json()
|
|
137
|
-
page_num = math.ceil(int(text_json[
|
|
147
|
+
page_num = math.ceil(int(text_json["totalAnnouncement"]) / 30)
|
|
138
148
|
big_df = pd.DataFrame()
|
|
139
149
|
tqdm = get_tqdm()
|
|
140
150
|
for page in tqdm(range(1, page_num + 1), leave=False):
|
|
@@ -142,27 +152,45 @@ def stock_zh_a_disclosure_report_cninfo(
|
|
|
142
152
|
r = requests.post(url, data=payload)
|
|
143
153
|
text_json = r.json()
|
|
144
154
|
temp_df = pd.DataFrame(text_json["announcements"])
|
|
145
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
146
|
-
big_df.rename(
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
156
|
+
big_df.rename(
|
|
157
|
+
columns={
|
|
158
|
+
"secCode": "代码",
|
|
159
|
+
"secName": "简称",
|
|
160
|
+
"announcementTitle": "公告标题",
|
|
161
|
+
"announcementTime": "公告时间",
|
|
162
|
+
},
|
|
163
|
+
inplace=True,
|
|
164
|
+
)
|
|
165
|
+
big_df = big_df[["代码", "简称", "公告标题", "公告时间", "announcementId", "orgId"]]
|
|
166
|
+
big_df["公告时间"] = pd.to_datetime(
|
|
167
|
+
big_df["公告时间"], unit="ms", utc=True, errors="coerce"
|
|
168
|
+
)
|
|
169
|
+
big_df["公告时间"] = (
|
|
170
|
+
big_df["公告时间"]
|
|
171
|
+
.dt.tz_convert("Asia/Shanghai")
|
|
172
|
+
.dt.tz_localize(None)
|
|
173
|
+
.astype(str)
|
|
174
|
+
)
|
|
155
175
|
url_list = []
|
|
156
|
-
for item in zip(
|
|
157
|
-
|
|
176
|
+
for item in zip(
|
|
177
|
+
big_df["代码"], big_df["announcementId"], big_df["orgId"], big_df["公告时间"]
|
|
178
|
+
):
|
|
179
|
+
url_format = (
|
|
180
|
+
f"http://www.cninfo.com.cn/new/disclosure/detail?stockCode={item[0]}&"
|
|
181
|
+
f"announcementId={item[1]}&orgId={item[2]}&announcementTime={item[3]}"
|
|
182
|
+
)
|
|
158
183
|
url_list.append(url_format)
|
|
159
|
-
big_df[
|
|
184
|
+
big_df["公告链接"] = url_list
|
|
160
185
|
big_df = big_df[["代码", "简称", "公告标题", "公告时间", "公告链接"]]
|
|
161
186
|
return big_df
|
|
162
187
|
|
|
163
188
|
|
|
164
189
|
def stock_zh_a_disclosure_relation_cninfo(
|
|
165
|
-
|
|
190
|
+
symbol: str = "000001",
|
|
191
|
+
market: str = "沪深京",
|
|
192
|
+
start_date: str = "20230618",
|
|
193
|
+
end_date: str = "20231219",
|
|
166
194
|
) -> pd.DataFrame:
|
|
167
195
|
"""
|
|
168
196
|
巨潮资讯-首页-数据-预约披露调研
|
|
@@ -187,29 +215,31 @@ def stock_zh_a_disclosure_relation_cninfo(
|
|
|
187
215
|
"监管": "regulator",
|
|
188
216
|
"预披露": "pre_disclosure",
|
|
189
217
|
}
|
|
218
|
+
stock_id_map = ""
|
|
190
219
|
if market == "沪深京":
|
|
191
220
|
stock_id_map = __get_stock_json(symbol)
|
|
192
221
|
stock_item = "" if symbol == "" else f"{symbol},{stock_id_map[symbol]}"
|
|
193
222
|
url = "http://www.cninfo.com.cn/new/hisAnnouncement/query"
|
|
194
223
|
payload = {
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
'
|
|
207
|
-
|
|
208
|
-
|
|
224
|
+
"pageNum": "1",
|
|
225
|
+
"pageSize": "30",
|
|
226
|
+
"column": column_map[market],
|
|
227
|
+
"tabName": "relation",
|
|
228
|
+
"plate": "",
|
|
229
|
+
"stock": stock_item,
|
|
230
|
+
"searchkey": "",
|
|
231
|
+
"secid": "",
|
|
232
|
+
"category": "",
|
|
233
|
+
"trade": "",
|
|
234
|
+
"seDate": f'{"-".join([start_date[:4], start_date[4:6], start_date[6:]])}~'
|
|
235
|
+
f'{"-".join([end_date[:4], end_date[4:6], end_date[6:]])}',
|
|
236
|
+
"sortName": "",
|
|
237
|
+
"sortType": "",
|
|
238
|
+
"isHLtitle": "true",
|
|
209
239
|
}
|
|
210
240
|
r = requests.post(url, data=payload)
|
|
211
241
|
text_json = r.json()
|
|
212
|
-
page_num = math.ceil(int(text_json[
|
|
242
|
+
page_num = math.ceil(int(text_json["totalAnnouncement"]) / 30)
|
|
213
243
|
big_df = pd.DataFrame()
|
|
214
244
|
tqdm = get_tqdm()
|
|
215
245
|
for page in tqdm(range(1, page_num + 1), leave=False):
|
|
@@ -217,37 +247,52 @@ def stock_zh_a_disclosure_relation_cninfo(
|
|
|
217
247
|
r = requests.post(url, data=payload)
|
|
218
248
|
text_json = r.json()
|
|
219
249
|
temp_df = pd.DataFrame(text_json["announcements"])
|
|
220
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
221
|
-
big_df.rename(
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
250
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
251
|
+
big_df.rename(
|
|
252
|
+
columns={
|
|
253
|
+
"secCode": "代码",
|
|
254
|
+
"secName": "简称",
|
|
255
|
+
"announcementTitle": "公告标题",
|
|
256
|
+
"announcementTime": "公告时间",
|
|
257
|
+
},
|
|
258
|
+
inplace=True,
|
|
259
|
+
)
|
|
260
|
+
big_df = big_df[["代码", "简称", "公告标题", "公告时间", "announcementId", "orgId"]]
|
|
261
|
+
big_df["公告时间"] = pd.to_datetime(
|
|
262
|
+
big_df["公告时间"], unit="ms", utc=True, errors="coerce"
|
|
263
|
+
)
|
|
264
|
+
big_df["公告时间"] = (
|
|
265
|
+
big_df["公告时间"]
|
|
266
|
+
.dt.tz_convert("Asia/Shanghai")
|
|
267
|
+
.dt.tz_convert(None)
|
|
268
|
+
.astype(str)
|
|
269
|
+
)
|
|
230
270
|
url_list = []
|
|
231
|
-
for item in zip(
|
|
232
|
-
|
|
271
|
+
for item in zip(
|
|
272
|
+
big_df["代码"], big_df["announcementId"], big_df["orgId"], big_df["公告时间"]
|
|
273
|
+
):
|
|
274
|
+
url_format = (
|
|
275
|
+
f"http://www.cninfo.com.cn/new/disclosure/detail?stockCode={item[0]}"
|
|
276
|
+
f"&announcementId={item[1]}&orgId={item[2]}&announcementTime={item[3]}"
|
|
277
|
+
)
|
|
233
278
|
url_list.append(url_format)
|
|
234
|
-
big_df[
|
|
279
|
+
big_df["公告链接"] = url_list
|
|
235
280
|
big_df = big_df[["代码", "简称", "公告标题", "公告时间", "公告链接"]]
|
|
236
281
|
return big_df
|
|
237
282
|
|
|
238
283
|
|
|
239
284
|
if __name__ == "__main__":
|
|
240
285
|
stock_zh_a_disclosure_report_cninfo_df = stock_zh_a_disclosure_report_cninfo(
|
|
241
|
-
symbol="
|
|
286
|
+
symbol="",
|
|
242
287
|
market="沪深京",
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
288
|
+
keyword="大模型",
|
|
289
|
+
category="",
|
|
290
|
+
start_date="20231003",
|
|
291
|
+
end_date="20240430",
|
|
292
|
+
)
|
|
246
293
|
print(stock_zh_a_disclosure_report_cninfo_df)
|
|
247
294
|
|
|
248
295
|
stock_zh_a_disclosure_relation_cninfo_df = stock_zh_a_disclosure_relation_cninfo(
|
|
249
|
-
symbol="000001",
|
|
250
|
-
|
|
251
|
-
start_date="20230619",
|
|
252
|
-
end_date="20231220")
|
|
296
|
+
symbol="000001", market="沪深京", start_date="20230619", end_date="20231220"
|
|
297
|
+
)
|
|
253
298
|
print(stock_zh_a_disclosure_relation_cninfo_df)
|