akshare 1.12.99__py3-none-any.whl → 1.15.72__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of akshare might be problematic. Click here for more details.
- akshare/__init__.py +441 -138
- akshare/air/air_hebei.py +79 -53
- akshare/air/air_zhenqi.py +29 -43
- akshare/air/sunrise_tad.py +32 -17
- akshare/bank/bank_cbirc_2020.py +12 -9
- akshare/bond/bond_cb_ths.py +17 -9
- akshare/bond/bond_china.py +38 -39
- akshare/bond/bond_china_money.py +75 -48
- akshare/bond/bond_info_cm.py +28 -8
- akshare/bond/bond_issue_cninfo.py +73 -30
- akshare/bond/bond_zh_cov.py +1 -1
- akshare/bond/bond_zh_sina.py +57 -51
- akshare/cal/__init__.py +0 -0
- akshare/cal/rv.py +170 -0
- akshare/cost/cost_living.py +7 -5
- akshare/currency/currency_safe.py +7 -6
- akshare/data/cninfo.js +15 -0
- akshare/datasets.py +10 -21
- akshare/economic/macro_bank.py +95 -653
- akshare/economic/macro_china.py +772 -1024
- akshare/economic/macro_china_hk.py +65 -243
- akshare/economic/macro_china_nbs.py +24 -7
- akshare/economic/macro_constitute.py +17 -12
- akshare/economic/macro_euro.py +13 -6
- akshare/economic/macro_finance_ths.py +133 -0
- akshare/economic/macro_info_ws.py +100 -0
- akshare/economic/macro_japan.py +5 -4
- akshare/economic/macro_other.py +12 -9
- akshare/economic/macro_usa.py +376 -1940
- akshare/economic/marco_cnbs.py +11 -6
- akshare/energy/energy_carbon.py +94 -125
- akshare/event/migration.py +3 -2
- akshare/exceptions.py +43 -0
- akshare/file_fold/calendar.json +245 -2
- akshare/fortune/fortune_500.py +15 -48
- akshare/fund/fund_amac.py +157 -75
- akshare/fund/fund_em.py +191 -184
- akshare/fund/fund_etf_em.py +16 -15
- akshare/fund/fund_etf_sina.py +71 -23
- akshare/fund/fund_etf_ths.py +93 -0
- akshare/fund/fund_fee_em.py +98 -0
- akshare/fund/fund_portfolio_em.py +60 -50
- akshare/fund/fund_rank_em.py +91 -82
- akshare/fund/fund_report_cninfo.py +63 -48
- akshare/fund/fund_scale_sina.py +20 -10
- akshare/fund/fund_xq.py +139 -109
- akshare/futures/cons.py +8 -31
- akshare/futures/cot.py +185 -137
- akshare/futures/futures_basis.py +97 -32
- akshare/futures/futures_comm_ctp.py +37 -0
- akshare/futures/futures_comm_qihuo.py +74 -45
- akshare/futures/futures_daily_bar.py +121 -184
- akshare/futures/futures_hf_em.py +66 -61
- akshare/futures/futures_hq_sina.py +79 -61
- akshare/futures/futures_index_ccidx.py +6 -3
- akshare/futures/futures_inventory_99.py +61 -272
- akshare/futures/futures_news_shmet.py +4 -2
- akshare/futures/futures_roll_yield.py +12 -25
- akshare/futures/futures_spot_stock_em.py +19 -13
- akshare/futures/futures_stock_js.py +14 -12
- akshare/futures/futures_to_spot.py +38 -33
- akshare/futures/futures_warehouse_receipt.py +75 -71
- akshare/futures/futures_zh_sina.py +5 -5
- akshare/futures/symbol_var.py +18 -13
- akshare/futures_derivative/futures_contract_info_czce.py +60 -52
- akshare/futures_derivative/futures_contract_info_ine.py +43 -34
- akshare/futures_derivative/futures_contract_info_shfe.py +46 -35
- akshare/futures_derivative/futures_cot_sina.py +26 -19
- akshare/futures_derivative/futures_spot_sys.py +21 -8
- akshare/fx/currency_investing.py +19 -285
- akshare/index/index_cflp.py +29 -26
- akshare/index/index_cni.py +86 -88
- akshare/index/index_cons.py +26 -10
- akshare/index/index_cx.py +248 -47
- akshare/index/index_drewry.py +17 -16
- akshare/index/index_option_qvix.py +329 -0
- akshare/index/index_research_fund_sw.py +134 -0
- akshare/index/{index_sw_research.py → index_research_sw.py} +122 -58
- akshare/index/index_spot.py +9 -5
- akshare/index/index_stock_hk.py +35 -16
- akshare/index/index_stock_us_sina.py +1 -1
- akshare/index/index_stock_zh.py +180 -89
- akshare/index/index_stock_zh_csindex.py +15 -369
- akshare/index/index_sw.py +62 -34
- akshare/index/index_yw.py +46 -23
- akshare/index/index_zh_a_scope.py +48 -0
- akshare/index/index_zh_em.py +6 -4
- akshare/interest_rate/interbank_rate_em.py +14 -9
- akshare/movie/artist_yien.py +32 -5
- akshare/movie/movie_yien.py +92 -18
- akshare/movie/video_yien.py +28 -5
- akshare/news/news_baidu.py +78 -44
- akshare/news/news_cctv.py +38 -38
- akshare/news/news_stock.py +6 -3
- akshare/nlp/nlp_interface.py +7 -8
- akshare/option/cons.py +11 -11
- akshare/option/option_comm_qihuo.py +86 -0
- akshare/option/option_commodity.py +178 -51
- akshare/option/option_daily_stats_sse_szse.py +146 -0
- akshare/option/option_em.py +147 -138
- akshare/option/option_finance_sina.py +160 -137
- akshare/option/option_lhb_em.py +62 -56
- akshare/option/option_risk_indicator_sse.py +17 -14
- akshare/other/other_car_cpca.py +934 -0
- akshare/other/{other_car.py → other_car_gasgoo.py} +15 -54
- akshare/qdii/__init__.py +0 -0
- akshare/qdii/qdii_jsl.py +233 -0
- akshare/request.py +117 -0
- akshare/spot/spot_hog_soozhu.py +232 -0
- akshare/spot/spot_price_qh.py +121 -0
- akshare/spot/spot_sge.py +63 -10
- akshare/stock/stock_allotment_cninfo.py +10 -9
- akshare/stock/stock_board_concept_em.py +23 -14
- akshare/stock/stock_board_industry_em.py +40 -34
- akshare/stock/stock_cg_equity_mortgage.py +15 -11
- akshare/stock/stock_cg_guarantee.py +41 -51
- akshare/stock/stock_cg_lawsuit.py +36 -35
- akshare/stock/stock_dividend_cninfo.py +12 -6
- akshare/stock/stock_dzjy_em.py +347 -260
- akshare/stock/stock_fund_em.py +332 -84
- akshare/stock/stock_hk_famous.py +108 -0
- akshare/stock/stock_hk_sina.py +8 -7
- akshare/stock/stock_hold_control_cninfo.py +100 -15
- akshare/stock/stock_hold_control_em.py +4 -3
- akshare/stock/stock_hold_num_cninfo.py +18 -12
- akshare/stock/stock_hot_rank_em.py +2 -1
- akshare/stock/stock_hot_search_baidu.py +5 -2
- akshare/stock/stock_industry_cninfo.py +24 -18
- akshare/stock/stock_industry_pe_cninfo.py +45 -31
- akshare/stock/stock_industry_sw.py +9 -10
- akshare/stock/stock_info.py +25 -15
- akshare/stock/stock_info_em.py +5 -2
- akshare/stock/stock_intraday_em.py +5 -2
- akshare/stock/stock_intraday_sina.py +22 -18
- akshare/stock/stock_ipo_summary_cninfo.py +25 -10
- akshare/stock/stock_new_cninfo.py +32 -19
- akshare/stock/stock_news_cx.py +39 -0
- akshare/stock/stock_profile_cninfo.py +9 -8
- akshare/stock/stock_rank_forecast.py +8 -6
- akshare/stock/stock_share_changes_cninfo.py +18 -14
- akshare/stock/stock_share_hold.py +24 -19
- akshare/stock/stock_summary.py +54 -26
- akshare/stock/stock_us_famous.py +15 -6
- akshare/stock/stock_us_pink.py +7 -5
- akshare/stock/stock_us_sina.py +15 -12
- akshare/stock/stock_xq.py +38 -12
- akshare/stock/stock_zh_a_sina.py +53 -78
- akshare/stock/stock_zh_b_sina.py +32 -55
- akshare/stock/stock_zh_kcb_report.py +11 -9
- akshare/stock/stock_zh_kcb_sina.py +67 -64
- akshare/stock_feature/stock_a_below_net_asset_statistics.py +5 -2
- akshare/stock_feature/stock_a_high_low.py +5 -2
- akshare/stock_feature/stock_a_indicator.py +12 -9
- akshare/stock_feature/stock_a_pe_and_pb.py +27 -6
- akshare/stock_feature/stock_account_em.py +58 -40
- akshare/stock_feature/stock_analyst_em.py +36 -27
- akshare/stock_feature/stock_board_industry_ths.py +136 -400
- akshare/stock_feature/stock_comment_em.py +118 -85
- akshare/stock_feature/stock_concept_futu.py +183 -0
- akshare/stock_feature/stock_cyq_em.py +58 -54
- akshare/stock_feature/stock_disclosure_cninfo.py +147 -102
- akshare/stock_feature/stock_esg_sina.py +216 -11
- akshare/stock_feature/stock_fhps_em.py +60 -25
- akshare/stock_feature/stock_fhps_ths.py +25 -6
- akshare/stock_feature/stock_fund_flow.py +38 -25
- akshare/stock_feature/stock_gdfx_em.py +180 -95
- akshare/stock_feature/stock_gdhs.py +73 -49
- akshare/stock_feature/stock_gpzy_em.py +78 -46
- akshare/stock_feature/stock_hist_em.py +55 -23
- akshare/stock_feature/stock_hk_valuation_baidu.py +20 -8
- akshare/stock_feature/stock_hsgt_em.py +184 -452
- akshare/stock_feature/stock_info.py +52 -29
- akshare/stock_feature/stock_inner_trade_xq.py +39 -31
- akshare/stock_feature/stock_irm_cninfo.py +32 -9
- akshare/stock_feature/stock_jgdy_em.py +41 -38
- akshare/stock_feature/stock_lh_yybpm.py +36 -37
- akshare/stock_feature/stock_lhb_em.py +135 -71
- akshare/stock_feature/stock_lhb_sina.py +93 -46
- akshare/stock_feature/stock_margin_em.py +102 -0
- akshare/stock_feature/{stock_sse_margin.py → stock_margin_sse.py} +21 -15
- akshare/stock_feature/{stock_szse_margin.py → stock_margin_szse.py} +23 -19
- akshare/stock_feature/stock_market_legu.py +13 -8
- akshare/stock_feature/stock_pankou_em.py +72 -34
- akshare/stock_feature/stock_report_em.py +244 -54
- akshare/stock_feature/stock_research_report_em.py +48 -19
- akshare/stock_feature/stock_sns_sseinfo.py +15 -12
- akshare/stock_feature/stock_sy_em.py +86 -33
- akshare/stock_feature/stock_technology_ths.py +152 -120
- akshare/stock_feature/stock_tfp_em.py +35 -13
- akshare/stock_feature/stock_three_report_em.py +119 -77
- akshare/stock_feature/stock_ttm_lyr.py +4 -7
- akshare/stock_feature/stock_value_em.py +83 -0
- akshare/stock_feature/stock_wencai.py +21 -9
- akshare/stock_feature/stock_yjyg_em.py +63 -28
- akshare/stock_feature/stock_zf_pg.py +61 -38
- akshare/stock_feature/stock_zh_valuation_baidu.py +3 -2
- akshare/stock_feature/stock_ztb_em.py +62 -40
- akshare/stock_fundamental/stock_finance.py +150 -58
- akshare/stock_fundamental/stock_finance_ths.py +116 -31
- akshare/stock_fundamental/stock_mda_ym.py +5 -3
- akshare/stock_fundamental/stock_notice.py +29 -15
- akshare/stock_fundamental/stock_profit_forecast_em.py +31 -13
- akshare/stock_fundamental/stock_profit_forecast_ths.py +19 -10
- akshare/stock_fundamental/stock_register_em.py +448 -0
- akshare/stock_fundamental/stock_restricted_em.py +79 -32
- akshare/stock_fundamental/stock_zygc.py +10 -8
- akshare/stock_fundamental/stock_zyjs_ths.py +5 -3
- akshare/tool/trade_date_hist.py +4 -3
- akshare/utils/cons.py +10 -0
- akshare/utils/context.py +43 -0
- akshare/utils/demjson.py +2 -2
- akshare/utils/func.py +26 -0
- akshare/utils/tqdm.py +13 -3
- {akshare-1.12.99.dist-info → akshare-1.15.72.dist-info}/METADATA +52 -69
- akshare-1.15.72.dist-info/RECORD +385 -0
- {akshare-1.12.99.dist-info → akshare-1.15.72.dist-info}/WHEEL +1 -1
- tests/test_func.py +3 -5
- akshare/bond/bond_futures.py +0 -50
- akshare/bond/bond_investing.py +0 -139
- akshare/crypto/crypto_hist_investing.py +0 -249
- akshare/fortune/fortune_it_juzi.py +0 -123
- akshare/futures/futures_international.py +0 -170
- akshare/futures/futures_news_baidu.py +0 -54
- akshare/futures/inventory_data.py +0 -100
- akshare/futures_derivative/futures_index_price_nh.py +0 -61
- akshare/futures_derivative/futures_index_return_nh.py +0 -47
- akshare/futures_derivative/futures_index_volatility_nh.py +0 -51
- akshare/futures_derivative/futures_other_index_nh.py +0 -145
- akshare/index/index_fear_greed_funddb.py +0 -71
- akshare/index/index_investing.py +0 -232
- akshare/sport/sport_olympic_winter.py +0 -39
- akshare/stock_feature/stock_board_concept_ths.py +0 -422
- akshare/stock_fundamental/stock_register.py +0 -292
- akshare-1.12.99.dist-info/RECORD +0 -374
- {akshare-1.12.99.dist-info → akshare-1.15.72.dist-info}/LICENSE +0 -0
- {akshare-1.12.99.dist-info → akshare-1.15.72.dist-info}/top_level.txt +0 -0
akshare/economic/macro_usa.py
CHANGED
|
@@ -1,27 +1,78 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
2
|
# -*- coding:utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Date:
|
|
4
|
+
Date: 2024/4/4 18:00
|
|
5
5
|
Desc: 金十数据中心-经济指标-美国
|
|
6
6
|
https://datacenter.jin10.com/economic
|
|
7
7
|
"""
|
|
8
|
-
|
|
8
|
+
|
|
9
|
+
import datetime
|
|
9
10
|
import time
|
|
10
11
|
|
|
11
12
|
import pandas as pd
|
|
12
13
|
import requests
|
|
13
14
|
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
)
|
|
15
|
+
|
|
16
|
+
def __macro_usa_base_func(symbol: str, params: dict) -> pd.DataFrame:
|
|
17
|
+
"""
|
|
18
|
+
金十数据中心-经济指标-美国-基础函数
|
|
19
|
+
https://datacenter.jin10.com/economic
|
|
20
|
+
:return: 美国经济指标数据
|
|
21
|
+
:rtype: pandas.DataFrame
|
|
22
|
+
"""
|
|
23
|
+
import warnings
|
|
24
|
+
|
|
25
|
+
warnings.filterwarnings(action="ignore", category=FutureWarning)
|
|
26
|
+
headers = {
|
|
27
|
+
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
|
|
28
|
+
"Chrome/107.0.0.0 Safari/537.36",
|
|
29
|
+
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
30
|
+
"x-csrf-token": "x-csrf-token",
|
|
31
|
+
"x-version": "1.0.0",
|
|
32
|
+
}
|
|
33
|
+
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
34
|
+
params = params
|
|
35
|
+
big_df = pd.DataFrame()
|
|
36
|
+
while True:
|
|
37
|
+
r = requests.get(url, params=params, headers=headers)
|
|
38
|
+
data_json = r.json()
|
|
39
|
+
if not data_json["data"]["values"]:
|
|
40
|
+
break
|
|
41
|
+
temp_df = pd.DataFrame(data_json["data"]["values"])
|
|
42
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
43
|
+
last_date_str = temp_df.iat[-1, 0]
|
|
44
|
+
last_date_str = (
|
|
45
|
+
(
|
|
46
|
+
datetime.datetime.strptime(last_date_str, "%Y-%m-%d")
|
|
47
|
+
- datetime.timedelta(days=1)
|
|
48
|
+
)
|
|
49
|
+
.date()
|
|
50
|
+
.isoformat()
|
|
51
|
+
)
|
|
52
|
+
params.update({"max_date": f"{last_date_str}"})
|
|
53
|
+
big_df.columns = [
|
|
54
|
+
"日期",
|
|
55
|
+
"今值",
|
|
56
|
+
"预测值",
|
|
57
|
+
"前值",
|
|
58
|
+
]
|
|
59
|
+
big_df["商品"] = symbol
|
|
60
|
+
big_df = big_df[
|
|
61
|
+
[
|
|
62
|
+
"商品",
|
|
63
|
+
"日期",
|
|
64
|
+
"今值",
|
|
65
|
+
"预测值",
|
|
66
|
+
"前值",
|
|
67
|
+
]
|
|
68
|
+
]
|
|
69
|
+
big_df["日期"] = pd.to_datetime(big_df["日期"], errors="coerce").dt.date
|
|
70
|
+
big_df["今值"] = pd.to_numeric(big_df["今值"], errors="coerce")
|
|
71
|
+
big_df["预测值"] = pd.to_numeric(big_df["预测值"], errors="coerce")
|
|
72
|
+
big_df["前值"] = pd.to_numeric(big_df["前值"], errors="coerce")
|
|
73
|
+
big_df.sort_values(["日期"], inplace=True)
|
|
74
|
+
big_df.reset_index(inplace=True, drop=True)
|
|
75
|
+
return big_df
|
|
25
76
|
|
|
26
77
|
|
|
27
78
|
# 东方财富-美国-未决房屋销售月率
|
|
@@ -71,7 +122,46 @@ def macro_usa_phs() -> pd.DataFrame:
|
|
|
71
122
|
]
|
|
72
123
|
temp_df["前值"] = pd.to_numeric(temp_df["前值"], errors="coerce")
|
|
73
124
|
temp_df["现值"] = pd.to_numeric(temp_df["现值"], errors="coerce")
|
|
74
|
-
temp_df["发布日期"] = pd.to_datetime(temp_df["发布日期"]).dt.date
|
|
125
|
+
temp_df["发布日期"] = pd.to_datetime(temp_df["发布日期"], errors="coerce").dt.date
|
|
126
|
+
return temp_df
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
# 东方财富-经济指标-美国-物价水平-美国核心CPI月率报告
|
|
130
|
+
def macro_usa_cpi_yoy() -> pd.DataFrame:
|
|
131
|
+
"""
|
|
132
|
+
东方财富-经济数据一览-美国-CPI年率, 数据区间从 2008-至今
|
|
133
|
+
https://data.eastmoney.com/cjsj/foreign_0_12.html
|
|
134
|
+
:return: 美国 CPI 年率报告
|
|
135
|
+
:rtype: pandas.DataFrame
|
|
136
|
+
"""
|
|
137
|
+
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
138
|
+
params = {
|
|
139
|
+
"reportName": "RPT_ECONOMICVALUE_USA",
|
|
140
|
+
"columns": "ALL",
|
|
141
|
+
"filter": '(INDICATOR_ID="EMG00000733")',
|
|
142
|
+
"sortColumns": "REPORT_DATE",
|
|
143
|
+
"sortTypes": "-1",
|
|
144
|
+
"source": "WEB",
|
|
145
|
+
"client": "WEB",
|
|
146
|
+
"_": "1689320600161",
|
|
147
|
+
}
|
|
148
|
+
r = requests.get(url, params=params)
|
|
149
|
+
data_json = r.json()
|
|
150
|
+
data_list = data_json["result"]["data"]
|
|
151
|
+
temp_df = pd.DataFrame(
|
|
152
|
+
data_list, columns=["REPORT_DATE", "PUBLISH_DATE", "VALUE", "PRE_VALUE"]
|
|
153
|
+
)
|
|
154
|
+
temp_df.columns = [
|
|
155
|
+
"时间",
|
|
156
|
+
"发布日期",
|
|
157
|
+
"现值",
|
|
158
|
+
"前值",
|
|
159
|
+
]
|
|
160
|
+
temp_df["时间"] = pd.to_datetime(temp_df["时间"], errors="coerce").dt.date
|
|
161
|
+
temp_df["发布日期"] = pd.to_datetime(temp_df["发布日期"], errors="coerce").dt.date
|
|
162
|
+
temp_df["前值"] = pd.to_numeric(temp_df["前值"], errors="coerce")
|
|
163
|
+
temp_df["现值"] = pd.to_numeric(temp_df["现值"], errors="coerce")
|
|
164
|
+
temp_df.sort_values(by=["时间"], inplace=True, ignore_index=True)
|
|
75
165
|
return temp_df
|
|
76
166
|
|
|
77
167
|
|
|
@@ -80,159 +170,36 @@ def macro_usa_gdp_monthly() -> pd.DataFrame:
|
|
|
80
170
|
"""
|
|
81
171
|
金十数据-美国国内生产总值(GDP)报告, 数据区间从 20080228-至今
|
|
82
172
|
https://datacenter.jin10.com/reportType/dc_usa_gdp
|
|
83
|
-
:return:
|
|
173
|
+
:return: 美国国内生产总值(GDP)
|
|
174
|
+
:rtype: pandas.DataFrame
|
|
84
175
|
"""
|
|
85
176
|
t = time.time()
|
|
86
|
-
r = requests.get(
|
|
87
|
-
JS_USA_GDP_MONTHLY_URL.format(
|
|
88
|
-
str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)
|
|
89
|
-
)
|
|
90
|
-
)
|
|
91
|
-
json_data = json.loads(r.text[r.text.find("{") : r.text.rfind("}") + 1])
|
|
92
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
93
|
-
value_list = [item["datas"]["美国国内生产总值(GDP)"] for item in json_data["list"]]
|
|
94
|
-
value_df = pd.DataFrame(value_list)
|
|
95
|
-
value_df.columns = json_data["kinds"]
|
|
96
|
-
value_df.index = pd.to_datetime(date_list)
|
|
97
|
-
|
|
98
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
99
177
|
params = {
|
|
100
178
|
"max_date": "",
|
|
101
179
|
"category": "ec",
|
|
102
180
|
"attr_id": "53",
|
|
103
181
|
"_": str(int(round(t * 1000))),
|
|
104
182
|
}
|
|
105
|
-
|
|
106
|
-
"accept": "*/*",
|
|
107
|
-
"accept-encoding": "gzip, deflate, br",
|
|
108
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
109
|
-
"cache-control": "no-cache",
|
|
110
|
-
"origin": "https://datacenter.jin10.com",
|
|
111
|
-
"pragma": "no-cache",
|
|
112
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
113
|
-
"sec-fetch-dest": "empty",
|
|
114
|
-
"sec-fetch-mode": "cors",
|
|
115
|
-
"sec-fetch-site": "same-site",
|
|
116
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
117
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
118
|
-
"x-csrf-token": "",
|
|
119
|
-
"x-version": "1.0.0",
|
|
120
|
-
}
|
|
121
|
-
r = requests.get(url, params=params, headers=headers)
|
|
122
|
-
temp_df = pd.DataFrame(r.json()["data"]["values"])
|
|
123
|
-
temp_df.index = pd.to_datetime(temp_df.iloc[:, 0])
|
|
124
|
-
temp_df.columns = ['date'] + json_data["kinds"]
|
|
125
|
-
del temp_df['date']
|
|
126
|
-
temp_df = pd.concat([value_df, temp_df])
|
|
127
|
-
|
|
128
|
-
temp_df.dropna(subset=["预测值(%)"], inplace=True)
|
|
129
|
-
temp_df.sort_index(inplace=True)
|
|
130
|
-
temp_df = temp_df.reset_index()
|
|
131
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
132
|
-
temp_df.columns = ['日期', '今值', '预测值', '前值']
|
|
133
|
-
temp_df['日期'] = pd.to_datetime(temp_df['日期']).dt.date
|
|
134
|
-
temp_df['今值'] = pd.to_numeric(temp_df['今值'], errors="coerce")
|
|
135
|
-
temp_df['预测值'] = pd.to_numeric(temp_df['预测值'], errors="coerce")
|
|
136
|
-
temp_df['前值'] = pd.to_numeric(temp_df['前值'], errors="coerce")
|
|
183
|
+
temp_df = __macro_usa_base_func(symbol="美国国内生产总值(GDP)", params=params)
|
|
137
184
|
return temp_df
|
|
138
185
|
|
|
139
186
|
|
|
140
187
|
# 金十数据中心-经济指标-美国-物价水平-美国CPI月率报告
|
|
141
188
|
def macro_usa_cpi_monthly() -> pd.DataFrame:
|
|
142
189
|
"""
|
|
143
|
-
美国CPI月率报告, 数据区间从19700101-至今
|
|
190
|
+
美国 CPI 月率报告, 数据区间从 19700101-至今
|
|
144
191
|
https://datacenter.jin10.com/reportType/dc_usa_cpi
|
|
145
|
-
|
|
146
|
-
:
|
|
147
|
-
:rtype: pandas.Series
|
|
192
|
+
:return: 美国 CPI 月率报告
|
|
193
|
+
:rtype: pandas.DataFrame
|
|
148
194
|
"""
|
|
149
195
|
t = time.time()
|
|
150
|
-
res = requests.get(
|
|
151
|
-
JS_USA_CPI_MONTHLY_URL.format(
|
|
152
|
-
str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)
|
|
153
|
-
)
|
|
154
|
-
)
|
|
155
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
156
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
157
|
-
value_list = [item["datas"]["美国居民消费价格指数(CPI)(月环比)"] for item in json_data["list"]]
|
|
158
|
-
value_df = pd.DataFrame(value_list)
|
|
159
|
-
value_df.columns = json_data["kinds"]
|
|
160
|
-
value_df.index = pd.to_datetime(date_list)
|
|
161
|
-
temp_df = value_df["今值(%)"]
|
|
162
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
163
196
|
params = {
|
|
164
197
|
"max_date": "",
|
|
165
198
|
"category": "ec",
|
|
166
199
|
"attr_id": "9",
|
|
167
200
|
"_": str(int(round(t * 1000))),
|
|
168
201
|
}
|
|
169
|
-
|
|
170
|
-
"accept": "*/*",
|
|
171
|
-
"accept-encoding": "gzip, deflate, br",
|
|
172
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
173
|
-
"cache-control": "no-cache",
|
|
174
|
-
"origin": "https://datacenter.jin10.com",
|
|
175
|
-
"pragma": "no-cache",
|
|
176
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
177
|
-
"sec-fetch-dest": "empty",
|
|
178
|
-
"sec-fetch-mode": "cors",
|
|
179
|
-
"sec-fetch-site": "same-site",
|
|
180
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
181
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
182
|
-
"x-csrf-token": "",
|
|
183
|
-
"x-version": "1.0.0",
|
|
184
|
-
}
|
|
185
|
-
r = requests.get(url, params=params, headers=headers)
|
|
186
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
187
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
188
|
-
temp_se = temp_se.iloc[:, 1]
|
|
189
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
190
|
-
temp_df.dropna(inplace=True)
|
|
191
|
-
temp_df.sort_index(inplace=True)
|
|
192
|
-
temp_df = temp_df.reset_index()
|
|
193
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
194
|
-
temp_df.set_index("index", inplace=True)
|
|
195
|
-
temp_df = temp_df.squeeze()
|
|
196
|
-
temp_df.index.name = None
|
|
197
|
-
temp_df.name = "cpi_monthly"
|
|
198
|
-
temp_df = temp_df.astype("float")
|
|
199
|
-
return temp_df
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
# 东方财富-经济指标-美国-物价水平-美国核心CPI月率报告
|
|
203
|
-
def macro_usa_cpi_yoy() -> pd.DataFrame:
|
|
204
|
-
"""
|
|
205
|
-
东方财富-经济数据一览-美国-CPI年率, 数据区间从 2008-至今
|
|
206
|
-
https://data.eastmoney.com/cjsj/foreign_0_12.html
|
|
207
|
-
:return: 美国 CPI 年率报告
|
|
208
|
-
:rtype: pandas.DataFrame
|
|
209
|
-
"""
|
|
210
|
-
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
211
|
-
params = {
|
|
212
|
-
"reportName": "RPT_ECONOMICVALUE_USA",
|
|
213
|
-
"columns": "ALL",
|
|
214
|
-
"filter": '(INDICATOR_ID="EMG00000733")',
|
|
215
|
-
"sortColumns": "REPORT_DATE",
|
|
216
|
-
"sortTypes": "-1",
|
|
217
|
-
"source": "WEB",
|
|
218
|
-
"client": "WEB",
|
|
219
|
-
"_": "1689320600161",
|
|
220
|
-
}
|
|
221
|
-
r = requests.get(url, params=params)
|
|
222
|
-
data_json = r.json()
|
|
223
|
-
data_list = data_json["result"]["data"]
|
|
224
|
-
temp_df = pd.DataFrame(data_list, columns=['REPORT_DATE', 'PUBLISH_DATE', 'VALUE', 'PRE_VALUE'])
|
|
225
|
-
temp_df.columns = [
|
|
226
|
-
"时间",
|
|
227
|
-
"发布日期",
|
|
228
|
-
"现值",
|
|
229
|
-
"前值",
|
|
230
|
-
]
|
|
231
|
-
temp_df["时间"] = pd.to_datetime(temp_df["时间"], errors="coerce").dt.date
|
|
232
|
-
temp_df["发布日期"] = pd.to_datetime(temp_df["发布日期"], errors="coerce").dt.date
|
|
233
|
-
temp_df["前值"] = pd.to_numeric(temp_df["前值"], errors="coerce")
|
|
234
|
-
temp_df["现值"] = pd.to_numeric(temp_df["现值"], errors="coerce")
|
|
235
|
-
temp_df.sort_values(['时间'], inplace=True, ignore_index=True)
|
|
202
|
+
temp_df = __macro_usa_base_func(symbol="美国CPI月率", params=params)
|
|
236
203
|
return temp_df
|
|
237
204
|
|
|
238
205
|
|
|
@@ -241,63 +208,17 @@ def macro_usa_core_cpi_monthly() -> pd.DataFrame:
|
|
|
241
208
|
"""
|
|
242
209
|
美国核心 CPI 月率报告, 数据区间从 19700101-至今
|
|
243
210
|
https://datacenter.jin10.com/reportType/dc_usa_core_cpi
|
|
244
|
-
|
|
245
|
-
:
|
|
246
|
-
:rtype: pandas.Series
|
|
211
|
+
:return: 美国核心CPI月率报告
|
|
212
|
+
:rtype: pandas.DataFrame
|
|
247
213
|
"""
|
|
248
214
|
t = time.time()
|
|
249
|
-
res = requests.get(
|
|
250
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
251
|
-
)
|
|
252
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
253
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
254
|
-
value_list = [item["datas"]["美国核心CPI月率报告"] for item in json_data["list"]]
|
|
255
|
-
value_df = pd.DataFrame(value_list)
|
|
256
|
-
value_df.columns = json_data["kinds"]
|
|
257
|
-
value_df.index = pd.to_datetime(date_list)
|
|
258
|
-
temp_df = value_df["今值(%)"]
|
|
259
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
260
215
|
params = {
|
|
261
216
|
"max_date": "",
|
|
262
217
|
"category": "ec",
|
|
263
218
|
"attr_id": "6",
|
|
264
219
|
"_": str(int(round(t * 1000))),
|
|
265
220
|
}
|
|
266
|
-
|
|
267
|
-
"accept": "*/*",
|
|
268
|
-
"accept-encoding": "gzip, deflate, br",
|
|
269
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
270
|
-
"cache-control": "no-cache",
|
|
271
|
-
"origin": "https://datacenter.jin10.com",
|
|
272
|
-
"pragma": "no-cache",
|
|
273
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
274
|
-
"sec-fetch-dest": "empty",
|
|
275
|
-
"sec-fetch-mode": "cors",
|
|
276
|
-
"sec-fetch-site": "same-site",
|
|
277
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
278
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
279
|
-
"x-csrf-token": "",
|
|
280
|
-
"x-version": "1.0.0",
|
|
281
|
-
}
|
|
282
|
-
r = requests.get(url, params=params, headers=headers)
|
|
283
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
284
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
285
|
-
temp_se = temp_se.iloc[:, 1]
|
|
286
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
287
|
-
temp_df.dropna(inplace=True)
|
|
288
|
-
temp_df.sort_index(inplace=True)
|
|
289
|
-
temp_df = temp_df.reset_index()
|
|
290
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
291
|
-
temp_df.set_index("index", inplace=True)
|
|
292
|
-
temp_df = temp_df.squeeze()
|
|
293
|
-
temp_df.index.name = None
|
|
294
|
-
temp_df.name = "usa_core_cpi"
|
|
295
|
-
temp_df = temp_df.astype("float")
|
|
296
|
-
temp_df = pd.DataFrame(temp_df)
|
|
297
|
-
temp_df.reset_index(inplace=True, drop=False)
|
|
298
|
-
temp_df.columns = ['date', 'value']
|
|
299
|
-
temp_df['date'] = pd.to_datetime(temp_df['date'], errors="coerce").dt.date
|
|
300
|
-
temp_df['value'] = pd.to_numeric(temp_df['value'], errors="coerce")
|
|
221
|
+
temp_df = __macro_usa_base_func(symbol="美国核心CPI月率", params=params)
|
|
301
222
|
return temp_df
|
|
302
223
|
|
|
303
224
|
|
|
@@ -306,118 +227,36 @@ def macro_usa_personal_spending() -> pd.DataFrame:
|
|
|
306
227
|
"""
|
|
307
228
|
美国个人支出月率报告, 数据区间从19700101-至今
|
|
308
229
|
https://datacenter.jin10.com/reportType/dc_usa_personal_spending
|
|
309
|
-
|
|
310
|
-
:
|
|
311
|
-
:rtype: pandas.Series
|
|
230
|
+
:return: 美国个人支出月率报告
|
|
231
|
+
:rtype: pandas.DataFrame
|
|
312
232
|
"""
|
|
313
233
|
t = time.time()
|
|
314
|
-
res = requests.get(
|
|
315
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
316
|
-
)
|
|
317
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
318
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
319
|
-
value_list = [item["datas"]["美国个人支出月率报告"] for item in json_data["list"]]
|
|
320
|
-
value_df = pd.DataFrame(value_list)
|
|
321
|
-
value_df.columns = json_data["kinds"]
|
|
322
|
-
value_df.index = pd.to_datetime(date_list)
|
|
323
|
-
temp_df = value_df["今值(%)"]
|
|
324
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
325
234
|
params = {
|
|
326
235
|
"max_date": "",
|
|
327
236
|
"category": "ec",
|
|
328
237
|
"attr_id": "35",
|
|
329
238
|
"_": str(int(round(t * 1000))),
|
|
330
239
|
}
|
|
331
|
-
|
|
332
|
-
"accept": "*/*",
|
|
333
|
-
"accept-encoding": "gzip, deflate, br",
|
|
334
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
335
|
-
"cache-control": "no-cache",
|
|
336
|
-
"origin": "https://datacenter.jin10.com",
|
|
337
|
-
"pragma": "no-cache",
|
|
338
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
339
|
-
"sec-fetch-dest": "empty",
|
|
340
|
-
"sec-fetch-mode": "cors",
|
|
341
|
-
"sec-fetch-site": "same-site",
|
|
342
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
343
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
344
|
-
"x-csrf-token": "",
|
|
345
|
-
"x-version": "1.0.0",
|
|
346
|
-
}
|
|
347
|
-
r = requests.get(url, params=params, headers=headers)
|
|
348
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
349
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
350
|
-
temp_se = temp_se.iloc[:, 1]
|
|
351
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
352
|
-
temp_df.dropna(inplace=True)
|
|
353
|
-
temp_df.sort_index(inplace=True)
|
|
354
|
-
temp_df = temp_df.reset_index()
|
|
355
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
356
|
-
temp_df.set_index("index", inplace=True)
|
|
357
|
-
temp_df = temp_df.squeeze()
|
|
358
|
-
temp_df.index.name = None
|
|
359
|
-
temp_df.name = "usa_personal_spending"
|
|
360
|
-
temp_df = temp_df.astype("float")
|
|
240
|
+
temp_df = __macro_usa_base_func(symbol="美国个人支出月率", params=params)
|
|
361
241
|
return temp_df
|
|
362
242
|
|
|
363
243
|
|
|
364
244
|
# 金十数据中心-经济指标-美国-物价水平-美国零售销售月率报告
|
|
365
245
|
def macro_usa_retail_sales() -> pd.DataFrame:
|
|
366
246
|
"""
|
|
367
|
-
美国零售销售月率报告, 数据区间从19920301-至今
|
|
247
|
+
美国零售销售月率报告, 数据区间从 19920301-至今
|
|
368
248
|
https://datacenter.jin10.com/reportType/dc_usa_retail_sales
|
|
369
|
-
https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v=1578741528
|
|
370
249
|
:return: 美国零售销售月率报告-今值(%)
|
|
371
|
-
:rtype: pandas.
|
|
250
|
+
:rtype: pandas.DataFrame
|
|
372
251
|
"""
|
|
373
252
|
t = time.time()
|
|
374
|
-
res = requests.get(
|
|
375
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
376
|
-
)
|
|
377
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
378
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
379
|
-
value_list = [item["datas"]["美国零售销售月率报告"] for item in json_data["list"]]
|
|
380
|
-
value_df = pd.DataFrame(value_list)
|
|
381
|
-
value_df.columns = json_data["kinds"]
|
|
382
|
-
value_df.index = pd.to_datetime(date_list)
|
|
383
|
-
temp_df = value_df["今值(%)"]
|
|
384
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
385
253
|
params = {
|
|
386
254
|
"max_date": "",
|
|
387
255
|
"category": "ec",
|
|
388
256
|
"attr_id": "39",
|
|
389
257
|
"_": str(int(round(t * 1000))),
|
|
390
258
|
}
|
|
391
|
-
|
|
392
|
-
"accept": "*/*",
|
|
393
|
-
"accept-encoding": "gzip, deflate, br",
|
|
394
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
395
|
-
"cache-control": "no-cache",
|
|
396
|
-
"origin": "https://datacenter.jin10.com",
|
|
397
|
-
"pragma": "no-cache",
|
|
398
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
399
|
-
"sec-fetch-dest": "empty",
|
|
400
|
-
"sec-fetch-mode": "cors",
|
|
401
|
-
"sec-fetch-site": "same-site",
|
|
402
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
403
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
404
|
-
"x-csrf-token": "",
|
|
405
|
-
"x-version": "1.0.0",
|
|
406
|
-
}
|
|
407
|
-
r = requests.get(url, params=params, headers=headers)
|
|
408
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
409
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
410
|
-
temp_se = temp_se.iloc[:, 1]
|
|
411
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
412
|
-
temp_df.dropna(inplace=True)
|
|
413
|
-
temp_df.sort_index(inplace=True)
|
|
414
|
-
temp_df = temp_df.reset_index()
|
|
415
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
416
|
-
temp_df.set_index("index", inplace=True)
|
|
417
|
-
temp_df = temp_df.squeeze()
|
|
418
|
-
temp_df.index.name = None
|
|
419
|
-
temp_df.name = "usa_retail_sales"
|
|
420
|
-
temp_df = temp_df.astype("float")
|
|
259
|
+
temp_df = __macro_usa_base_func(symbol="美国零售销售月率", params=params)
|
|
421
260
|
return temp_df
|
|
422
261
|
|
|
423
262
|
|
|
@@ -426,58 +265,17 @@ def macro_usa_import_price() -> pd.DataFrame:
|
|
|
426
265
|
"""
|
|
427
266
|
美国进口物价指数报告, 数据区间从19890201-至今
|
|
428
267
|
https://datacenter.jin10.com/reportType/dc_usa_import_price
|
|
429
|
-
https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v=1578741716
|
|
430
268
|
:return: 美国进口物价指数报告-今值(%)
|
|
431
269
|
:rtype: pandas.Series
|
|
432
270
|
"""
|
|
433
271
|
t = time.time()
|
|
434
|
-
res = requests.get(
|
|
435
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
436
|
-
)
|
|
437
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
438
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
439
|
-
value_list = [item["datas"]["美国进口物价指数"] for item in json_data["list"]]
|
|
440
|
-
value_df = pd.DataFrame(value_list)
|
|
441
|
-
value_df.columns = json_data["kinds"]
|
|
442
|
-
value_df.index = pd.to_datetime(date_list)
|
|
443
|
-
temp_df = value_df["今值(%)"]
|
|
444
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
445
272
|
params = {
|
|
446
273
|
"max_date": "",
|
|
447
274
|
"category": "ec",
|
|
448
275
|
"attr_id": "18",
|
|
449
276
|
"_": str(int(round(t * 1000))),
|
|
450
277
|
}
|
|
451
|
-
|
|
452
|
-
"accept": "*/*",
|
|
453
|
-
"accept-encoding": "gzip, deflate, br",
|
|
454
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
455
|
-
"cache-control": "no-cache",
|
|
456
|
-
"origin": "https://datacenter.jin10.com",
|
|
457
|
-
"pragma": "no-cache",
|
|
458
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
459
|
-
"sec-fetch-dest": "empty",
|
|
460
|
-
"sec-fetch-mode": "cors",
|
|
461
|
-
"sec-fetch-site": "same-site",
|
|
462
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
463
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
464
|
-
"x-csrf-token": "",
|
|
465
|
-
"x-version": "1.0.0",
|
|
466
|
-
}
|
|
467
|
-
r = requests.get(url, params=params, headers=headers)
|
|
468
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
469
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
470
|
-
temp_se = temp_se.iloc[:, 1]
|
|
471
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
472
|
-
temp_df.dropna(inplace=True)
|
|
473
|
-
temp_df.sort_index(inplace=True)
|
|
474
|
-
temp_df = temp_df.reset_index()
|
|
475
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
476
|
-
temp_df.set_index("index", inplace=True)
|
|
477
|
-
temp_df = temp_df.squeeze()
|
|
478
|
-
temp_df.index.name = None
|
|
479
|
-
temp_df.name = "usa_import_price"
|
|
480
|
-
temp_df = temp_df.astype("float")
|
|
278
|
+
temp_df = __macro_usa_base_func(symbol="美国进口物价指数", params=params)
|
|
481
279
|
return temp_df
|
|
482
280
|
|
|
483
281
|
|
|
@@ -491,235 +289,68 @@ def macro_usa_export_price() -> pd.DataFrame:
|
|
|
491
289
|
:rtype: pandas.Series
|
|
492
290
|
"""
|
|
493
291
|
t = time.time()
|
|
494
|
-
res = requests.get(
|
|
495
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
496
|
-
)
|
|
497
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
498
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
499
|
-
value_list = [item["datas"]["美国出口价格指数"] for item in json_data["list"]]
|
|
500
|
-
value_df = pd.DataFrame(value_list)
|
|
501
|
-
value_df.columns = json_data["kinds"]
|
|
502
|
-
value_df.index = pd.to_datetime(date_list)
|
|
503
|
-
temp_df = value_df["今值(%)"]
|
|
504
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
505
292
|
params = {
|
|
506
293
|
"max_date": "",
|
|
507
294
|
"category": "ec",
|
|
508
295
|
"attr_id": "79",
|
|
509
296
|
"_": str(int(round(t * 1000))),
|
|
510
297
|
}
|
|
511
|
-
|
|
512
|
-
"accept": "*/*",
|
|
513
|
-
"accept-encoding": "gzip, deflate, br",
|
|
514
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
515
|
-
"cache-control": "no-cache",
|
|
516
|
-
"origin": "https://datacenter.jin10.com",
|
|
517
|
-
"pragma": "no-cache",
|
|
518
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
519
|
-
"sec-fetch-dest": "empty",
|
|
520
|
-
"sec-fetch-mode": "cors",
|
|
521
|
-
"sec-fetch-site": "same-site",
|
|
522
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
523
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
524
|
-
"x-csrf-token": "",
|
|
525
|
-
"x-version": "1.0.0",
|
|
526
|
-
}
|
|
527
|
-
r = requests.get(url, params=params, headers=headers)
|
|
528
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
529
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
530
|
-
temp_se = temp_se.iloc[:, 1]
|
|
531
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
532
|
-
temp_df.dropna(inplace=True)
|
|
533
|
-
temp_df.sort_index(inplace=True)
|
|
534
|
-
temp_df = temp_df.reset_index()
|
|
535
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
536
|
-
temp_df.set_index("index", inplace=True)
|
|
537
|
-
temp_df = temp_df.squeeze()
|
|
538
|
-
temp_df.index.name = None
|
|
539
|
-
temp_df.name = "usa_export_price"
|
|
540
|
-
temp_df = temp_df.astype("float")
|
|
298
|
+
temp_df = __macro_usa_base_func(symbol="美国出口价格指数", params=params)
|
|
541
299
|
return temp_df
|
|
542
300
|
|
|
543
301
|
|
|
544
302
|
# 金十数据中心-经济指标-美国-劳动力市场-LMCI
|
|
545
303
|
def macro_usa_lmci() -> pd.DataFrame:
|
|
546
304
|
"""
|
|
547
|
-
美联储劳动力市场状况指数报告, 数据区间从20141006-至今
|
|
305
|
+
美联储劳动力市场状况指数报告, 数据区间从 20141006-至今
|
|
548
306
|
https://datacenter.jin10.com/reportType/dc_usa_lmci
|
|
549
|
-
https://cdn.jin10.com/dc/reports/dc_usa_lmci_all.js?v=1578742043
|
|
550
307
|
:return: 美联储劳动力市场状况指数报告-今值(%)
|
|
551
308
|
:rtype: pandas.Series
|
|
552
309
|
"""
|
|
553
310
|
t = time.time()
|
|
554
|
-
res = requests.get(
|
|
555
|
-
JS_USA_LMCI_URL.format(
|
|
556
|
-
str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)
|
|
557
|
-
)
|
|
558
|
-
)
|
|
559
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
560
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
561
|
-
value_list = [item["datas"]["美联储劳动力市场状况指数"] for item in json_data["list"]]
|
|
562
|
-
value_df = pd.DataFrame(value_list)
|
|
563
|
-
value_df.columns = json_data["kinds"]
|
|
564
|
-
value_df.index = pd.to_datetime(date_list)
|
|
565
|
-
temp_df = value_df["今值(%)"]
|
|
566
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
567
311
|
params = {
|
|
568
312
|
"max_date": "",
|
|
569
313
|
"category": "ec",
|
|
570
314
|
"attr_id": "93",
|
|
571
315
|
"_": str(int(round(t * 1000))),
|
|
572
316
|
}
|
|
573
|
-
|
|
574
|
-
"accept": "*/*",
|
|
575
|
-
"accept-encoding": "gzip, deflate, br",
|
|
576
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
577
|
-
"cache-control": "no-cache",
|
|
578
|
-
"origin": "https://datacenter.jin10.com",
|
|
579
|
-
"pragma": "no-cache",
|
|
580
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
581
|
-
"sec-fetch-dest": "empty",
|
|
582
|
-
"sec-fetch-mode": "cors",
|
|
583
|
-
"sec-fetch-site": "same-site",
|
|
584
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
585
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
586
|
-
"x-csrf-token": "",
|
|
587
|
-
"x-version": "1.0.0",
|
|
588
|
-
}
|
|
589
|
-
r = requests.get(url, params=params, headers=headers)
|
|
590
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
591
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
592
|
-
temp_se = temp_se.iloc[:, 1]
|
|
593
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
594
|
-
temp_df.dropna(inplace=True)
|
|
595
|
-
temp_df.sort_index(inplace=True)
|
|
596
|
-
temp_df = temp_df.reset_index()
|
|
597
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
598
|
-
temp_df.set_index("index", inplace=True)
|
|
599
|
-
temp_df = temp_df.squeeze()
|
|
600
|
-
temp_df.index.name = None
|
|
601
|
-
temp_df.name = "lmci"
|
|
602
|
-
temp_df = temp_df.astype("float")
|
|
317
|
+
temp_df = __macro_usa_base_func(symbol="美联储劳动力市场状况指数", params=params)
|
|
603
318
|
return temp_df
|
|
604
319
|
|
|
605
320
|
|
|
606
321
|
# 金十数据中心-经济指标-美国-劳动力市场-失业率-美国失业率报告
|
|
607
322
|
def macro_usa_unemployment_rate() -> pd.DataFrame:
|
|
608
323
|
"""
|
|
609
|
-
美国失业率报告, 数据区间从19700101-至今
|
|
324
|
+
美国失业率报告, 数据区间从 19700101-至今
|
|
610
325
|
https://datacenter.jin10.com/reportType/dc_usa_unemployment_rate
|
|
611
|
-
|
|
612
|
-
:return: 获取美国失业率报告-今值(%)
|
|
326
|
+
:return: 获取美国失业率报告
|
|
613
327
|
:rtype: pandas.Series
|
|
614
328
|
"""
|
|
615
329
|
t = time.time()
|
|
616
|
-
res = requests.get(
|
|
617
|
-
JS_USA_UNEMPLOYMENT_RATE_URL.format(
|
|
618
|
-
str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)
|
|
619
|
-
)
|
|
620
|
-
)
|
|
621
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
622
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
623
|
-
value_list = [item["datas"]["美国失业率"] for item in json_data["list"]]
|
|
624
|
-
value_df = pd.DataFrame(value_list)
|
|
625
|
-
value_df.columns = json_data["kinds"]
|
|
626
|
-
value_df.index = pd.to_datetime(date_list)
|
|
627
|
-
temp_df = value_df["今值(%)"]
|
|
628
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
629
330
|
params = {
|
|
630
331
|
"category": "ec",
|
|
631
332
|
"attr_id": "47",
|
|
632
333
|
"_": str(int(round(t * 1000))),
|
|
633
334
|
}
|
|
634
|
-
|
|
635
|
-
"accept": "*/*",
|
|
636
|
-
"accept-encoding": "gzip, deflate, br",
|
|
637
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
638
|
-
"cache-control": "no-cache",
|
|
639
|
-
"origin": "https://datacenter.jin10.com",
|
|
640
|
-
"pragma": "no-cache",
|
|
641
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
642
|
-
"sec-fetch-dest": "empty",
|
|
643
|
-
"sec-fetch-mode": "cors",
|
|
644
|
-
"sec-fetch-site": "same-site",
|
|
645
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
646
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
647
|
-
"x-csrf-token": "",
|
|
648
|
-
"x-version": "1.0.0",
|
|
649
|
-
}
|
|
650
|
-
r = requests.get(url, params=params, headers=headers)
|
|
651
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
652
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
653
|
-
temp_se = temp_se.iloc[:, 1]
|
|
654
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
655
|
-
temp_df.dropna(inplace=True)
|
|
656
|
-
temp_df.sort_index(inplace=True)
|
|
657
|
-
temp_df = temp_df.reset_index()
|
|
658
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
659
|
-
temp_df.set_index("index", inplace=True)
|
|
660
|
-
temp_df = temp_df.squeeze()
|
|
661
|
-
temp_df.index.name = None
|
|
662
|
-
temp_df = temp_df.astype("float")
|
|
663
|
-
temp_df.name = "unemployment_rate"
|
|
335
|
+
temp_df = __macro_usa_base_func(symbol="美国失业率", params=params)
|
|
664
336
|
return temp_df
|
|
665
337
|
|
|
666
338
|
|
|
667
339
|
# 金十数据中心-经济指标-美国-劳动力市场-失业率-美国挑战者企业裁员人数报告
|
|
668
340
|
def macro_usa_job_cuts() -> pd.DataFrame:
|
|
669
341
|
"""
|
|
670
|
-
美国挑战者企业裁员人数报告, 数据区间从19940201-至今
|
|
342
|
+
美国挑战者企业裁员人数报告, 数据区间从 19940201-至今
|
|
671
343
|
https://datacenter.jin10.com/reportType/dc_usa_job_cuts
|
|
672
|
-
|
|
673
|
-
:
|
|
674
|
-
:rtype: pandas.Series
|
|
344
|
+
:return: 美国挑战者企业裁员人数报告
|
|
345
|
+
:rtype: pandas.DataFrame
|
|
675
346
|
"""
|
|
676
347
|
t = time.time()
|
|
677
|
-
res = requests.get(
|
|
678
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_job_cuts_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
679
|
-
)
|
|
680
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
681
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
682
|
-
value_list = [item["datas"]["美国挑战者企业裁员人数报告"] for item in json_data["list"]]
|
|
683
|
-
value_df = pd.DataFrame(value_list)
|
|
684
|
-
value_df.columns = json_data["kinds"]
|
|
685
|
-
value_df.index = pd.to_datetime(date_list)
|
|
686
|
-
temp_df = value_df["今值(万人)"]
|
|
687
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
688
348
|
params = {
|
|
689
349
|
"category": "ec",
|
|
690
350
|
"attr_id": "78",
|
|
691
351
|
"_": str(int(round(t * 1000))),
|
|
692
352
|
}
|
|
693
|
-
|
|
694
|
-
"accept": "*/*",
|
|
695
|
-
"accept-encoding": "gzip, deflate, br",
|
|
696
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
697
|
-
"cache-control": "no-cache",
|
|
698
|
-
"origin": "https://datacenter.jin10.com",
|
|
699
|
-
"pragma": "no-cache",
|
|
700
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
701
|
-
"sec-fetch-dest": "empty",
|
|
702
|
-
"sec-fetch-mode": "cors",
|
|
703
|
-
"sec-fetch-site": "same-site",
|
|
704
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
705
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
706
|
-
"x-csrf-token": "",
|
|
707
|
-
"x-version": "1.0.0",
|
|
708
|
-
}
|
|
709
|
-
r = requests.get(url, params=params, headers=headers)
|
|
710
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
711
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
712
|
-
temp_se = temp_se.iloc[:, 1]
|
|
713
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
714
|
-
temp_df.dropna(inplace=True)
|
|
715
|
-
temp_df.sort_index(inplace=True)
|
|
716
|
-
temp_df = temp_df.reset_index()
|
|
717
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
718
|
-
temp_df.set_index("index", inplace=True)
|
|
719
|
-
temp_df = temp_df.squeeze()
|
|
720
|
-
temp_df.index.name = None
|
|
721
|
-
temp_df = temp_df.astype("float")
|
|
722
|
-
temp_df.name = "usa_job_cuts"
|
|
353
|
+
temp_df = __macro_usa_base_func(symbol="美国挑战者企业裁员人数", params=params)
|
|
723
354
|
return temp_df
|
|
724
355
|
|
|
725
356
|
|
|
@@ -728,374 +359,123 @@ def macro_usa_non_farm() -> pd.DataFrame:
|
|
|
728
359
|
"""
|
|
729
360
|
美国非农就业人数报告, 数据区间从19700102-至今
|
|
730
361
|
https://datacenter.jin10.com/reportType/dc_nonfarm_payrolls
|
|
731
|
-
|
|
732
|
-
:return: 美国非农就业人数报告-今值(万人)
|
|
362
|
+
:return: 美国非农就业人数报告
|
|
733
363
|
:rtype: pandas.Series
|
|
734
364
|
"""
|
|
735
365
|
t = time.time()
|
|
736
|
-
res = requests.get(
|
|
737
|
-
JS_USA_NON_FARM_URL.format(
|
|
738
|
-
str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)
|
|
739
|
-
)
|
|
740
|
-
)
|
|
741
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
742
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
743
|
-
value_list = [item["datas"]["美国非农就业人数"] for item in json_data["list"]]
|
|
744
|
-
value_df = pd.DataFrame(value_list)
|
|
745
|
-
value_df.columns = json_data["kinds"]
|
|
746
|
-
value_df.index = pd.to_datetime(date_list)
|
|
747
|
-
temp_df = value_df["今值(万人)"]
|
|
748
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
749
366
|
params = {
|
|
750
367
|
"category": "ec",
|
|
751
368
|
"attr_id": "33",
|
|
752
369
|
"_": str(int(round(t * 1000))),
|
|
753
370
|
}
|
|
754
|
-
|
|
755
|
-
"accept": "*/*",
|
|
756
|
-
"accept-encoding": "gzip, deflate, br",
|
|
757
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
758
|
-
"cache-control": "no-cache",
|
|
759
|
-
"origin": "https://datacenter.jin10.com",
|
|
760
|
-
"pragma": "no-cache",
|
|
761
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
762
|
-
"sec-fetch-dest": "empty",
|
|
763
|
-
"sec-fetch-mode": "cors",
|
|
764
|
-
"sec-fetch-site": "same-site",
|
|
765
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
766
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
767
|
-
"x-csrf-token": "",
|
|
768
|
-
"x-version": "1.0.0",
|
|
769
|
-
}
|
|
770
|
-
r = requests.get(url, params=params, headers=headers)
|
|
771
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
772
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
773
|
-
temp_se = temp_se.iloc[:, 1]
|
|
774
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
775
|
-
temp_df.dropna(inplace=True)
|
|
776
|
-
temp_df.sort_index(inplace=True)
|
|
777
|
-
temp_df = temp_df.reset_index()
|
|
778
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
779
|
-
temp_df.set_index("index", inplace=True)
|
|
780
|
-
temp_df = temp_df.squeeze()
|
|
781
|
-
temp_df.index.name = None
|
|
782
|
-
temp_df = temp_df.astype("float")
|
|
783
|
-
temp_df.name = "non_farm"
|
|
371
|
+
temp_df = __macro_usa_base_func(symbol="美国非农就业人数", params=params)
|
|
784
372
|
return temp_df
|
|
785
373
|
|
|
786
374
|
|
|
787
375
|
# 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国ADP就业人数报告
|
|
788
376
|
def macro_usa_adp_employment() -> pd.DataFrame:
|
|
789
377
|
"""
|
|
790
|
-
美国ADP就业人数报告, 数据区间从20010601-至今
|
|
378
|
+
美国ADP就业人数报告, 数据区间从 20010601-至今
|
|
791
379
|
https://datacenter.jin10.com/reportType/dc_adp_nonfarm_employment
|
|
792
|
-
|
|
793
|
-
:return: 美国ADP就业人数报告-今值(万人)
|
|
380
|
+
:return: 美国ADP就业人数报告
|
|
794
381
|
:rtype: pandas.Series
|
|
795
382
|
"""
|
|
796
383
|
t = time.time()
|
|
797
|
-
res = requests.get(
|
|
798
|
-
JS_USA_ADP_NONFARM_URL.format(
|
|
799
|
-
str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)
|
|
800
|
-
)
|
|
801
|
-
)
|
|
802
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
803
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
804
|
-
value_list = [item["datas"]["美国ADP就业人数(万人)"] for item in json_data["list"]]
|
|
805
|
-
value_df = pd.DataFrame(value_list)
|
|
806
|
-
value_df.columns = json_data["kinds"]
|
|
807
|
-
value_df.index = pd.to_datetime(date_list)
|
|
808
|
-
temp_df = value_df["今值(万人)"]
|
|
809
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
810
384
|
params = {
|
|
811
385
|
"category": "ec",
|
|
812
386
|
"attr_id": "1",
|
|
813
387
|
"_": str(int(round(t * 1000))),
|
|
814
388
|
}
|
|
815
|
-
|
|
816
|
-
"accept": "*/*",
|
|
817
|
-
"accept-encoding": "gzip, deflate, br",
|
|
818
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
819
|
-
"cache-control": "no-cache",
|
|
820
|
-
"origin": "https://datacenter.jin10.com",
|
|
821
|
-
"pragma": "no-cache",
|
|
822
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
823
|
-
"sec-fetch-dest": "empty",
|
|
824
|
-
"sec-fetch-mode": "cors",
|
|
825
|
-
"sec-fetch-site": "same-site",
|
|
826
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
827
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
828
|
-
"x-csrf-token": "",
|
|
829
|
-
"x-version": "1.0.0",
|
|
830
|
-
}
|
|
831
|
-
r = requests.get(url, params=params, headers=headers)
|
|
832
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
833
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
834
|
-
temp_se = temp_se.iloc[:, 1]
|
|
835
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
836
|
-
temp_df.dropna(inplace=True)
|
|
837
|
-
temp_df.sort_index(inplace=True)
|
|
838
|
-
temp_df = temp_df.reset_index()
|
|
839
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
840
|
-
temp_df.set_index("index", inplace=True)
|
|
841
|
-
temp_df = temp_df.squeeze()
|
|
842
|
-
temp_df.index.name = None
|
|
843
|
-
temp_df = temp_df.astype("float")
|
|
844
|
-
temp_df.name = "adp"
|
|
389
|
+
temp_df = __macro_usa_base_func(symbol="美国ADP就业人数", params=params)
|
|
845
390
|
return temp_df
|
|
846
391
|
|
|
847
392
|
|
|
848
393
|
# 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国核心PCE物价指数年率报告
|
|
849
394
|
def macro_usa_core_pce_price() -> pd.DataFrame:
|
|
850
395
|
"""
|
|
851
|
-
美国核心PCE物价指数年率报告, 数据区间从19700101-至今
|
|
396
|
+
美国核心PCE物价指数年率报告, 数据区间从 19700101-至今
|
|
852
397
|
https://datacenter.jin10.com/reportType/dc_usa_core_pce_price
|
|
853
|
-
|
|
854
|
-
:
|
|
855
|
-
:rtype: pandas.Series
|
|
398
|
+
:return: 美国核心PCE物价指数年率报告
|
|
399
|
+
:rtype: pandas.DataFrame
|
|
856
400
|
"""
|
|
857
401
|
t = time.time()
|
|
858
|
-
res = requests.get(
|
|
859
|
-
JS_USA_CORE_PCE_PRICE_URL.format(
|
|
860
|
-
str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)
|
|
861
|
-
)
|
|
862
|
-
)
|
|
863
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
864
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
865
|
-
value_list = [item["datas"]["美国核心PCE物价指数年率"] for item in json_data["list"]]
|
|
866
|
-
value_df = pd.DataFrame(value_list)
|
|
867
|
-
value_df.columns = json_data["kinds"]
|
|
868
|
-
value_df.index = pd.to_datetime(date_list)
|
|
869
|
-
temp_df = value_df["今值(%)"]
|
|
870
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
871
402
|
params = {
|
|
872
403
|
"category": "ec",
|
|
873
404
|
"attr_id": "80",
|
|
874
405
|
"_": str(int(round(t * 1000))),
|
|
875
406
|
}
|
|
876
|
-
|
|
877
|
-
"accept": "*/*",
|
|
878
|
-
"accept-encoding": "gzip, deflate, br",
|
|
879
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
880
|
-
"cache-control": "no-cache",
|
|
881
|
-
"origin": "https://datacenter.jin10.com",
|
|
882
|
-
"pragma": "no-cache",
|
|
883
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
884
|
-
"sec-fetch-dest": "empty",
|
|
885
|
-
"sec-fetch-mode": "cors",
|
|
886
|
-
"sec-fetch-site": "same-site",
|
|
887
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
888
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
889
|
-
"x-csrf-token": "",
|
|
890
|
-
"x-version": "1.0.0",
|
|
891
|
-
}
|
|
892
|
-
r = requests.get(url, params=params, headers=headers)
|
|
893
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
894
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
895
|
-
temp_se = temp_se.iloc[:, 1]
|
|
896
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
897
|
-
temp_df.dropna(inplace=True)
|
|
898
|
-
temp_df.sort_index(inplace=True)
|
|
899
|
-
temp_df = temp_df.reset_index()
|
|
900
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
901
|
-
temp_df.set_index("index", inplace=True)
|
|
902
|
-
temp_df = temp_df.squeeze()
|
|
903
|
-
temp_df.index.name = None
|
|
904
|
-
temp_df = temp_df.astype("float")
|
|
905
|
-
temp_df.name = "core_pce_price"
|
|
407
|
+
temp_df = __macro_usa_base_func(symbol="美国核心PCE物价指数年率", params=params)
|
|
906
408
|
return temp_df
|
|
907
409
|
|
|
908
410
|
|
|
909
411
|
# 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国实际个人消费支出季率初值报告
|
|
910
412
|
def macro_usa_real_consumer_spending() -> pd.DataFrame:
|
|
911
413
|
"""
|
|
912
|
-
美国实际个人消费支出季率初值报告, 数据区间从20131107-至今
|
|
414
|
+
美国实际个人消费支出季率初值报告, 数据区间从 20131107-至今
|
|
913
415
|
https://datacenter.jin10.com/reportType/dc_usa_real_consumer_spending
|
|
914
|
-
|
|
915
|
-
:
|
|
916
|
-
:rtype: pandas.Series
|
|
416
|
+
:return: 美国实际个人消费支出季率初值报告
|
|
417
|
+
:rtype: pandas.DataFrame
|
|
917
418
|
"""
|
|
918
419
|
t = time.time()
|
|
919
|
-
res = requests.get(
|
|
920
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_real_consumer_spending_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
921
|
-
)
|
|
922
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
923
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
924
|
-
value_list = [item["datas"]["美国实际个人消费支出季率初值报告"] for item in json_data["list"]]
|
|
925
|
-
value_df = pd.DataFrame(value_list)
|
|
926
|
-
value_df.columns = json_data["kinds"]
|
|
927
|
-
value_df.index = pd.to_datetime(date_list)
|
|
928
|
-
temp_df = value_df["今值(%)"]
|
|
929
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
930
420
|
params = {
|
|
931
421
|
"category": "ec",
|
|
932
422
|
"attr_id": "81",
|
|
933
423
|
"_": str(int(round(t * 1000))),
|
|
934
424
|
}
|
|
935
|
-
|
|
936
|
-
"
|
|
937
|
-
|
|
938
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
939
|
-
"cache-control": "no-cache",
|
|
940
|
-
"origin": "https://datacenter.jin10.com",
|
|
941
|
-
"pragma": "no-cache",
|
|
942
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
943
|
-
"sec-fetch-dest": "empty",
|
|
944
|
-
"sec-fetch-mode": "cors",
|
|
945
|
-
"sec-fetch-site": "same-site",
|
|
946
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
947
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
948
|
-
"x-csrf-token": "",
|
|
949
|
-
"x-version": "1.0.0",
|
|
950
|
-
}
|
|
951
|
-
r = requests.get(url, params=params, headers=headers)
|
|
952
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
953
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
954
|
-
temp_se = temp_se.iloc[:, 1]
|
|
955
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
956
|
-
temp_df.dropna(inplace=True)
|
|
957
|
-
temp_df.sort_index(inplace=True)
|
|
958
|
-
temp_df = temp_df.reset_index()
|
|
959
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
960
|
-
temp_df.set_index("index", inplace=True)
|
|
961
|
-
temp_df = temp_df.squeeze()
|
|
962
|
-
temp_df.index.name = None
|
|
963
|
-
temp_df = temp_df.astype("float")
|
|
964
|
-
temp_df.name = "usa_real_consumer_spending"
|
|
425
|
+
temp_df = __macro_usa_base_func(
|
|
426
|
+
symbol="美国实际个人消费支出季率初值", params=params
|
|
427
|
+
)
|
|
965
428
|
return temp_df
|
|
966
429
|
|
|
967
430
|
|
|
968
431
|
# 金十数据中心-经济指标-美国-贸易状况-美国贸易帐报告
|
|
969
432
|
def macro_usa_trade_balance() -> pd.DataFrame:
|
|
970
433
|
"""
|
|
971
|
-
美国贸易帐报告, 数据区间从19700101-至今
|
|
434
|
+
美国贸易帐报告, 数据区间从 19700101-至今
|
|
972
435
|
https://datacenter.jin10.com/reportType/dc_usa_trade_balance
|
|
973
|
-
|
|
974
|
-
:
|
|
975
|
-
:rtype: pandas.Series
|
|
436
|
+
:return: 美国贸易帐报告
|
|
437
|
+
:rtype: pandas.DataFrame
|
|
976
438
|
"""
|
|
977
439
|
t = time.time()
|
|
978
|
-
res = requests.get(
|
|
979
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_trade_balance_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
980
|
-
)
|
|
981
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
982
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
983
|
-
value_list = [item["datas"]["美国贸易帐报告"] for item in json_data["list"]]
|
|
984
|
-
value_df = pd.DataFrame(value_list)
|
|
985
|
-
value_df.columns = json_data["kinds"]
|
|
986
|
-
value_df.index = pd.to_datetime(date_list)
|
|
987
|
-
temp_df = value_df["今值(亿美元)"]
|
|
988
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
989
440
|
params = {
|
|
990
441
|
"category": "ec",
|
|
991
442
|
"attr_id": "42",
|
|
992
443
|
"_": str(int(round(t * 1000))),
|
|
993
444
|
}
|
|
994
|
-
|
|
995
|
-
"accept": "*/*",
|
|
996
|
-
"accept-encoding": "gzip, deflate, br",
|
|
997
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
998
|
-
"cache-control": "no-cache",
|
|
999
|
-
"origin": "https://datacenter.jin10.com",
|
|
1000
|
-
"pragma": "no-cache",
|
|
1001
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1002
|
-
"sec-fetch-dest": "empty",
|
|
1003
|
-
"sec-fetch-mode": "cors",
|
|
1004
|
-
"sec-fetch-site": "same-site",
|
|
1005
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1006
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1007
|
-
"x-csrf-token": "",
|
|
1008
|
-
"x-version": "1.0.0",
|
|
1009
|
-
}
|
|
1010
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1011
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1012
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1013
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1014
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1015
|
-
temp_df.dropna(inplace=True)
|
|
1016
|
-
temp_df.sort_index(inplace=True)
|
|
1017
|
-
temp_df = temp_df.reset_index()
|
|
1018
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1019
|
-
temp_df.set_index("index", inplace=True)
|
|
1020
|
-
temp_df = temp_df.squeeze()
|
|
1021
|
-
temp_df.index.name = None
|
|
1022
|
-
temp_df = temp_df.astype("float")
|
|
1023
|
-
temp_df.name = "usa_trade_balance"
|
|
445
|
+
temp_df = __macro_usa_base_func(symbol="美国贸易帐报告", params=params)
|
|
1024
446
|
return temp_df
|
|
1025
447
|
|
|
1026
448
|
|
|
1027
449
|
# 金十数据中心-经济指标-美国-贸易状况-美国经常帐报告
|
|
1028
450
|
def macro_usa_current_account() -> pd.DataFrame:
|
|
1029
451
|
"""
|
|
1030
|
-
美国经常帐报告, 数据区间从20080317-至今
|
|
452
|
+
美国经常帐报告, 数据区间从 20080317-至今
|
|
1031
453
|
https://datacenter.jin10.com/reportType/dc_usa_current_account
|
|
1032
|
-
|
|
1033
|
-
:
|
|
1034
|
-
:rtype: pandas.Series
|
|
454
|
+
:return: 美国经常帐报告
|
|
455
|
+
:rtype: pandas.DataFrame
|
|
1035
456
|
"""
|
|
1036
457
|
t = time.time()
|
|
1037
|
-
res = requests.get(
|
|
1038
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_current_account_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1039
|
-
)
|
|
1040
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1041
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1042
|
-
value_list = [item["datas"]["美国经常账报告"] for item in json_data["list"]]
|
|
1043
|
-
value_df = pd.DataFrame(value_list)
|
|
1044
|
-
value_df.columns = json_data["kinds"]
|
|
1045
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1046
|
-
temp_df = value_df["今值(亿美元)"]
|
|
1047
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1048
458
|
params = {
|
|
1049
459
|
"category": "ec",
|
|
1050
460
|
"attr_id": "12",
|
|
1051
461
|
"_": str(int(round(t * 1000))),
|
|
1052
462
|
}
|
|
1053
|
-
|
|
1054
|
-
"accept": "*/*",
|
|
1055
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1056
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1057
|
-
"cache-control": "no-cache",
|
|
1058
|
-
"origin": "https://datacenter.jin10.com",
|
|
1059
|
-
"pragma": "no-cache",
|
|
1060
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1061
|
-
"sec-fetch-dest": "empty",
|
|
1062
|
-
"sec-fetch-mode": "cors",
|
|
1063
|
-
"sec-fetch-site": "same-site",
|
|
1064
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1065
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1066
|
-
"x-csrf-token": "",
|
|
1067
|
-
"x-version": "1.0.0",
|
|
1068
|
-
}
|
|
1069
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1070
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1071
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1072
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1073
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1074
|
-
temp_df.dropna(inplace=True)
|
|
1075
|
-
temp_df.sort_index(inplace=True)
|
|
1076
|
-
temp_df = temp_df.reset_index()
|
|
1077
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1078
|
-
temp_df.set_index("index", inplace=True)
|
|
1079
|
-
temp_df = temp_df.squeeze()
|
|
1080
|
-
temp_df.index.name = None
|
|
1081
|
-
temp_df = temp_df.astype("float")
|
|
1082
|
-
temp_df.name = "usa_current_account"
|
|
463
|
+
temp_df = __macro_usa_base_func(symbol="美国经常账报告", params=params)
|
|
1083
464
|
return temp_df
|
|
1084
465
|
|
|
1085
466
|
|
|
1086
467
|
# 金十数据中心-经济指标-美国-产业指标-制造业-贝克休斯钻井报告
|
|
1087
468
|
def macro_usa_rig_count() -> pd.DataFrame:
|
|
1088
469
|
"""
|
|
1089
|
-
贝克休斯钻井报告, 数据区间从20080317-至今
|
|
470
|
+
贝克休斯钻井报告, 数据区间从 20080317-至今
|
|
1090
471
|
https://datacenter.jin10.com/reportType/dc_rig_count_summary
|
|
1091
|
-
https://cdn.jin10.com/dc/reports/dc_rig_count_summary_all.js?v=1578743203
|
|
1092
472
|
:return: 贝克休斯钻井报告-当周
|
|
1093
|
-
:rtype: pandas.
|
|
473
|
+
:rtype: pandas.DataFrame
|
|
1094
474
|
"""
|
|
1095
475
|
t = time.time()
|
|
1096
476
|
params = {"_": t}
|
|
1097
477
|
res = requests.get(
|
|
1098
|
-
"https://cdn.jin10.com/data_center/reports/baker.json", params=params
|
|
478
|
+
url="https://cdn.jin10.com/data_center/reports/baker.json", params=params
|
|
1099
479
|
)
|
|
1100
480
|
temp_df = pd.DataFrame(res.json().get("values")).T
|
|
1101
481
|
big_df = pd.DataFrame()
|
|
@@ -1108,69 +488,28 @@ def macro_usa_rig_count() -> pd.DataFrame:
|
|
|
1108
488
|
big_df["美国天然气钻井_钻井数"] = temp_df["美国天然气钻井"].apply(lambda x: x[0])
|
|
1109
489
|
big_df["美国天然气钻井_变化"] = temp_df["美国天然气钻井"].apply(lambda x: x[1])
|
|
1110
490
|
big_df = big_df.astype("float")
|
|
491
|
+
big_df.reset_index(inplace=True)
|
|
492
|
+
big_df.rename(columns={"index": "日期"}, inplace=True)
|
|
493
|
+
big_df.sort_values(by=["日期"], inplace=True, ignore_index=True)
|
|
1111
494
|
return big_df
|
|
1112
495
|
|
|
1113
496
|
|
|
1114
|
-
# 金十数据中心-经济指标-美国-产业指标-制造业-美国个人支出月率报告
|
|
1115
|
-
|
|
1116
|
-
|
|
1117
497
|
# 金十数据中心-经济指标-美国-产业指标-制造业-美国生产者物价指数(PPI)报告
|
|
1118
498
|
def macro_usa_ppi() -> pd.DataFrame:
|
|
1119
499
|
"""
|
|
1120
|
-
美国生产者物价指数(PPI)报告, 数据区间从20080226-至今
|
|
500
|
+
美国生产者物价指数(PPI)报告, 数据区间从 20080226-至今
|
|
1121
501
|
https://datacenter.jin10.com/reportType/dc_usa_ppi
|
|
1122
|
-
|
|
1123
|
-
:
|
|
1124
|
-
:rtype: pandas.Series
|
|
502
|
+
:return: 美国生产者物价指数(PPI)报告
|
|
503
|
+
:rtype: pandas.DataFrame
|
|
1125
504
|
"""
|
|
1126
505
|
t = time.time()
|
|
1127
|
-
res = requests.get(
|
|
1128
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_ppi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1129
|
-
)
|
|
1130
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1131
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1132
|
-
value_list = [item["datas"]["美国生产者物价指数(PPI)报告"] for item in json_data["list"]]
|
|
1133
|
-
value_df = pd.DataFrame(value_list)
|
|
1134
|
-
value_df.columns = json_data["kinds"]
|
|
1135
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1136
|
-
temp_df = value_df["今值(%)"]
|
|
1137
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1138
506
|
params = {
|
|
1139
507
|
"max_date": "",
|
|
1140
508
|
"category": "ec",
|
|
1141
509
|
"attr_id": "37",
|
|
1142
510
|
"_": str(int(round(t * 1000))),
|
|
1143
511
|
}
|
|
1144
|
-
|
|
1145
|
-
"accept": "*/*",
|
|
1146
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1147
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1148
|
-
"cache-control": "no-cache",
|
|
1149
|
-
"origin": "https://datacenter.jin10.com",
|
|
1150
|
-
"pragma": "no-cache",
|
|
1151
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1152
|
-
"sec-fetch-dest": "empty",
|
|
1153
|
-
"sec-fetch-mode": "cors",
|
|
1154
|
-
"sec-fetch-site": "same-site",
|
|
1155
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1156
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1157
|
-
"x-csrf-token": "",
|
|
1158
|
-
"x-version": "1.0.0",
|
|
1159
|
-
}
|
|
1160
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1161
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1162
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1163
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1164
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1165
|
-
temp_df.dropna(inplace=True)
|
|
1166
|
-
temp_df.sort_index(inplace=True)
|
|
1167
|
-
temp_df = temp_df.reset_index()
|
|
1168
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1169
|
-
temp_df.set_index("index", inplace=True)
|
|
1170
|
-
temp_df = temp_df.squeeze()
|
|
1171
|
-
temp_df.index.name = None
|
|
1172
|
-
temp_df.name = "usa_ppi"
|
|
1173
|
-
temp_df = temp_df.astype("float")
|
|
512
|
+
temp_df = __macro_usa_base_func(symbol="美国生产者物价指数", params=params)
|
|
1174
513
|
return temp_df
|
|
1175
514
|
|
|
1176
515
|
|
|
@@ -1179,1078 +518,345 @@ def macro_usa_core_ppi() -> pd.DataFrame:
|
|
|
1179
518
|
"""
|
|
1180
519
|
美国核心生产者物价指数(PPI)报告, 数据区间从20080318-至今
|
|
1181
520
|
https://datacenter.jin10.com/reportType/dc_usa_core_ppi
|
|
1182
|
-
https://cdn.jin10.com/dc/reports/dc_usa_core_ppi_all.js?v=1578743709
|
|
1183
521
|
:return: 美国核心生产者物价指数(PPI)报告-今值(%)
|
|
1184
|
-
:rtype: pandas.
|
|
522
|
+
:rtype: pandas.DataFrame
|
|
1185
523
|
"""
|
|
1186
524
|
t = time.time()
|
|
1187
|
-
res = requests.get(
|
|
1188
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_core_ppi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1189
|
-
)
|
|
1190
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1191
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1192
|
-
value_list = [item["datas"]["美国核心生产者物价指数(PPI)报告"] for item in json_data["list"]]
|
|
1193
|
-
value_df = pd.DataFrame(value_list)
|
|
1194
|
-
value_df.columns = json_data["kinds"]
|
|
1195
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1196
|
-
temp_df = value_df["今值(%)"]
|
|
1197
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1198
525
|
params = {
|
|
1199
526
|
"max_date": "",
|
|
1200
527
|
"category": "ec",
|
|
1201
528
|
"attr_id": "7",
|
|
1202
529
|
"_": str(int(round(t * 1000))),
|
|
1203
530
|
}
|
|
1204
|
-
|
|
1205
|
-
"accept": "*/*",
|
|
1206
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1207
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1208
|
-
"cache-control": "no-cache",
|
|
1209
|
-
"origin": "https://datacenter.jin10.com",
|
|
1210
|
-
"pragma": "no-cache",
|
|
1211
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1212
|
-
"sec-fetch-dest": "empty",
|
|
1213
|
-
"sec-fetch-mode": "cors",
|
|
1214
|
-
"sec-fetch-site": "same-site",
|
|
1215
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1216
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1217
|
-
"x-csrf-token": "",
|
|
1218
|
-
"x-version": "1.0.0",
|
|
1219
|
-
}
|
|
1220
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1221
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1222
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1223
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1224
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1225
|
-
temp_df.dropna(inplace=True)
|
|
1226
|
-
temp_df.sort_index(inplace=True)
|
|
1227
|
-
temp_df = temp_df.reset_index()
|
|
1228
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1229
|
-
temp_df.set_index("index", inplace=True)
|
|
1230
|
-
temp_df = temp_df.squeeze()
|
|
1231
|
-
temp_df.index.name = None
|
|
1232
|
-
temp_df.name = "usa_core_ppi"
|
|
1233
|
-
temp_df = temp_df.astype("float")
|
|
531
|
+
temp_df = __macro_usa_base_func(symbol="美国核心生产者物价指数", params=params)
|
|
1234
532
|
return temp_df
|
|
1235
533
|
|
|
1236
534
|
|
|
1237
535
|
# 金十数据中心-经济指标-美国-产业指标-制造业-美国API原油库存报告
|
|
1238
536
|
def macro_usa_api_crude_stock() -> pd.DataFrame:
|
|
1239
537
|
"""
|
|
1240
|
-
美国API原油库存报告, 数据区间从20120328-至今
|
|
538
|
+
美国 API 原油库存报告, 数据区间从 20120328-至今
|
|
1241
539
|
https://datacenter.jin10.com/reportType/dc_usa_api_crude_stock
|
|
1242
540
|
https://cdn.jin10.com/dc/reports/dc_usa_api_crude_stock_all.js?v=1578743859
|
|
1243
541
|
:return: 美国API原油库存报告-今值(万桶)
|
|
1244
542
|
:rtype: pandas.Series
|
|
1245
543
|
"""
|
|
1246
544
|
t = time.time()
|
|
1247
|
-
res = requests.get(
|
|
1248
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_api_crude_stock_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1249
|
-
)
|
|
1250
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1251
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1252
|
-
value_list = [item["datas"]["美国API原油库存报告"] for item in json_data["list"]]
|
|
1253
|
-
value_df = pd.DataFrame(value_list)
|
|
1254
|
-
value_df.columns = json_data["kinds"]
|
|
1255
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1256
|
-
temp_df = value_df["今值(万桶)"]
|
|
1257
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1258
545
|
params = {
|
|
1259
546
|
"max_date": "",
|
|
1260
547
|
"category": "ec",
|
|
1261
548
|
"attr_id": "69",
|
|
1262
549
|
"_": str(int(round(t * 1000))),
|
|
1263
550
|
}
|
|
1264
|
-
|
|
1265
|
-
"accept": "*/*",
|
|
1266
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1267
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1268
|
-
"cache-control": "no-cache",
|
|
1269
|
-
"origin": "https://datacenter.jin10.com",
|
|
1270
|
-
"pragma": "no-cache",
|
|
1271
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1272
|
-
"sec-fetch-dest": "empty",
|
|
1273
|
-
"sec-fetch-mode": "cors",
|
|
1274
|
-
"sec-fetch-site": "same-site",
|
|
1275
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1276
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1277
|
-
"x-csrf-token": "",
|
|
1278
|
-
"x-version": "1.0.0",
|
|
1279
|
-
}
|
|
1280
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1281
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1282
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1283
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1284
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1285
|
-
temp_df.dropna(inplace=True)
|
|
1286
|
-
temp_df.sort_index(inplace=True)
|
|
1287
|
-
temp_df = temp_df.reset_index()
|
|
1288
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1289
|
-
temp_df.set_index("index", inplace=True)
|
|
1290
|
-
temp_df = temp_df.squeeze()
|
|
1291
|
-
temp_df.index.name = None
|
|
1292
|
-
temp_df.name = "usa_api_crude_stock"
|
|
1293
|
-
temp_df = temp_df.astype("float")
|
|
551
|
+
temp_df = __macro_usa_base_func(symbol="美国API原油库存", params=params)
|
|
1294
552
|
return temp_df
|
|
1295
553
|
|
|
1296
554
|
|
|
1297
555
|
# 金十数据中心-经济指标-美国-产业指标-制造业-美国Markit制造业PMI初值报告
|
|
1298
|
-
def macro_usa_pmi() -> pd.
|
|
556
|
+
def macro_usa_pmi() -> pd.DataFrame:
|
|
1299
557
|
"""
|
|
1300
|
-
美国Markit制造业PMI初值报告, 数据区间从20120601-至今
|
|
558
|
+
美国 Markit 制造业 PMI 初值报告, 数据区间从 20120601-至今
|
|
1301
559
|
https://datacenter.jin10.com/reportType/dc_usa_pmi
|
|
1302
|
-
|
|
1303
|
-
:
|
|
1304
|
-
:rtype: pandas.Series
|
|
560
|
+
:return: 美国 Markit 制造业 PMI 初值报告
|
|
561
|
+
:rtype: pandas.DataFrame
|
|
1305
562
|
"""
|
|
1306
563
|
t = time.time()
|
|
1307
|
-
res = requests.get(
|
|
1308
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1309
|
-
)
|
|
1310
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1311
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1312
|
-
value_list = [item["datas"]["美国Markit制造业PMI报告"] for item in json_data["list"]]
|
|
1313
|
-
value_df = pd.DataFrame(value_list)
|
|
1314
|
-
value_df.columns = json_data["kinds"]
|
|
1315
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1316
|
-
temp_df = value_df["今值"]
|
|
1317
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1318
564
|
params = {
|
|
1319
565
|
"max_date": "",
|
|
1320
566
|
"category": "ec",
|
|
1321
567
|
"attr_id": "74",
|
|
1322
568
|
"_": str(int(round(t * 1000))),
|
|
1323
569
|
}
|
|
1324
|
-
|
|
1325
|
-
"accept": "*/*",
|
|
1326
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1327
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1328
|
-
"cache-control": "no-cache",
|
|
1329
|
-
"origin": "https://datacenter.jin10.com",
|
|
1330
|
-
"pragma": "no-cache",
|
|
1331
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1332
|
-
"sec-fetch-dest": "empty",
|
|
1333
|
-
"sec-fetch-mode": "cors",
|
|
1334
|
-
"sec-fetch-site": "same-site",
|
|
1335
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1336
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1337
|
-
"x-csrf-token": "",
|
|
1338
|
-
"x-version": "1.0.0",
|
|
1339
|
-
}
|
|
1340
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1341
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1342
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1343
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1344
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1345
|
-
temp_df.dropna(inplace=True)
|
|
1346
|
-
temp_df.sort_index(inplace=True)
|
|
1347
|
-
temp_df = temp_df.reset_index()
|
|
1348
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1349
|
-
temp_df.set_index("index", inplace=True)
|
|
1350
|
-
temp_df = temp_df.squeeze()
|
|
1351
|
-
temp_df.index.name = None
|
|
1352
|
-
temp_df.name = "usa_pmi"
|
|
1353
|
-
temp_df = temp_df.astype("float")
|
|
570
|
+
temp_df = __macro_usa_base_func(symbol="美国Markit制造业PMI报告", params=params)
|
|
1354
571
|
return temp_df
|
|
1355
572
|
|
|
1356
573
|
|
|
1357
574
|
# 金十数据中心-经济指标-美国-产业指标-制造业-美国ISM制造业PMI报告
|
|
1358
575
|
def macro_usa_ism_pmi() -> pd.DataFrame:
|
|
1359
576
|
"""
|
|
1360
|
-
美国ISM制造业PMI报告, 数据区间从19700101-至今
|
|
577
|
+
美国 ISM 制造业 PMI 报告, 数据区间从 19700101-至今
|
|
1361
578
|
https://datacenter.jin10.com/reportType/dc_usa_ism_pmi
|
|
1362
|
-
|
|
1363
|
-
:
|
|
1364
|
-
:rtype: pandas.Series
|
|
579
|
+
:return: 美国 ISM 制造业 PMI 报告-今值
|
|
580
|
+
:rtype: pandas.DataFrame
|
|
1365
581
|
"""
|
|
1366
582
|
t = time.time()
|
|
1367
|
-
res = requests.get(
|
|
1368
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_ism_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1369
|
-
)
|
|
1370
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1371
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1372
|
-
value_list = [item["datas"]["美国ISM制造业PMI报告"] for item in json_data["list"]]
|
|
1373
|
-
value_df = pd.DataFrame(value_list)
|
|
1374
|
-
value_df.columns = json_data["kinds"]
|
|
1375
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1376
|
-
temp_df = value_df["今值"]
|
|
1377
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1378
583
|
params = {
|
|
1379
584
|
"max_date": "",
|
|
1380
585
|
"category": "ec",
|
|
1381
586
|
"attr_id": "28",
|
|
1382
587
|
"_": str(int(round(t * 1000))),
|
|
1383
588
|
}
|
|
1384
|
-
|
|
1385
|
-
"accept": "*/*",
|
|
1386
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1387
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1388
|
-
"cache-control": "no-cache",
|
|
1389
|
-
"origin": "https://datacenter.jin10.com",
|
|
1390
|
-
"pragma": "no-cache",
|
|
1391
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1392
|
-
"sec-fetch-dest": "empty",
|
|
1393
|
-
"sec-fetch-mode": "cors",
|
|
1394
|
-
"sec-fetch-site": "same-site",
|
|
1395
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1396
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1397
|
-
"x-csrf-token": "",
|
|
1398
|
-
"x-version": "1.0.0",
|
|
1399
|
-
}
|
|
1400
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1401
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1402
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1403
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1404
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1405
|
-
temp_df.dropna(inplace=True)
|
|
1406
|
-
temp_df.sort_index(inplace=True)
|
|
1407
|
-
temp_df = temp_df.reset_index()
|
|
1408
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1409
|
-
temp_df.set_index("index", inplace=True)
|
|
1410
|
-
temp_df = temp_df.squeeze()
|
|
1411
|
-
temp_df.index.name = None
|
|
1412
|
-
temp_df.name = "usa_ism_pmi"
|
|
1413
|
-
temp_df = temp_df.astype("float")
|
|
589
|
+
temp_df = __macro_usa_base_func(symbol="美国ISM制造业PMI报告", params=params)
|
|
1414
590
|
return temp_df
|
|
1415
591
|
|
|
1416
592
|
|
|
1417
593
|
# 金十数据中心-经济指标-美国-产业指标-工业-美国工业产出月率报告
|
|
1418
594
|
def macro_usa_industrial_production() -> pd.DataFrame:
|
|
1419
595
|
"""
|
|
1420
|
-
美国工业产出月率报告, 数据区间从19700101-至今
|
|
596
|
+
美国工业产出月率报告, 数据区间从 19700101-至今
|
|
1421
597
|
https://datacenter.jin10.com/reportType/dc_usa_industrial_production
|
|
1422
|
-
https://cdn.jin10.com/dc/reports/dc_usa_industrial_production_all.js?v=1578744188
|
|
1423
598
|
:return: 美国工业产出月率报告-今值(%)
|
|
1424
|
-
:rtype: pandas.
|
|
599
|
+
:rtype: pandas.DataFrame
|
|
1425
600
|
"""
|
|
1426
601
|
t = time.time()
|
|
1427
|
-
res = requests.get(
|
|
1428
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_industrial_production_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1429
|
-
)
|
|
1430
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1431
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1432
|
-
value_list = [item["datas"]["美国工业产出月率报告"] for item in json_data["list"]]
|
|
1433
|
-
value_df = pd.DataFrame(value_list)
|
|
1434
|
-
value_df.columns = json_data["kinds"]
|
|
1435
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1436
|
-
temp_df = value_df["今值(%)"]
|
|
1437
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1438
602
|
params = {
|
|
1439
603
|
"max_date": "",
|
|
1440
604
|
"category": "ec",
|
|
1441
605
|
"attr_id": "20",
|
|
1442
606
|
"_": str(int(round(t * 1000))),
|
|
1443
607
|
}
|
|
1444
|
-
|
|
1445
|
-
"accept": "*/*",
|
|
1446
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1447
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1448
|
-
"cache-control": "no-cache",
|
|
1449
|
-
"origin": "https://datacenter.jin10.com",
|
|
1450
|
-
"pragma": "no-cache",
|
|
1451
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1452
|
-
"sec-fetch-dest": "empty",
|
|
1453
|
-
"sec-fetch-mode": "cors",
|
|
1454
|
-
"sec-fetch-site": "same-site",
|
|
1455
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1456
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1457
|
-
"x-csrf-token": "",
|
|
1458
|
-
"x-version": "1.0.0",
|
|
1459
|
-
}
|
|
1460
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1461
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1462
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1463
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1464
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1465
|
-
temp_df.dropna(inplace=True)
|
|
1466
|
-
temp_df.sort_index(inplace=True)
|
|
1467
|
-
temp_df = temp_df.reset_index()
|
|
1468
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1469
|
-
temp_df.set_index("index", inplace=True)
|
|
1470
|
-
temp_df = temp_df.squeeze()
|
|
1471
|
-
temp_df.index.name = None
|
|
1472
|
-
temp_df.name = "usa_industrial_production"
|
|
1473
|
-
temp_df = temp_df.astype("float")
|
|
608
|
+
temp_df = __macro_usa_base_func(symbol="美国工业产出月率报告", params=params)
|
|
1474
609
|
return temp_df
|
|
1475
610
|
|
|
1476
611
|
|
|
1477
612
|
# 金十数据中心-经济指标-美国-产业指标-工业-美国耐用品订单月率报告
|
|
1478
613
|
def macro_usa_durable_goods_orders() -> pd.DataFrame:
|
|
1479
614
|
"""
|
|
1480
|
-
美国耐用品订单月率报告, 数据区间从20080227-至今
|
|
615
|
+
美国耐用品订单月率报告, 数据区间从 20080227-至今
|
|
1481
616
|
https://datacenter.jin10.com/reportType/dc_usa_durable_goods_orders
|
|
1482
|
-
|
|
1483
|
-
:
|
|
1484
|
-
:rtype: pandas.Series
|
|
617
|
+
:return: 美国耐用品订单月率报告
|
|
618
|
+
:rtype: pandas.DataFrame
|
|
1485
619
|
"""
|
|
1486
620
|
t = time.time()
|
|
1487
|
-
res = requests.get(
|
|
1488
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_durable_goods_orders_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1489
|
-
)
|
|
1490
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1491
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1492
|
-
value_list = [item["datas"]["美国耐用品订单月率报告"] for item in json_data["list"]]
|
|
1493
|
-
value_df = pd.DataFrame(value_list)
|
|
1494
|
-
value_df.columns = json_data["kinds"]
|
|
1495
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1496
|
-
temp_df = value_df["今值(%)"]
|
|
1497
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1498
621
|
params = {
|
|
1499
622
|
"max_date": "",
|
|
1500
623
|
"category": "ec",
|
|
1501
624
|
"attr_id": "13",
|
|
1502
625
|
"_": str(int(round(t * 1000))),
|
|
1503
626
|
}
|
|
1504
|
-
|
|
1505
|
-
"accept": "*/*",
|
|
1506
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1507
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1508
|
-
"cache-control": "no-cache",
|
|
1509
|
-
"origin": "https://datacenter.jin10.com",
|
|
1510
|
-
"pragma": "no-cache",
|
|
1511
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1512
|
-
"sec-fetch-dest": "empty",
|
|
1513
|
-
"sec-fetch-mode": "cors",
|
|
1514
|
-
"sec-fetch-site": "same-site",
|
|
1515
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1516
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1517
|
-
"x-csrf-token": "",
|
|
1518
|
-
"x-version": "1.0.0",
|
|
1519
|
-
}
|
|
1520
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1521
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1522
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1523
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1524
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1525
|
-
temp_df.dropna(inplace=True)
|
|
1526
|
-
temp_df.sort_index(inplace=True)
|
|
1527
|
-
temp_df = temp_df.reset_index()
|
|
1528
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1529
|
-
temp_df.set_index("index", inplace=True)
|
|
1530
|
-
temp_df = temp_df.squeeze()
|
|
1531
|
-
temp_df.index.name = None
|
|
1532
|
-
temp_df.name = "usa_durable_goods_orders"
|
|
1533
|
-
temp_df = temp_df.astype("float")
|
|
627
|
+
temp_df = __macro_usa_base_func(symbol="美国耐用品订单月率报告", params=params)
|
|
1534
628
|
return temp_df
|
|
1535
629
|
|
|
1536
630
|
|
|
1537
631
|
# 金十数据中心-经济指标-美国-产业指标-工业-美国工厂订单月率报告
|
|
1538
632
|
def macro_usa_factory_orders() -> pd.DataFrame:
|
|
1539
633
|
"""
|
|
1540
|
-
美国工厂订单月率报告, 数据区间从19920401-至今
|
|
634
|
+
美国工厂订单月率报告, 数据区间从 19920401-至今
|
|
1541
635
|
https://datacenter.jin10.com/reportType/dc_usa_factory_orders
|
|
1542
|
-
|
|
1543
|
-
:
|
|
1544
|
-
:rtype: pandas.Series
|
|
636
|
+
:return: 美国工厂订单月率报告
|
|
637
|
+
:rtype: pandas.DataFrame
|
|
1545
638
|
"""
|
|
1546
639
|
t = time.time()
|
|
1547
|
-
res = requests.get(
|
|
1548
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_factory_orders_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1549
|
-
)
|
|
1550
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1551
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1552
|
-
value_list = [item["datas"]["美国工厂订单月率报告"] for item in json_data["list"]]
|
|
1553
|
-
value_df = pd.DataFrame(value_list)
|
|
1554
|
-
value_df.columns = json_data["kinds"]
|
|
1555
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1556
|
-
temp_df = value_df["今值(%)"]
|
|
1557
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1558
640
|
params = {
|
|
1559
641
|
"max_date": "",
|
|
1560
642
|
"category": "ec",
|
|
1561
643
|
"attr_id": "16",
|
|
1562
644
|
"_": str(int(round(t * 1000))),
|
|
1563
645
|
}
|
|
1564
|
-
|
|
1565
|
-
"accept": "*/*",
|
|
1566
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1567
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1568
|
-
"cache-control": "no-cache",
|
|
1569
|
-
"origin": "https://datacenter.jin10.com",
|
|
1570
|
-
"pragma": "no-cache",
|
|
1571
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1572
|
-
"sec-fetch-dest": "empty",
|
|
1573
|
-
"sec-fetch-mode": "cors",
|
|
1574
|
-
"sec-fetch-site": "same-site",
|
|
1575
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1576
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1577
|
-
"x-csrf-token": "",
|
|
1578
|
-
"x-version": "1.0.0",
|
|
1579
|
-
}
|
|
1580
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1581
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1582
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1583
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1584
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1585
|
-
temp_df.dropna(inplace=True)
|
|
1586
|
-
temp_df.sort_index(inplace=True)
|
|
1587
|
-
temp_df = temp_df.reset_index()
|
|
1588
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1589
|
-
temp_df.set_index("index", inplace=True)
|
|
1590
|
-
temp_df = temp_df.squeeze()
|
|
1591
|
-
temp_df.index.name = None
|
|
1592
|
-
temp_df.name = "usa_factory_orders"
|
|
1593
|
-
temp_df = temp_df.astype("float")
|
|
646
|
+
temp_df = __macro_usa_base_func(symbol="美国工厂订单月率报告", params=params)
|
|
1594
647
|
return temp_df
|
|
1595
648
|
|
|
1596
649
|
|
|
1597
650
|
# 金十数据中心-经济指标-美国-产业指标-服务业-美国Markit服务业PMI初值报告
|
|
1598
651
|
def macro_usa_services_pmi() -> pd.DataFrame:
|
|
1599
652
|
"""
|
|
1600
|
-
美国Markit服务业PMI初值报告, 数据区间从20120701-至今
|
|
653
|
+
美国Markit服务业PMI初值报告, 数据区间从 20120701-至今
|
|
1601
654
|
https://datacenter.jin10.com/reportType/dc_usa_services_pmi
|
|
1602
|
-
|
|
1603
|
-
:
|
|
1604
|
-
:rtype: pandas.Series
|
|
655
|
+
:return: 美国Markit服务业PMI初值报告
|
|
656
|
+
:rtype: pandas.DataFrame
|
|
1605
657
|
"""
|
|
1606
658
|
t = time.time()
|
|
1607
|
-
res = requests.get(
|
|
1608
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_services_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1609
|
-
)
|
|
1610
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1611
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1612
|
-
value_list = [item["datas"]["美国Markit服务业PMI初值报告"] for item in json_data["list"]]
|
|
1613
|
-
value_df = pd.DataFrame(value_list)
|
|
1614
|
-
value_df.columns = json_data["kinds"]
|
|
1615
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1616
|
-
temp_df = value_df["今值"]
|
|
1617
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1618
659
|
params = {
|
|
1619
660
|
"max_date": "",
|
|
1620
661
|
"category": "ec",
|
|
1621
662
|
"attr_id": "89",
|
|
1622
663
|
"_": str(int(round(t * 1000))),
|
|
1623
664
|
}
|
|
1624
|
-
|
|
1625
|
-
"accept": "*/*",
|
|
1626
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1627
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1628
|
-
"cache-control": "no-cache",
|
|
1629
|
-
"origin": "https://datacenter.jin10.com",
|
|
1630
|
-
"pragma": "no-cache",
|
|
1631
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1632
|
-
"sec-fetch-dest": "empty",
|
|
1633
|
-
"sec-fetch-mode": "cors",
|
|
1634
|
-
"sec-fetch-site": "same-site",
|
|
1635
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1636
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1637
|
-
"x-csrf-token": "",
|
|
1638
|
-
"x-version": "1.0.0",
|
|
1639
|
-
}
|
|
1640
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1641
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1642
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1643
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1644
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1645
|
-
temp_df.dropna(inplace=True)
|
|
1646
|
-
temp_df.sort_index(inplace=True)
|
|
1647
|
-
temp_df = temp_df.reset_index()
|
|
1648
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1649
|
-
temp_df.set_index("index", inplace=True)
|
|
1650
|
-
temp_df = temp_df.squeeze()
|
|
1651
|
-
temp_df.index.name = None
|
|
1652
|
-
temp_df.name = "usa_services_pmi"
|
|
1653
|
-
temp_df = temp_df.astype("float")
|
|
665
|
+
temp_df = __macro_usa_base_func(symbol="美国Markit服务业PMI初值报告", params=params)
|
|
1654
666
|
return temp_df
|
|
1655
667
|
|
|
1656
668
|
|
|
1657
669
|
# 金十数据中心-经济指标-美国-产业指标-服务业-美国商业库存月率报告
|
|
1658
670
|
def macro_usa_business_inventories() -> pd.DataFrame:
|
|
1659
671
|
"""
|
|
1660
|
-
美国商业库存月率报告, 数据区间从19920301-至今
|
|
672
|
+
美国商业库存月率报告, 数据区间从 19920301-至今
|
|
1661
673
|
https://datacenter.jin10.com/reportType/dc_usa_business_inventories
|
|
1662
|
-
|
|
1663
|
-
:
|
|
1664
|
-
:rtype: pandas.Series
|
|
674
|
+
:return: 美国商业库存月率报告
|
|
675
|
+
:rtype: pandas.DataFrame
|
|
1665
676
|
"""
|
|
1666
677
|
t = time.time()
|
|
1667
|
-
res = requests.get(
|
|
1668
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_business_inventories_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1669
|
-
)
|
|
1670
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1671
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1672
|
-
value_list = [item["datas"]["美国商业库存月率报告"] for item in json_data["list"]]
|
|
1673
|
-
value_df = pd.DataFrame(value_list)
|
|
1674
|
-
value_df.columns = json_data["kinds"]
|
|
1675
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1676
|
-
temp_df = value_df["今值(%)"]
|
|
1677
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1678
678
|
params = {
|
|
1679
679
|
"max_date": "",
|
|
1680
680
|
"category": "ec",
|
|
1681
681
|
"attr_id": "4",
|
|
1682
682
|
"_": str(int(round(t * 1000))),
|
|
1683
683
|
}
|
|
1684
|
-
|
|
1685
|
-
"accept": "*/*",
|
|
1686
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1687
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1688
|
-
"cache-control": "no-cache",
|
|
1689
|
-
"origin": "https://datacenter.jin10.com",
|
|
1690
|
-
"pragma": "no-cache",
|
|
1691
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1692
|
-
"sec-fetch-dest": "empty",
|
|
1693
|
-
"sec-fetch-mode": "cors",
|
|
1694
|
-
"sec-fetch-site": "same-site",
|
|
1695
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1696
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1697
|
-
"x-csrf-token": "",
|
|
1698
|
-
"x-version": "1.0.0",
|
|
1699
|
-
}
|
|
1700
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1701
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1702
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1703
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1704
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1705
|
-
temp_df.dropna(inplace=True)
|
|
1706
|
-
temp_df.sort_index(inplace=True)
|
|
1707
|
-
temp_df = temp_df.reset_index()
|
|
1708
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1709
|
-
temp_df.set_index("index", inplace=True)
|
|
1710
|
-
temp_df = temp_df.squeeze()
|
|
1711
|
-
temp_df.index.name = None
|
|
1712
|
-
temp_df.name = "usa_business_inventories"
|
|
1713
|
-
temp_df = temp_df.astype("float")
|
|
684
|
+
temp_df = __macro_usa_base_func(symbol="美国商业库存月率报告", params=params)
|
|
1714
685
|
return temp_df
|
|
1715
686
|
|
|
1716
687
|
|
|
1717
688
|
# 金十数据中心-经济指标-美国-产业指标-服务业-美国ISM非制造业PMI报告
|
|
1718
689
|
def macro_usa_ism_non_pmi() -> pd.DataFrame:
|
|
1719
690
|
"""
|
|
1720
|
-
美国ISM非制造业PMI报告, 数据区间从19970801-至今
|
|
691
|
+
美国ISM非制造业PMI报告, 数据区间从 19970801-至今
|
|
1721
692
|
https://datacenter.jin10.com/reportType/dc_usa_ism_non_pmi
|
|
1722
|
-
|
|
1723
|
-
:
|
|
1724
|
-
:rtype: pandas.Series
|
|
693
|
+
:return: 美国ISM非制造业PMI报告
|
|
694
|
+
:rtype: pandas.DataFrame
|
|
1725
695
|
"""
|
|
1726
696
|
t = time.time()
|
|
1727
|
-
res = requests.get(
|
|
1728
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_ism_non_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1729
|
-
)
|
|
1730
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1731
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1732
|
-
value_list = [item["datas"]["美国ISM非制造业PMI报告"] for item in json_data["list"]]
|
|
1733
|
-
value_df = pd.DataFrame(value_list)
|
|
1734
|
-
value_df.columns = json_data["kinds"]
|
|
1735
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1736
|
-
temp_df = value_df["今值"]
|
|
1737
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1738
697
|
params = {
|
|
1739
698
|
"max_date": "",
|
|
1740
699
|
"category": "ec",
|
|
1741
700
|
"attr_id": "29",
|
|
1742
701
|
"_": str(int(round(t * 1000))),
|
|
1743
702
|
}
|
|
1744
|
-
|
|
1745
|
-
"accept": "*/*",
|
|
1746
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1747
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1748
|
-
"cache-control": "no-cache",
|
|
1749
|
-
"origin": "https://datacenter.jin10.com",
|
|
1750
|
-
"pragma": "no-cache",
|
|
1751
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1752
|
-
"sec-fetch-dest": "empty",
|
|
1753
|
-
"sec-fetch-mode": "cors",
|
|
1754
|
-
"sec-fetch-site": "same-site",
|
|
1755
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1756
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1757
|
-
"x-csrf-token": "",
|
|
1758
|
-
"x-version": "1.0.0",
|
|
1759
|
-
}
|
|
1760
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1761
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1762
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1763
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1764
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1765
|
-
temp_df.dropna(inplace=True)
|
|
1766
|
-
temp_df.sort_index(inplace=True)
|
|
1767
|
-
temp_df = temp_df.reset_index()
|
|
1768
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1769
|
-
temp_df.set_index("index", inplace=True)
|
|
1770
|
-
temp_df = temp_df.squeeze()
|
|
1771
|
-
temp_df.index.name = None
|
|
1772
|
-
temp_df.name = "usa_ism_non_pmi"
|
|
1773
|
-
temp_df = temp_df.astype("float")
|
|
703
|
+
temp_df = __macro_usa_base_func(symbol="美国ISM非制造业PMI报告", params=params)
|
|
1774
704
|
return temp_df
|
|
1775
705
|
|
|
1776
706
|
|
|
1777
707
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国NAHB房产市场指数报告
|
|
1778
708
|
def macro_usa_nahb_house_market_index() -> pd.DataFrame:
|
|
1779
709
|
"""
|
|
1780
|
-
美国NAHB房产市场指数报告, 数据区间从19850201-至今
|
|
710
|
+
美国NAHB房产市场指数报告, 数据区间从 19850201-至今
|
|
1781
711
|
https://datacenter.jin10.com/reportType/dc_usa_nahb_house_market_index
|
|
1782
|
-
|
|
1783
|
-
:
|
|
1784
|
-
:rtype: pandas.Series
|
|
712
|
+
:return: 美国NAHB房产市场指数报告
|
|
713
|
+
:rtype: pandas.DataFrame
|
|
1785
714
|
"""
|
|
1786
715
|
t = time.time()
|
|
1787
|
-
res = requests.get(
|
|
1788
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_nahb_house_market_index_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1789
|
-
)
|
|
1790
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1791
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1792
|
-
value_list = [item["datas"]["美国NAHB房产市场指数报告"] for item in json_data["list"]]
|
|
1793
|
-
value_df = pd.DataFrame(value_list)
|
|
1794
|
-
value_df.columns = json_data["kinds"]
|
|
1795
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1796
|
-
temp_df = value_df["今值"]
|
|
1797
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1798
716
|
params = {
|
|
1799
717
|
"max_date": "",
|
|
1800
718
|
"category": "ec",
|
|
1801
719
|
"attr_id": "31",
|
|
1802
720
|
"_": str(int(round(t * 1000))),
|
|
1803
721
|
}
|
|
1804
|
-
|
|
1805
|
-
"accept": "*/*",
|
|
1806
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1807
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1808
|
-
"cache-control": "no-cache",
|
|
1809
|
-
"origin": "https://datacenter.jin10.com",
|
|
1810
|
-
"pragma": "no-cache",
|
|
1811
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1812
|
-
"sec-fetch-dest": "empty",
|
|
1813
|
-
"sec-fetch-mode": "cors",
|
|
1814
|
-
"sec-fetch-site": "same-site",
|
|
1815
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1816
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1817
|
-
"x-csrf-token": "",
|
|
1818
|
-
"x-version": "1.0.0",
|
|
1819
|
-
}
|
|
1820
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1821
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1822
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1823
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1824
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1825
|
-
temp_df.dropna(inplace=True)
|
|
1826
|
-
temp_df.sort_index(inplace=True)
|
|
1827
|
-
temp_df = temp_df.reset_index()
|
|
1828
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1829
|
-
temp_df.set_index("index", inplace=True)
|
|
1830
|
-
temp_df = temp_df.squeeze()
|
|
1831
|
-
temp_df.index.name = None
|
|
1832
|
-
temp_df.name = "usa_nahb_house_market_index"
|
|
1833
|
-
temp_df = temp_df.astype("float")
|
|
722
|
+
temp_df = __macro_usa_base_func(symbol="美国NAHB房产市场指数报告", params=params)
|
|
1834
723
|
return temp_df
|
|
1835
724
|
|
|
1836
725
|
|
|
1837
726
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋开工总数年化报告
|
|
1838
727
|
def macro_usa_house_starts() -> pd.DataFrame:
|
|
1839
728
|
"""
|
|
1840
|
-
美国新屋开工总数年化报告, 数据区间从19700101-至今
|
|
729
|
+
美国新屋开工总数年化报告, 数据区间从 19700101-至今
|
|
1841
730
|
https://datacenter.jin10.com/reportType/dc_usa_house_starts
|
|
1842
|
-
|
|
1843
|
-
:
|
|
1844
|
-
:rtype: pandas.Series
|
|
731
|
+
:return: 美国新屋开工总数年化报告
|
|
732
|
+
:rtype: pandas.DataFrame
|
|
1845
733
|
"""
|
|
1846
734
|
t = time.time()
|
|
1847
|
-
res = requests.get(
|
|
1848
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_house_starts_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1849
|
-
)
|
|
1850
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1851
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1852
|
-
value_list = [item["datas"]["美国新屋开工总数年化报告"] for item in json_data["list"]]
|
|
1853
|
-
value_df = pd.DataFrame(value_list)
|
|
1854
|
-
value_df.columns = json_data["kinds"]
|
|
1855
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1856
|
-
temp_df = value_df["今值(万户)"]
|
|
1857
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1858
735
|
params = {
|
|
1859
736
|
"max_date": "",
|
|
1860
737
|
"category": "ec",
|
|
1861
738
|
"attr_id": "17",
|
|
1862
739
|
"_": str(int(round(t * 1000))),
|
|
1863
740
|
}
|
|
1864
|
-
|
|
1865
|
-
"accept": "*/*",
|
|
1866
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1867
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1868
|
-
"cache-control": "no-cache",
|
|
1869
|
-
"origin": "https://datacenter.jin10.com",
|
|
1870
|
-
"pragma": "no-cache",
|
|
1871
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1872
|
-
"sec-fetch-dest": "empty",
|
|
1873
|
-
"sec-fetch-mode": "cors",
|
|
1874
|
-
"sec-fetch-site": "same-site",
|
|
1875
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1876
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1877
|
-
"x-csrf-token": "",
|
|
1878
|
-
"x-version": "1.0.0",
|
|
1879
|
-
}
|
|
1880
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1881
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1882
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1883
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1884
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1885
|
-
temp_df.dropna(inplace=True)
|
|
1886
|
-
temp_df.sort_index(inplace=True)
|
|
1887
|
-
temp_df = temp_df.reset_index()
|
|
1888
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1889
|
-
temp_df.set_index("index", inplace=True)
|
|
1890
|
-
temp_df = temp_df.squeeze()
|
|
1891
|
-
temp_df.index.name = None
|
|
1892
|
-
temp_df.name = "usa_house_starts"
|
|
1893
|
-
temp_df = temp_df.astype("float")
|
|
741
|
+
temp_df = __macro_usa_base_func(symbol="美国新屋开工总数年化报告", params=params)
|
|
1894
742
|
return temp_df
|
|
1895
743
|
|
|
1896
744
|
|
|
1897
745
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋销售总数年化报告
|
|
1898
746
|
def macro_usa_new_home_sales() -> pd.DataFrame:
|
|
1899
747
|
"""
|
|
1900
|
-
美国新屋销售总数年化报告, 数据区间从19700101-至今
|
|
748
|
+
美国新屋销售总数年化报告, 数据区间从 19700101-至今
|
|
1901
749
|
https://datacenter.jin10.com/reportType/dc_usa_new_home_sales
|
|
1902
|
-
|
|
1903
|
-
:
|
|
1904
|
-
:rtype: pandas.Series
|
|
750
|
+
:return: 美国新屋销售总数年化报告
|
|
751
|
+
:rtype: pandas.DataFrame
|
|
1905
752
|
"""
|
|
1906
753
|
t = time.time()
|
|
1907
|
-
res = requests.get(
|
|
1908
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_new_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1909
|
-
)
|
|
1910
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1911
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1912
|
-
value_list = [item["datas"]["美国新屋销售总数年化报告"] for item in json_data["list"]]
|
|
1913
|
-
value_df = pd.DataFrame(value_list)
|
|
1914
|
-
value_df.columns = json_data["kinds"]
|
|
1915
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1916
|
-
temp_df = value_df["今值(万户)"]
|
|
1917
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1918
754
|
params = {
|
|
1919
755
|
"max_date": "",
|
|
1920
756
|
"category": "ec",
|
|
1921
757
|
"attr_id": "32",
|
|
1922
758
|
"_": str(int(round(t * 1000))),
|
|
1923
759
|
}
|
|
1924
|
-
|
|
1925
|
-
"accept": "*/*",
|
|
1926
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1927
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1928
|
-
"cache-control": "no-cache",
|
|
1929
|
-
"origin": "https://datacenter.jin10.com",
|
|
1930
|
-
"pragma": "no-cache",
|
|
1931
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1932
|
-
"sec-fetch-dest": "empty",
|
|
1933
|
-
"sec-fetch-mode": "cors",
|
|
1934
|
-
"sec-fetch-site": "same-site",
|
|
1935
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1936
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1937
|
-
"x-csrf-token": "",
|
|
1938
|
-
"x-version": "1.0.0",
|
|
1939
|
-
}
|
|
1940
|
-
r = requests.get(url, params=params, headers=headers)
|
|
1941
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
1942
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
1943
|
-
temp_se = temp_se.iloc[:, 1]
|
|
1944
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
1945
|
-
temp_df.dropna(inplace=True)
|
|
1946
|
-
temp_df.sort_index(inplace=True)
|
|
1947
|
-
temp_df = temp_df.reset_index()
|
|
1948
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
1949
|
-
temp_df.set_index("index", inplace=True)
|
|
1950
|
-
temp_df = temp_df.squeeze()
|
|
1951
|
-
temp_df.index.name = None
|
|
1952
|
-
temp_df.name = "usa_new_home_sales"
|
|
1953
|
-
temp_df = temp_df.astype("float")
|
|
760
|
+
temp_df = __macro_usa_base_func(symbol="美国新屋销售总数年化报告", params=params)
|
|
1954
761
|
return temp_df
|
|
1955
762
|
|
|
1956
763
|
|
|
1957
764
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国营建许可总数报告
|
|
1958
765
|
def macro_usa_building_permits() -> pd.DataFrame:
|
|
1959
766
|
"""
|
|
1960
|
-
美国营建许可总数报告, 数据区间从20080220-至今
|
|
767
|
+
美国营建许可总数报告, 数据区间从 20080220-至今
|
|
1961
768
|
https://datacenter.jin10.com/reportType/dc_usa_building_permits
|
|
1962
|
-
|
|
1963
|
-
:
|
|
1964
|
-
:rtype: pandas.Series
|
|
769
|
+
:return: 美国营建许可总数报告
|
|
770
|
+
:rtype: pandas.DataFrame
|
|
1965
771
|
"""
|
|
1966
772
|
t = time.time()
|
|
1967
|
-
res = requests.get(
|
|
1968
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_building_permits_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
1969
|
-
)
|
|
1970
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
1971
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
1972
|
-
value_list = [item["datas"]["美国营建许可总数报告"] for item in json_data["list"]]
|
|
1973
|
-
value_df = pd.DataFrame(value_list)
|
|
1974
|
-
value_df.columns = json_data["kinds"]
|
|
1975
|
-
value_df.index = pd.to_datetime(date_list)
|
|
1976
|
-
temp_df = value_df["今值(万户)"]
|
|
1977
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
1978
773
|
params = {
|
|
1979
774
|
"max_date": "",
|
|
1980
775
|
"category": "ec",
|
|
1981
776
|
"attr_id": "3",
|
|
1982
777
|
"_": str(int(round(t * 1000))),
|
|
1983
778
|
}
|
|
1984
|
-
|
|
1985
|
-
"accept": "*/*",
|
|
1986
|
-
"accept-encoding": "gzip, deflate, br",
|
|
1987
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
1988
|
-
"cache-control": "no-cache",
|
|
1989
|
-
"origin": "https://datacenter.jin10.com",
|
|
1990
|
-
"pragma": "no-cache",
|
|
1991
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
1992
|
-
"sec-fetch-dest": "empty",
|
|
1993
|
-
"sec-fetch-mode": "cors",
|
|
1994
|
-
"sec-fetch-site": "same-site",
|
|
1995
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
1996
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
1997
|
-
"x-csrf-token": "",
|
|
1998
|
-
"x-version": "1.0.0",
|
|
1999
|
-
}
|
|
2000
|
-
r = requests.get(url, params=params, headers=headers)
|
|
2001
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
2002
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
2003
|
-
temp_se = temp_se.iloc[:, 1]
|
|
2004
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
2005
|
-
temp_df.dropna(inplace=True)
|
|
2006
|
-
temp_df.sort_index(inplace=True)
|
|
2007
|
-
temp_df = temp_df.reset_index()
|
|
2008
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
2009
|
-
temp_df.set_index("index", inplace=True)
|
|
2010
|
-
temp_df = temp_df.squeeze()
|
|
2011
|
-
temp_df.index.name = None
|
|
2012
|
-
temp_df.name = "usa_building_permits"
|
|
2013
|
-
temp_df = temp_df.astype("float")
|
|
779
|
+
temp_df = __macro_usa_base_func(symbol="美国营建许可总数报告", params=params)
|
|
2014
780
|
return temp_df
|
|
2015
781
|
|
|
2016
782
|
|
|
2017
783
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋销售总数年化报告
|
|
2018
784
|
def macro_usa_exist_home_sales() -> pd.DataFrame:
|
|
2019
785
|
"""
|
|
2020
|
-
美国成屋销售总数年化报告, 数据区间从19700101-至今
|
|
786
|
+
美国成屋销售总数年化报告, 数据区间从 19700101-至今
|
|
2021
787
|
https://datacenter.jin10.com/reportType/dc_usa_exist_home_sales
|
|
2022
|
-
|
|
2023
|
-
:
|
|
2024
|
-
:rtype: pandas.Series
|
|
788
|
+
:return: 美国成屋销售总数年化报告
|
|
789
|
+
:rtype: pandas.DataFrame
|
|
2025
790
|
"""
|
|
2026
791
|
t = time.time()
|
|
2027
|
-
res = requests.get(
|
|
2028
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_exist_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
2029
|
-
)
|
|
2030
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
2031
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
2032
|
-
value_list = [item["datas"]["美国成屋销售总数年化报告"] for item in json_data["list"]]
|
|
2033
|
-
value_df = pd.DataFrame(value_list)
|
|
2034
|
-
value_df.columns = json_data["kinds"]
|
|
2035
|
-
value_df.index = pd.to_datetime(date_list)
|
|
2036
|
-
temp_df = value_df["今值(万户)"]
|
|
2037
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
2038
792
|
params = {
|
|
2039
793
|
"max_date": "",
|
|
2040
794
|
"category": "ec",
|
|
2041
795
|
"attr_id": "15",
|
|
2042
796
|
"_": str(int(round(t * 1000))),
|
|
2043
797
|
}
|
|
2044
|
-
|
|
2045
|
-
"accept": "*/*",
|
|
2046
|
-
"accept-encoding": "gzip, deflate, br",
|
|
2047
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
2048
|
-
"cache-control": "no-cache",
|
|
2049
|
-
"origin": "https://datacenter.jin10.com",
|
|
2050
|
-
"pragma": "no-cache",
|
|
2051
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
2052
|
-
"sec-fetch-dest": "empty",
|
|
2053
|
-
"sec-fetch-mode": "cors",
|
|
2054
|
-
"sec-fetch-site": "same-site",
|
|
2055
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
2056
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
2057
|
-
"x-csrf-token": "",
|
|
2058
|
-
"x-version": "1.0.0",
|
|
2059
|
-
}
|
|
2060
|
-
r = requests.get(url, params=params, headers=headers)
|
|
2061
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
2062
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
2063
|
-
temp_se = temp_se.iloc[:, 1]
|
|
2064
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
2065
|
-
temp_df.dropna(inplace=True)
|
|
2066
|
-
temp_df.sort_index(inplace=True)
|
|
2067
|
-
temp_df = temp_df.reset_index()
|
|
2068
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
2069
|
-
temp_df.set_index("index", inplace=True)
|
|
2070
|
-
temp_df = temp_df.squeeze()
|
|
2071
|
-
temp_df.index.name = None
|
|
2072
|
-
temp_df.name = "usa_exist_home_sales"
|
|
2073
|
-
temp_df = temp_df.astype("float")
|
|
798
|
+
temp_df = __macro_usa_base_func(symbol="美国成屋销售总数年化报告", params=params)
|
|
2074
799
|
return temp_df
|
|
2075
800
|
|
|
2076
801
|
|
|
2077
802
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国FHFA房价指数月率报告
|
|
2078
803
|
def macro_usa_house_price_index() -> pd.DataFrame:
|
|
2079
804
|
"""
|
|
2080
|
-
美国FHFA房价指数月率报告, 数据区间从19910301-至今
|
|
805
|
+
美国FHFA房价指数月率报告, 数据区间从 19910301-至今
|
|
2081
806
|
https://datacenter.jin10.com/reportType/dc_usa_house_price_index
|
|
2082
|
-
|
|
2083
|
-
:
|
|
2084
|
-
:rtype: pandas.Series
|
|
807
|
+
:return: 美国FHFA房价指数月率报告
|
|
808
|
+
:rtype: pandas.DataFrame
|
|
2085
809
|
"""
|
|
2086
810
|
t = time.time()
|
|
2087
|
-
res = requests.get(
|
|
2088
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_house_price_index_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
2089
|
-
)
|
|
2090
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
2091
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
2092
|
-
value_list = [item["datas"]["美国FHFA房价指数月率报告"] for item in json_data["list"]]
|
|
2093
|
-
value_df = pd.DataFrame(value_list)
|
|
2094
|
-
value_df.columns = json_data["kinds"]
|
|
2095
|
-
value_df.index = pd.to_datetime(date_list)
|
|
2096
|
-
temp_df = value_df["今值(%)"]
|
|
2097
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
2098
811
|
params = {
|
|
2099
812
|
"max_date": "",
|
|
2100
813
|
"category": "ec",
|
|
2101
814
|
"attr_id": "51",
|
|
2102
815
|
"_": str(int(round(t * 1000))),
|
|
2103
816
|
}
|
|
2104
|
-
|
|
2105
|
-
"accept": "*/*",
|
|
2106
|
-
"accept-encoding": "gzip, deflate, br",
|
|
2107
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
2108
|
-
"cache-control": "no-cache",
|
|
2109
|
-
"origin": "https://datacenter.jin10.com",
|
|
2110
|
-
"pragma": "no-cache",
|
|
2111
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
2112
|
-
"sec-fetch-dest": "empty",
|
|
2113
|
-
"sec-fetch-mode": "cors",
|
|
2114
|
-
"sec-fetch-site": "same-site",
|
|
2115
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
2116
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
2117
|
-
"x-csrf-token": "",
|
|
2118
|
-
"x-version": "1.0.0",
|
|
2119
|
-
}
|
|
2120
|
-
r = requests.get(url, params=params, headers=headers)
|
|
2121
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
2122
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
2123
|
-
temp_se = temp_se.iloc[:, 1]
|
|
2124
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
2125
|
-
temp_df.dropna(inplace=True)
|
|
2126
|
-
temp_df.sort_index(inplace=True)
|
|
2127
|
-
temp_df = temp_df.reset_index()
|
|
2128
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
2129
|
-
temp_df.set_index("index", inplace=True)
|
|
2130
|
-
temp_df = temp_df.squeeze()
|
|
2131
|
-
temp_df.index.name = None
|
|
2132
|
-
temp_df.name = "usa_house_price_index"
|
|
2133
|
-
temp_df = temp_df.astype("float")
|
|
817
|
+
temp_df = __macro_usa_base_func(symbol="美国FHFA房价指数月率报告", params=params)
|
|
2134
818
|
return temp_df
|
|
2135
819
|
|
|
2136
820
|
|
|
2137
821
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国S&P/CS20座大城市房价指数年率报告
|
|
2138
822
|
def macro_usa_spcs20() -> pd.DataFrame:
|
|
2139
823
|
"""
|
|
2140
|
-
美国S&P/CS20座大城市房价指数年率报告, 数据区间从20010201-至今
|
|
824
|
+
美国S&P/CS20座大城市房价指数年率报告, 数据区间从 20010201-至今
|
|
2141
825
|
https://datacenter.jin10.com/reportType/dc_usa_spcs20
|
|
2142
|
-
|
|
2143
|
-
:
|
|
2144
|
-
:rtype: pandas.Series
|
|
826
|
+
:return: 美国S&P/CS20座大城市房价指数年率报告
|
|
827
|
+
:rtype: pandas.DataFrame
|
|
2145
828
|
"""
|
|
2146
829
|
t = time.time()
|
|
2147
|
-
res = requests.get(
|
|
2148
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_spcs20_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
2149
|
-
)
|
|
2150
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
2151
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
2152
|
-
value_list = [item["datas"]["美国S&P/CS20座大城市房价指数年率报告"] for item in json_data["list"]]
|
|
2153
|
-
value_df = pd.DataFrame(value_list)
|
|
2154
|
-
value_df.columns = json_data["kinds"]
|
|
2155
|
-
value_df.index = pd.to_datetime(date_list)
|
|
2156
|
-
temp_df = value_df["今值(%)"]
|
|
2157
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
2158
830
|
params = {
|
|
2159
831
|
"max_date": "",
|
|
2160
832
|
"category": "ec",
|
|
2161
833
|
"attr_id": "52",
|
|
2162
834
|
"_": str(int(round(t * 1000))),
|
|
2163
835
|
}
|
|
2164
|
-
|
|
2165
|
-
"
|
|
2166
|
-
|
|
2167
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
2168
|
-
"cache-control": "no-cache",
|
|
2169
|
-
"origin": "https://datacenter.jin10.com",
|
|
2170
|
-
"pragma": "no-cache",
|
|
2171
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
2172
|
-
"sec-fetch-dest": "empty",
|
|
2173
|
-
"sec-fetch-mode": "cors",
|
|
2174
|
-
"sec-fetch-site": "same-site",
|
|
2175
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
2176
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
2177
|
-
"x-csrf-token": "",
|
|
2178
|
-
"x-version": "1.0.0",
|
|
2179
|
-
}
|
|
2180
|
-
r = requests.get(url, params=params, headers=headers)
|
|
2181
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
2182
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
2183
|
-
temp_se = temp_se.iloc[:, 1]
|
|
2184
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
2185
|
-
temp_df.dropna(inplace=True)
|
|
2186
|
-
temp_df.sort_index(inplace=True)
|
|
2187
|
-
temp_df = temp_df.reset_index()
|
|
2188
|
-
temp_df.drop_duplicates(subset="index", keep="last", inplace=True)
|
|
2189
|
-
temp_df.set_index("index", inplace=True)
|
|
2190
|
-
temp_df = temp_df.squeeze()
|
|
2191
|
-
temp_df.index.name = None
|
|
2192
|
-
temp_df.name = "usa_spcs20"
|
|
2193
|
-
temp_df = temp_df.astype(float)
|
|
836
|
+
temp_df = __macro_usa_base_func(
|
|
837
|
+
symbol="美国S&P/CS20座大城市房价指数年率", params=params
|
|
838
|
+
)
|
|
2194
839
|
return temp_df
|
|
2195
840
|
|
|
2196
841
|
|
|
2197
842
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋签约销售指数月率报告
|
|
2198
843
|
def macro_usa_pending_home_sales() -> pd.DataFrame:
|
|
2199
844
|
"""
|
|
2200
|
-
美国成屋签约销售指数月率报告, 数据区间从20010301-至今
|
|
845
|
+
美国成屋签约销售指数月率报告, 数据区间从 20010301-至今
|
|
2201
846
|
https://datacenter.jin10.com/reportType/dc_usa_pending_home_sales
|
|
2202
|
-
https://cdn.jin10.com/dc/reports/dc_usa_pending_home_sales_all.js?v=1578747959
|
|
2203
847
|
:return: 美国成屋签约销售指数月率报告
|
|
2204
|
-
:rtype: pandas.
|
|
848
|
+
:rtype: pandas.DataFrame
|
|
2205
849
|
"""
|
|
2206
850
|
t = time.time()
|
|
2207
|
-
res = requests.get(
|
|
2208
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_pending_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
2209
|
-
)
|
|
2210
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
2211
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
2212
|
-
value_list = [item["datas"]["美国成屋签约销售指数月率报告"] for item in json_data["list"]]
|
|
2213
|
-
value_df = pd.DataFrame(value_list)
|
|
2214
|
-
value_df.columns = json_data["kinds"]
|
|
2215
|
-
value_df.index = pd.to_datetime(date_list)
|
|
2216
|
-
temp_df = value_df["今值(%)"]
|
|
2217
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
2218
851
|
params = {
|
|
2219
852
|
"max_date": "",
|
|
2220
853
|
"category": "ec",
|
|
2221
854
|
"attr_id": "34",
|
|
2222
855
|
"_": str(int(round(t * 1000))),
|
|
2223
856
|
}
|
|
2224
|
-
|
|
2225
|
-
"
|
|
2226
|
-
|
|
2227
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
2228
|
-
"cache-control": "no-cache",
|
|
2229
|
-
"origin": "https://datacenter.jin10.com",
|
|
2230
|
-
"pragma": "no-cache",
|
|
2231
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
2232
|
-
"sec-fetch-dest": "empty",
|
|
2233
|
-
"sec-fetch-mode": "cors",
|
|
2234
|
-
"sec-fetch-site": "same-site",
|
|
2235
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
2236
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
2237
|
-
"x-csrf-token": "",
|
|
2238
|
-
"x-version": "1.0.0",
|
|
2239
|
-
}
|
|
2240
|
-
r = requests.get(url, params=params, headers=headers)
|
|
2241
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
2242
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
2243
|
-
temp_se = temp_se.iloc[:, 1]
|
|
2244
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
2245
|
-
temp_df.dropna(inplace=True)
|
|
2246
|
-
temp_df.sort_index(inplace=True)
|
|
2247
|
-
temp_df = temp_df.reset_index()
|
|
2248
|
-
temp_df.drop_duplicates(subset="index", keep="last", inplace=True)
|
|
2249
|
-
temp_df.set_index("index", inplace=True)
|
|
2250
|
-
temp_df = temp_df.squeeze()
|
|
2251
|
-
temp_df.index.name = None
|
|
2252
|
-
temp_df.name = "usa_pending_home_sales"
|
|
2253
|
-
temp_df = temp_df.astype(float)
|
|
857
|
+
temp_df = __macro_usa_base_func(
|
|
858
|
+
symbol="美国成屋签约销售指数月率报告", params=params
|
|
859
|
+
)
|
|
2254
860
|
return temp_df
|
|
2255
861
|
|
|
2256
862
|
|
|
@@ -2258,353 +864,134 @@ def macro_usa_pending_home_sales() -> pd.DataFrame:
|
|
|
2258
864
|
def macro_usa_cb_consumer_confidence() -> pd.DataFrame:
|
|
2259
865
|
"""
|
|
2260
866
|
金十数据中心-经济指标-美国-领先指标-美国谘商会消费者信心指数报告, 数据区间从 19700101-至今
|
|
2261
|
-
https://
|
|
2262
|
-
:return:
|
|
2263
|
-
:rtype: pandas.
|
|
867
|
+
https://datacenter.jin10.com/reportType/dc_usa_cb_consumer_confidence
|
|
868
|
+
:return: 美国谘商会消费者信心指数报告
|
|
869
|
+
:rtype: pandas.DataFrame
|
|
2264
870
|
"""
|
|
2265
871
|
t = time.time()
|
|
2266
|
-
res = requests.get(
|
|
2267
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_cb_consumer_confidence_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
2268
|
-
)
|
|
2269
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
2270
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
2271
|
-
value_list = [item["datas"]["美国谘商会消费者信心指数报告"] for item in json_data["list"]]
|
|
2272
|
-
value_df = pd.DataFrame(value_list)
|
|
2273
|
-
value_df.columns = json_data["kinds"]
|
|
2274
|
-
value_df.index = pd.to_datetime(date_list)
|
|
2275
|
-
temp_df = value_df["今值"]
|
|
2276
|
-
|
|
2277
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
2278
872
|
params = {
|
|
2279
873
|
"max_date": "",
|
|
2280
874
|
"category": "ec",
|
|
2281
875
|
"attr_id": "5",
|
|
2282
876
|
"_": str(int(round(t * 1000))),
|
|
2283
877
|
}
|
|
2284
|
-
|
|
2285
|
-
"accept": "*/*",
|
|
2286
|
-
"accept-encoding": "gzip, deflate, br",
|
|
2287
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
2288
|
-
"cache-control": "no-cache",
|
|
2289
|
-
"origin": "https://datacenter.jin10.com",
|
|
2290
|
-
"pragma": "no-cache",
|
|
2291
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
2292
|
-
"sec-fetch-dest": "empty",
|
|
2293
|
-
"sec-fetch-mode": "cors",
|
|
2294
|
-
"sec-fetch-site": "same-site",
|
|
2295
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
2296
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
2297
|
-
"x-csrf-token": "",
|
|
2298
|
-
"x-version": "1.0.0",
|
|
2299
|
-
}
|
|
2300
|
-
r = requests.get(url, params=params, headers=headers)
|
|
2301
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
2302
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
2303
|
-
temp_se = temp_se.iloc[:, 1]
|
|
2304
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
2305
|
-
temp_df.dropna(inplace=True)
|
|
2306
|
-
temp_df.sort_index(inplace=True)
|
|
2307
|
-
temp_df = temp_df.reset_index()
|
|
2308
|
-
temp_df.drop_duplicates(subset="index", keep="last", inplace=True)
|
|
2309
|
-
temp_df.set_index("index", inplace=True)
|
|
2310
|
-
temp_df = temp_df.squeeze()
|
|
2311
|
-
temp_df.index.name = None
|
|
2312
|
-
temp_df.name = "cb_consumer_confidence"
|
|
2313
|
-
temp_df = temp_df.astype(float)
|
|
878
|
+
temp_df = __macro_usa_base_func(symbol="美国谘商会消费者信心指数", params=params)
|
|
2314
879
|
return temp_df
|
|
2315
880
|
|
|
2316
881
|
|
|
2317
882
|
# 金十数据中心-经济指标-美国-领先指标-美国NFIB小型企业信心指数报告
|
|
2318
883
|
def macro_usa_nfib_small_business() -> pd.DataFrame:
|
|
2319
884
|
"""
|
|
2320
|
-
美国NFIB小型企业信心指数报告, 数据区间从19750201-至今
|
|
2321
|
-
https://
|
|
2322
|
-
:return: 美国NFIB
|
|
2323
|
-
:rtype: pandas.
|
|
885
|
+
美国NFIB小型企业信心指数报告, 数据区间从 19750201-至今
|
|
886
|
+
https://datacenter.jin10.com/reportType/dc_usa_nfib_small_business
|
|
887
|
+
:return: 美国NFIB小型企业信心指数报告
|
|
888
|
+
:rtype: pandas.DataFrame
|
|
2324
889
|
"""
|
|
2325
890
|
t = time.time()
|
|
2326
|
-
res = requests.get(
|
|
2327
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_nfib_small_business_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
2328
|
-
)
|
|
2329
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
2330
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
2331
|
-
value_list = [item["datas"]["美国NFIB小型企业信心指数报告"] for item in json_data["list"]]
|
|
2332
|
-
value_df = pd.DataFrame(value_list)
|
|
2333
|
-
value_df.columns = json_data["kinds"]
|
|
2334
|
-
value_df.index = pd.to_datetime(date_list)
|
|
2335
|
-
temp_df = value_df["今值"]
|
|
2336
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
2337
891
|
params = {
|
|
2338
892
|
"max_date": "",
|
|
2339
893
|
"category": "ec",
|
|
2340
894
|
"attr_id": "63",
|
|
2341
895
|
"_": str(int(round(t * 1000))),
|
|
2342
896
|
}
|
|
2343
|
-
|
|
2344
|
-
"
|
|
2345
|
-
|
|
2346
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
2347
|
-
"cache-control": "no-cache",
|
|
2348
|
-
"origin": "https://datacenter.jin10.com",
|
|
2349
|
-
"pragma": "no-cache",
|
|
2350
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
2351
|
-
"sec-fetch-dest": "empty",
|
|
2352
|
-
"sec-fetch-mode": "cors",
|
|
2353
|
-
"sec-fetch-site": "same-site",
|
|
2354
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
2355
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
2356
|
-
"x-csrf-token": "",
|
|
2357
|
-
"x-version": "1.0.0",
|
|
2358
|
-
}
|
|
2359
|
-
r = requests.get(url, params=params, headers=headers)
|
|
2360
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
2361
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
2362
|
-
temp_se = temp_se.iloc[:, 1]
|
|
2363
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
2364
|
-
temp_df.dropna(inplace=True)
|
|
2365
|
-
temp_df.sort_index(inplace=True)
|
|
2366
|
-
temp_df = temp_df.reset_index()
|
|
2367
|
-
temp_df.drop_duplicates(subset="index", keep="last", inplace=True)
|
|
2368
|
-
temp_df.set_index("index", inplace=True)
|
|
2369
|
-
temp_df = temp_df.squeeze()
|
|
2370
|
-
temp_df.index.name = None
|
|
2371
|
-
temp_df.name = "nfib_small_business"
|
|
2372
|
-
temp_df = temp_df.astype(float)
|
|
897
|
+
temp_df = __macro_usa_base_func(
|
|
898
|
+
symbol="美国NFIB小型企业信心指数报告", params=params
|
|
899
|
+
)
|
|
2373
900
|
return temp_df
|
|
2374
901
|
|
|
2375
902
|
|
|
2376
903
|
# 金十数据中心-经济指标-美国-领先指标-美国密歇根大学消费者信心指数初值报告
|
|
2377
904
|
def macro_usa_michigan_consumer_sentiment() -> pd.DataFrame:
|
|
2378
905
|
"""
|
|
2379
|
-
美国密歇根大学消费者信心指数初值报告, 数据区间从19700301-至今
|
|
906
|
+
美国密歇根大学消费者信心指数初值报告, 数据区间从 19700301-至今
|
|
2380
907
|
https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment
|
|
2381
|
-
:return:
|
|
2382
|
-
:rtype: pandas.
|
|
908
|
+
:return: 美国密歇根大学消费者信心指数初值报告
|
|
909
|
+
:rtype: pandas.DataFrame
|
|
2383
910
|
"""
|
|
2384
911
|
t = time.time()
|
|
2385
|
-
res = requests.get(
|
|
2386
|
-
f"https://cdn.jin10.com/dc/reports/dc_usa_michigan_consumer_sentiment_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}"
|
|
2387
|
-
)
|
|
2388
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
2389
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
2390
|
-
value_list = [item["datas"]["美国密歇根大学消费者信心指数初值报告"] for item in json_data["list"]]
|
|
2391
|
-
value_df = pd.DataFrame(value_list)
|
|
2392
|
-
value_df.columns = json_data["kinds"]
|
|
2393
|
-
value_df.index = pd.to_datetime(date_list)
|
|
2394
|
-
temp_df = value_df["今值"]
|
|
2395
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
2396
912
|
params = {
|
|
2397
913
|
"max_date": "",
|
|
2398
914
|
"category": "ec",
|
|
2399
915
|
"attr_id": "50",
|
|
2400
916
|
"_": str(int(round(t * 1000))),
|
|
2401
917
|
}
|
|
2402
|
-
|
|
2403
|
-
"
|
|
2404
|
-
|
|
2405
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
2406
|
-
"cache-control": "no-cache",
|
|
2407
|
-
"origin": "https://datacenter.jin10.com",
|
|
2408
|
-
"pragma": "no-cache",
|
|
2409
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
2410
|
-
"sec-fetch-dest": "empty",
|
|
2411
|
-
"sec-fetch-mode": "cors",
|
|
2412
|
-
"sec-fetch-site": "same-site",
|
|
2413
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
2414
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
2415
|
-
"x-csrf-token": "",
|
|
2416
|
-
"x-version": "1.0.0",
|
|
2417
|
-
}
|
|
2418
|
-
r = requests.get(url, params=params, headers=headers)
|
|
2419
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
2420
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
2421
|
-
temp_se = temp_se.iloc[:, 1]
|
|
2422
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
2423
|
-
temp_df.dropna(inplace=True)
|
|
2424
|
-
temp_df.sort_index(inplace=True)
|
|
2425
|
-
temp_df = temp_df.reset_index()
|
|
2426
|
-
temp_df.drop_duplicates(subset="index", keep="last", inplace=True)
|
|
2427
|
-
temp_df.set_index("index", inplace=True)
|
|
2428
|
-
temp_df = temp_df.squeeze()
|
|
2429
|
-
temp_df.index.name = None
|
|
2430
|
-
temp_df.name = "michigan_consumer_sentiment"
|
|
2431
|
-
temp_df = temp_df.astype(float)
|
|
918
|
+
temp_df = __macro_usa_base_func(
|
|
919
|
+
symbol="美国密歇根大学消费者信心指数初值报告", params=params
|
|
920
|
+
)
|
|
2432
921
|
return temp_df
|
|
2433
922
|
|
|
2434
923
|
|
|
2435
924
|
# 金十数据中心-经济指标-美国-其他-美国EIA原油库存报告
|
|
2436
925
|
def macro_usa_eia_crude_rate() -> pd.DataFrame:
|
|
2437
926
|
"""
|
|
2438
|
-
美国EIA原油库存报告, 数据区间从19950801-至今
|
|
927
|
+
美国 EIA 原油库存报告, 数据区间从 19950801-至今
|
|
2439
928
|
https://datacenter.jin10.com/reportType/dc_eia_crude_oil
|
|
2440
|
-
:return:
|
|
2441
|
-
|
|
2442
|
-
1982-10-01 -8
|
|
2443
|
-
1982-11-01 -41.3
|
|
2444
|
-
1982-12-01 -87.6
|
|
2445
|
-
1983-01-01 51.3
|
|
2446
|
-
...
|
|
2447
|
-
2019-10-02 310
|
|
2448
|
-
2019-10-09 292.7
|
|
2449
|
-
2019-10-16 0
|
|
2450
|
-
2019-10-17 928.1
|
|
2451
|
-
2019-10-23 0
|
|
929
|
+
:return: 美国 EIA 原油库存报告
|
|
930
|
+
:return: pandas.DataFrame
|
|
2452
931
|
"""
|
|
2453
932
|
t = time.time()
|
|
2454
|
-
res = requests.get(
|
|
2455
|
-
JS_USA_EIA_CRUDE_URL.format(
|
|
2456
|
-
str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)
|
|
2457
|
-
)
|
|
2458
|
-
)
|
|
2459
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
2460
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
2461
|
-
value_list = [item["datas"]["美国EIA原油库存(万桶)"] for item in json_data["list"]]
|
|
2462
|
-
value_df = pd.DataFrame(value_list)
|
|
2463
|
-
value_df.columns = json_data["kinds"]
|
|
2464
|
-
value_df.index = pd.to_datetime(date_list)
|
|
2465
|
-
temp_df = value_df["今值(万桶)"]
|
|
2466
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
2467
933
|
params = {
|
|
2468
934
|
"max_date": "",
|
|
2469
935
|
"category": "ec",
|
|
2470
936
|
"attr_id": "10",
|
|
2471
937
|
"_": str(int(round(t * 1000))),
|
|
2472
938
|
}
|
|
2473
|
-
|
|
2474
|
-
"accept": "*/*",
|
|
2475
|
-
"accept-encoding": "gzip, deflate, br",
|
|
2476
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
2477
|
-
"cache-control": "no-cache",
|
|
2478
|
-
"origin": "https://datacenter.jin10.com",
|
|
2479
|
-
"pragma": "no-cache",
|
|
2480
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
2481
|
-
"sec-fetch-dest": "empty",
|
|
2482
|
-
"sec-fetch-mode": "cors",
|
|
2483
|
-
"sec-fetch-site": "same-site",
|
|
2484
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
2485
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
2486
|
-
"x-csrf-token": "",
|
|
2487
|
-
"x-version": "1.0.0",
|
|
2488
|
-
}
|
|
2489
|
-
r = requests.get(url, params=params, headers=headers)
|
|
2490
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
2491
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
2492
|
-
temp_se = temp_se.iloc[:, 1]
|
|
2493
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
2494
|
-
temp_df.dropna(inplace=True)
|
|
2495
|
-
temp_df.sort_index(inplace=True)
|
|
2496
|
-
temp_df = temp_df.reset_index()
|
|
2497
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
2498
|
-
temp_df.set_index("index", inplace=True)
|
|
2499
|
-
temp_df = temp_df.squeeze()
|
|
2500
|
-
temp_df.index.name = None
|
|
2501
|
-
temp_df.name = "eia_crude_rate"
|
|
2502
|
-
temp_df = temp_df.astype("float")
|
|
939
|
+
temp_df = __macro_usa_base_func(symbol="美国EIA原油库存", params=params)
|
|
2503
940
|
return temp_df
|
|
2504
941
|
|
|
2505
942
|
|
|
2506
943
|
# 金十数据中心-经济指标-美国-其他-美国初请失业金人数报告
|
|
2507
944
|
def macro_usa_initial_jobless() -> pd.DataFrame:
|
|
2508
945
|
"""
|
|
2509
|
-
美国初请失业金人数报告, 数据区间从19700101-至今
|
|
2510
|
-
|
|
2511
|
-
|
|
2512
|
-
|
|
2513
|
-
1970-03-01 25.85
|
|
2514
|
-
1970-04-01 26.8682
|
|
2515
|
-
1970-05-01 33.1591
|
|
2516
|
-
...
|
|
2517
|
-
2019-09-26 21.5
|
|
2518
|
-
2019-10-03 22
|
|
2519
|
-
2019-10-10 21
|
|
2520
|
-
2019-10-17 21.4
|
|
2521
|
-
2019-10-24 0
|
|
946
|
+
美国初请失业金人数报告, 数据区间从 19700101-至今
|
|
947
|
+
https://datacenter.jin10.com/reportType/dc_initial_jobless
|
|
948
|
+
:return: 美国 EIA 原油库存报告
|
|
949
|
+
:return: pandas.DataFrame
|
|
2522
950
|
"""
|
|
2523
951
|
t = time.time()
|
|
2524
|
-
res = requests.get(
|
|
2525
|
-
JS_USA_INITIAL_JOBLESS_URL.format(
|
|
2526
|
-
str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)
|
|
2527
|
-
)
|
|
2528
|
-
)
|
|
2529
|
-
json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1])
|
|
2530
|
-
date_list = [item["date"] for item in json_data["list"]]
|
|
2531
|
-
value_list = [item["datas"]["美国初请失业金人数(万人)"] for item in json_data["list"]]
|
|
2532
|
-
value_df = pd.DataFrame(value_list)
|
|
2533
|
-
value_df.columns = json_data["kinds"]
|
|
2534
|
-
value_df.index = pd.to_datetime(date_list)
|
|
2535
|
-
temp_df = value_df["今值(万人)"]
|
|
2536
|
-
url = "https://datacenter-api.jin10.com/reports/list_v2"
|
|
2537
952
|
params = {
|
|
2538
953
|
"max_date": "",
|
|
2539
954
|
"category": "ec",
|
|
2540
955
|
"attr_id": "44",
|
|
2541
956
|
"_": str(int(round(t * 1000))),
|
|
2542
957
|
}
|
|
2543
|
-
|
|
2544
|
-
"accept": "*/*",
|
|
2545
|
-
"accept-encoding": "gzip, deflate, br",
|
|
2546
|
-
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
|
|
2547
|
-
"cache-control": "no-cache",
|
|
2548
|
-
"origin": "https://datacenter.jin10.com",
|
|
2549
|
-
"pragma": "no-cache",
|
|
2550
|
-
"referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment",
|
|
2551
|
-
"sec-fetch-dest": "empty",
|
|
2552
|
-
"sec-fetch-mode": "cors",
|
|
2553
|
-
"sec-fetch-site": "same-site",
|
|
2554
|
-
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
|
|
2555
|
-
"x-app-id": "rU6QIu7JHe2gOUeR",
|
|
2556
|
-
"x-csrf-token": "",
|
|
2557
|
-
"x-version": "1.0.0",
|
|
2558
|
-
}
|
|
2559
|
-
r = requests.get(url, params=params, headers=headers)
|
|
2560
|
-
temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2]
|
|
2561
|
-
temp_se.index = pd.to_datetime(temp_se.iloc[:, 0])
|
|
2562
|
-
temp_se = temp_se.iloc[:, 1]
|
|
2563
|
-
temp_df = pd.concat([temp_df, temp_se])
|
|
2564
|
-
temp_df.dropna(inplace=True)
|
|
2565
|
-
temp_df.sort_index(inplace=True)
|
|
2566
|
-
temp_df = temp_df.reset_index()
|
|
2567
|
-
temp_df.drop_duplicates(subset="index", inplace=True)
|
|
2568
|
-
temp_df.set_index("index", inplace=True)
|
|
2569
|
-
temp_df = temp_df.squeeze()
|
|
2570
|
-
temp_df.index.name = None
|
|
2571
|
-
temp_df.name = "initial_jobless"
|
|
2572
|
-
temp_df = temp_df.astype("float")
|
|
958
|
+
temp_df = __macro_usa_base_func(symbol="美国初请失业金人数", params=params)
|
|
2573
959
|
return temp_df
|
|
2574
960
|
|
|
2575
961
|
|
|
2576
962
|
# 金十数据中心-经济指标-美国-其他-美国原油产量报告
|
|
2577
963
|
def macro_usa_crude_inner() -> pd.DataFrame:
|
|
2578
964
|
"""
|
|
2579
|
-
美国原油产量报告, 数据区间从19830107-至今
|
|
965
|
+
美国原油产量报告, 数据区间从 19830107-至今
|
|
2580
966
|
https://datacenter.jin10.com/reportType/dc_eia_crude_oil_produce
|
|
2581
|
-
:return:
|
|
2582
|
-
|
|
2583
|
-
1983-01-14 863.40
|
|
2584
|
-
1983-01-21 863.40
|
|
2585
|
-
1983-01-28 863.40
|
|
2586
|
-
1983-02-04 866.00
|
|
2587
|
-
...
|
|
2588
|
-
2019-09-20 1250.00
|
|
2589
|
-
2019-09-27 1240.00
|
|
2590
|
-
2019-10-04 1260.00
|
|
2591
|
-
2019-10-11 1260.00
|
|
2592
|
-
2019-10-18 1260.00
|
|
967
|
+
:return: 美国原油产量报告
|
|
968
|
+
:return: pandas.DataFrame
|
|
2593
969
|
"""
|
|
2594
970
|
t = time.time()
|
|
2595
971
|
params = {"_": t}
|
|
2596
972
|
res = requests.get(
|
|
2597
|
-
"https://cdn.jin10.com/data_center/reports/usa_oil.json", params=params
|
|
973
|
+
url="https://cdn.jin10.com/data_center/reports/usa_oil.json", params=params
|
|
2598
974
|
)
|
|
2599
975
|
temp_df = pd.DataFrame(res.json().get("values")).T
|
|
2600
976
|
big_df = pd.DataFrame()
|
|
2601
|
-
big_df["
|
|
2602
|
-
big_df["
|
|
2603
|
-
big_df["美国本土48
|
|
2604
|
-
|
|
2605
|
-
|
|
2606
|
-
big_df["
|
|
977
|
+
big_df["美国国内原油总量-产量"] = temp_df["美国国内原油总量"].apply(lambda x: x[0])
|
|
978
|
+
big_df["美国国内原油总量-变化"] = temp_df["美国国内原油总量"].apply(lambda x: x[1])
|
|
979
|
+
big_df["美国本土48州原油产量-产量"] = temp_df["美国本土48州原油产量"].apply(
|
|
980
|
+
lambda x: x[0]
|
|
981
|
+
)
|
|
982
|
+
big_df["美国本土48州原油产量-变化"] = temp_df["美国本土48州原油产量"].apply(
|
|
983
|
+
lambda x: x[1]
|
|
984
|
+
)
|
|
985
|
+
big_df["美国阿拉斯加州原油产量-产量"] = temp_df["美国阿拉斯加州原油产量"].apply(
|
|
986
|
+
lambda x: x[0]
|
|
987
|
+
)
|
|
988
|
+
big_df["美国阿拉斯加州原油产量-变化"] = temp_df["美国阿拉斯加州原油产量"].apply(
|
|
989
|
+
lambda x: x[1]
|
|
990
|
+
)
|
|
2607
991
|
big_df = big_df.astype("float")
|
|
992
|
+
big_df.reset_index(inplace=True)
|
|
993
|
+
big_df.rename(columns={"index": "日期"}, inplace=True)
|
|
994
|
+
big_df.sort_values(by=["日期"], ignore_index=True, inplace=True)
|
|
2608
995
|
return big_df
|
|
2609
996
|
|
|
2610
997
|
|
|
@@ -2613,24 +1000,27 @@ def macro_usa_cftc_nc_holding() -> pd.DataFrame:
|
|
|
2613
1000
|
"""
|
|
2614
1001
|
美国商品期货交易委员会CFTC外汇类非商业持仓报告, 数据区间从 19830107-至今
|
|
2615
1002
|
https://datacenter.jin10.com/reportType/dc_cftc_nc_report
|
|
2616
|
-
|
|
1003
|
+
:return: 美国商品期货交易委员会CFTC外汇类非商业持仓报告
|
|
2617
1004
|
:return: pandas.DataFrame
|
|
2618
1005
|
"""
|
|
2619
1006
|
t = time.time()
|
|
2620
1007
|
params = {"_": str(int(round(t * 1000)))}
|
|
2621
1008
|
r = requests.get(
|
|
2622
|
-
"https://cdn.jin10.com/data_center/reports/cftc_4.json", params=params
|
|
1009
|
+
url="https://cdn.jin10.com/data_center/reports/cftc_4.json", params=params
|
|
2623
1010
|
)
|
|
2624
1011
|
json_data = r.json()
|
|
2625
1012
|
temp_df = pd.DataFrame(json_data["values"]).T
|
|
2626
|
-
temp_df.fillna("[0, 0, 0]", inplace=True)
|
|
1013
|
+
temp_df.fillna(value="[0, 0, 0]", inplace=True)
|
|
2627
1014
|
big_df = pd.DataFrame()
|
|
2628
1015
|
for item in temp_df.columns:
|
|
2629
1016
|
for i in range(3):
|
|
2630
1017
|
inner_temp_df = temp_df.loc[:, item].apply(lambda x: eval(str(x))[i])
|
|
2631
1018
|
inner_temp_df.name = inner_temp_df.name + "-" + json_data["keys"][i]["name"]
|
|
2632
|
-
big_df = pd.concat([big_df, inner_temp_df], axis=1)
|
|
2633
|
-
big_df.
|
|
1019
|
+
big_df = pd.concat(objs=[big_df, inner_temp_df], axis=1)
|
|
1020
|
+
big_df = big_df.astype("float")
|
|
1021
|
+
big_df.reset_index(inplace=True)
|
|
1022
|
+
big_df.rename(columns={"index": "日期"}, inplace=True)
|
|
1023
|
+
big_df.sort_values(by=["日期"], ignore_index=True, inplace=True)
|
|
2634
1024
|
return big_df
|
|
2635
1025
|
|
|
2636
1026
|
|
|
@@ -2639,24 +1029,27 @@ def macro_usa_cftc_c_holding() -> pd.DataFrame:
|
|
|
2639
1029
|
"""
|
|
2640
1030
|
美国商品期货交易委员会CFTC商品类非商业持仓报告, 数据区间从 19830107-至今
|
|
2641
1031
|
https://datacenter.jin10.com/reportType/dc_cftc_c_report
|
|
2642
|
-
|
|
1032
|
+
:return: 美国商品期货交易委员会CFTC外汇类非商业持仓报告
|
|
2643
1033
|
:return: pandas.DataFrame
|
|
2644
1034
|
"""
|
|
2645
1035
|
t = time.time()
|
|
2646
1036
|
params = {"_": str(int(round(t * 1000)))}
|
|
2647
1037
|
r = requests.get(
|
|
2648
|
-
"https://cdn.jin10.com/data_center/reports/cftc_2.json", params=params
|
|
1038
|
+
url="https://cdn.jin10.com/data_center/reports/cftc_2.json", params=params
|
|
2649
1039
|
)
|
|
2650
1040
|
json_data = r.json()
|
|
2651
1041
|
temp_df = pd.DataFrame(json_data["values"]).T
|
|
2652
|
-
temp_df.fillna("[0, 0, 0]", inplace=True)
|
|
1042
|
+
temp_df.fillna(value="[0, 0, 0]", inplace=True)
|
|
2653
1043
|
big_df = pd.DataFrame()
|
|
2654
1044
|
for item in temp_df.columns:
|
|
2655
1045
|
for i in range(3):
|
|
2656
1046
|
inner_temp_df = temp_df.loc[:, item].apply(lambda x: eval(str(x))[i])
|
|
2657
1047
|
inner_temp_df.name = inner_temp_df.name + "-" + json_data["keys"][i]["name"]
|
|
2658
|
-
big_df = pd.concat([big_df, inner_temp_df], axis=1)
|
|
2659
|
-
big_df.
|
|
1048
|
+
big_df = pd.concat(objs=[big_df, inner_temp_df], axis=1)
|
|
1049
|
+
big_df = big_df.astype("float")
|
|
1050
|
+
big_df.reset_index(inplace=True)
|
|
1051
|
+
big_df.rename(columns={"index": "日期"}, inplace=True)
|
|
1052
|
+
big_df.sort_values(by=["日期"], ignore_index=True, inplace=True)
|
|
2660
1053
|
return big_df
|
|
2661
1054
|
|
|
2662
1055
|
|
|
@@ -2665,24 +1058,27 @@ def macro_usa_cftc_merchant_currency_holding() -> pd.DataFrame:
|
|
|
2665
1058
|
"""
|
|
2666
1059
|
美国商品期货交易委员会CFTC外汇类商业持仓报告, 数据区间从 19860115-至今
|
|
2667
1060
|
https://datacenter.jin10.com/reportType/dc_cftc_merchant_currency
|
|
2668
|
-
|
|
1061
|
+
:return: 美国商品期货交易委员会CFTC外汇类商业持仓报告
|
|
2669
1062
|
:return: pandas.DataFrame
|
|
2670
1063
|
"""
|
|
2671
1064
|
t = time.time()
|
|
2672
1065
|
params = {"_": str(int(round(t * 1000)))}
|
|
2673
1066
|
r = requests.get(
|
|
2674
|
-
"https://cdn.jin10.com/data_center/reports/cftc_3.json", params=params
|
|
1067
|
+
url="https://cdn.jin10.com/data_center/reports/cftc_3.json", params=params
|
|
2675
1068
|
)
|
|
2676
1069
|
json_data = r.json()
|
|
2677
1070
|
temp_df = pd.DataFrame(json_data["values"]).T
|
|
2678
|
-
temp_df.fillna("[0, 0, 0]", inplace=True)
|
|
1071
|
+
temp_df.fillna(value="[0, 0, 0]", inplace=True)
|
|
2679
1072
|
big_df = pd.DataFrame()
|
|
2680
1073
|
for item in temp_df.columns:
|
|
2681
1074
|
for i in range(3):
|
|
2682
1075
|
inner_temp_df = temp_df.loc[:, item].apply(lambda x: eval(str(x))[i])
|
|
2683
1076
|
inner_temp_df.name = inner_temp_df.name + "-" + json_data["keys"][i]["name"]
|
|
2684
|
-
big_df = pd.concat([big_df, inner_temp_df], axis=1)
|
|
2685
|
-
big_df.
|
|
1077
|
+
big_df = pd.concat(objs=[big_df, inner_temp_df], axis=1)
|
|
1078
|
+
big_df = big_df.astype("float")
|
|
1079
|
+
big_df.reset_index(inplace=True)
|
|
1080
|
+
big_df.rename(columns={"index": "日期"}, inplace=True)
|
|
1081
|
+
big_df.sort_values(by=["日期"], ignore_index=True, inplace=True)
|
|
2686
1082
|
return big_df
|
|
2687
1083
|
|
|
2688
1084
|
|
|
@@ -2691,53 +1087,55 @@ def macro_usa_cftc_merchant_goods_holding() -> pd.DataFrame:
|
|
|
2691
1087
|
"""
|
|
2692
1088
|
美国商品期货交易委员会CFTC商品类商业持仓报告, 数据区间从 19860115-至今
|
|
2693
1089
|
https://datacenter.jin10.com/reportType/dc_cftc_merchant_goods
|
|
2694
|
-
https://cdn.jin10.com/data_center/reports/cftc_1.json?_=1591536502095
|
|
2695
1090
|
:return: 美国商品期货交易委员会CFTC商品类商业持仓报告
|
|
2696
1091
|
:rtype: pandas.DataFrame
|
|
2697
1092
|
"""
|
|
2698
1093
|
t = time.time()
|
|
2699
1094
|
params = {"_": str(int(round(t * 1000)))}
|
|
2700
1095
|
r = requests.get(
|
|
2701
|
-
"https://cdn.jin10.com/data_center/reports/cftc_1.json", params=params
|
|
1096
|
+
url="https://cdn.jin10.com/data_center/reports/cftc_1.json", params=params
|
|
2702
1097
|
)
|
|
2703
1098
|
json_data = r.json()
|
|
2704
1099
|
temp_df = pd.DataFrame(json_data["values"]).T
|
|
2705
|
-
temp_df.fillna("[0, 0, 0]", inplace=True)
|
|
1100
|
+
temp_df.fillna(value="[0, 0, 0]", inplace=True)
|
|
2706
1101
|
big_df = pd.DataFrame()
|
|
2707
1102
|
for item in temp_df.columns:
|
|
2708
1103
|
for i in range(3):
|
|
2709
1104
|
inner_temp_df = temp_df.loc[:, item].apply(lambda x: eval(str(x))[i])
|
|
2710
1105
|
inner_temp_df.name = inner_temp_df.name + "-" + json_data["keys"][i]["name"]
|
|
2711
|
-
big_df = pd.concat([big_df, inner_temp_df], axis=1)
|
|
2712
|
-
big_df.
|
|
1106
|
+
big_df = pd.concat(objs=[big_df, inner_temp_df], axis=1)
|
|
1107
|
+
big_df = big_df.astype("float")
|
|
1108
|
+
big_df.reset_index(inplace=True)
|
|
1109
|
+
big_df.rename(columns={"index": "日期"}, inplace=True)
|
|
1110
|
+
big_df.sort_values(by=["日期"], ignore_index=True, inplace=True)
|
|
2713
1111
|
return big_df
|
|
2714
1112
|
|
|
2715
1113
|
|
|
2716
1114
|
# 金十数据中心-CME-贵金属
|
|
2717
|
-
|
|
2718
|
-
|
|
2719
|
-
|
|
2720
|
-
|
|
2721
|
-
|
|
2722
|
-
|
|
2723
|
-
|
|
2724
|
-
|
|
2725
|
-
|
|
2726
|
-
|
|
2727
|
-
|
|
2728
|
-
|
|
2729
|
-
|
|
2730
|
-
|
|
2731
|
-
|
|
2732
|
-
|
|
2733
|
-
|
|
2734
|
-
|
|
2735
|
-
|
|
2736
|
-
|
|
2737
|
-
|
|
2738
|
-
|
|
2739
|
-
|
|
2740
|
-
|
|
1115
|
+
def macro_usa_cme_merchant_goods_holding():
|
|
1116
|
+
"""
|
|
1117
|
+
CME-贵金属, 数据区间从 20180405-至今
|
|
1118
|
+
https://datacenter.jin10.com/org
|
|
1119
|
+
:return: CME-贵金属
|
|
1120
|
+
:return: pandas.DataFrame
|
|
1121
|
+
"""
|
|
1122
|
+
t = time.time()
|
|
1123
|
+
params = {"_": str(int(round(t * 1000)))}
|
|
1124
|
+
r = requests.get(
|
|
1125
|
+
url="https://cdn.jin10.com/data_center/reports/cme_3.json", params=params
|
|
1126
|
+
)
|
|
1127
|
+
json_data = r.json()
|
|
1128
|
+
big_df = pd.DataFrame()
|
|
1129
|
+
for item in json_data["values"].keys():
|
|
1130
|
+
temp_df = pd.DataFrame(json_data["values"][item])
|
|
1131
|
+
temp_df["日期"] = item
|
|
1132
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
1133
|
+
|
|
1134
|
+
big_df.columns = ["pz", "tc", "-", "-", "-", "成交量", "-", "-", "日期"]
|
|
1135
|
+
big_df["品种"] = big_df["pz"] + "-" + big_df["tc"]
|
|
1136
|
+
big_df = big_df[["日期", "品种", "成交量"]]
|
|
1137
|
+
big_df.sort_values(["日期"], ignore_index=True, inplace=True)
|
|
1138
|
+
return big_df
|
|
2741
1139
|
|
|
2742
1140
|
|
|
2743
1141
|
if __name__ == "__main__":
|
|
@@ -2748,100 +1146,131 @@ if __name__ == "__main__":
|
|
|
2748
1146
|
# 金十数据中心-经济指标-美国-经济状况-美国GDP
|
|
2749
1147
|
macro_usa_gdp_monthly_df = macro_usa_gdp_monthly()
|
|
2750
1148
|
print(macro_usa_gdp_monthly_df)
|
|
1149
|
+
|
|
2751
1150
|
# 金十数据中心-经济指标-美国-物价水平-美国CPI月率报告
|
|
2752
1151
|
macro_usa_cpi_monthly_df = macro_usa_cpi_monthly()
|
|
2753
1152
|
print(macro_usa_cpi_monthly_df)
|
|
1153
|
+
|
|
2754
1154
|
# 金十数据中心-经济指标-美国-物价水平-美国核心CPI月率报告
|
|
2755
1155
|
macro_usa_core_cpi_monthly_df = macro_usa_core_cpi_monthly()
|
|
2756
1156
|
print(macro_usa_core_cpi_monthly_df)
|
|
1157
|
+
|
|
2757
1158
|
# 金十数据中心-经济指标-美国-物价水平-美国个人支出月率报告
|
|
2758
1159
|
macro_usa_personal_spending_df = macro_usa_personal_spending()
|
|
2759
1160
|
print(macro_usa_personal_spending_df)
|
|
1161
|
+
|
|
2760
1162
|
# 金十数据中心-经济指标-美国-物价水平-美国零售销售月率报告
|
|
2761
1163
|
macro_usa_retail_sales_df = macro_usa_retail_sales()
|
|
2762
1164
|
print(macro_usa_retail_sales_df)
|
|
1165
|
+
|
|
2763
1166
|
# 金十数据中心-经济指标-美国-物价水平-美国进口物价指数报告
|
|
2764
1167
|
macro_usa_import_price_df = macro_usa_import_price()
|
|
2765
1168
|
print(macro_usa_import_price_df)
|
|
1169
|
+
|
|
2766
1170
|
# 金十数据中心-经济指标-美国-物价水平-美国出口价格指数报告
|
|
2767
1171
|
macro_usa_export_price_df = macro_usa_export_price()
|
|
2768
1172
|
print(macro_usa_export_price_df)
|
|
1173
|
+
|
|
2769
1174
|
# 金十数据中心-经济指标-美国-劳动力市场-LMCI
|
|
2770
1175
|
macro_usa_lmci_df = macro_usa_lmci()
|
|
2771
1176
|
print(macro_usa_lmci_df)
|
|
1177
|
+
|
|
2772
1178
|
# 金十数据中心-经济指标-美国-劳动力市场-失业率-美国失业率报告
|
|
2773
1179
|
macro_usa_unemployment_rate_df = macro_usa_unemployment_rate()
|
|
2774
1180
|
print(macro_usa_unemployment_rate_df)
|
|
1181
|
+
|
|
2775
1182
|
# 金十数据中心-经济指标-美国-劳动力市场-失业率-美国挑战者企业裁员人数报告
|
|
2776
1183
|
macro_usa_job_cuts_df = macro_usa_job_cuts()
|
|
2777
1184
|
print(macro_usa_job_cuts_df)
|
|
1185
|
+
|
|
2778
1186
|
# 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国非农就业人数报告
|
|
2779
1187
|
macro_usa_non_farm_df = macro_usa_non_farm()
|
|
2780
1188
|
print(macro_usa_non_farm_df)
|
|
1189
|
+
|
|
2781
1190
|
# 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国ADP就业人数报告
|
|
2782
1191
|
macro_usa_adp_employment_df = macro_usa_adp_employment()
|
|
2783
1192
|
print(macro_usa_adp_employment_df)
|
|
1193
|
+
|
|
2784
1194
|
# 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国核心PCE物价指数年率报告
|
|
2785
1195
|
macro_usa_core_pce_price_df = macro_usa_core_pce_price()
|
|
2786
1196
|
print(macro_usa_core_pce_price_df)
|
|
1197
|
+
|
|
2787
1198
|
# 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国实际个人消费支出季率初值报告
|
|
2788
1199
|
macro_usa_real_consumer_spending_df = macro_usa_real_consumer_spending()
|
|
2789
1200
|
print(macro_usa_real_consumer_spending_df)
|
|
1201
|
+
|
|
2790
1202
|
# 金十数据中心-经济指标-美国-贸易状况-美国贸易帐报告
|
|
2791
1203
|
macro_usa_trade_balance_df = macro_usa_trade_balance()
|
|
2792
1204
|
print(macro_usa_trade_balance_df)
|
|
1205
|
+
|
|
2793
1206
|
# 金十数据中心-经济指标-美国-贸易状况-美国经常帐报告
|
|
2794
1207
|
macro_usa_current_account_df = macro_usa_current_account()
|
|
2795
1208
|
print(macro_usa_current_account_df)
|
|
1209
|
+
|
|
2796
1210
|
# 金十数据中心-经济指标-美国-产业指标-制造业-贝克休斯钻井报告
|
|
2797
1211
|
macro_usa_rig_count_df = macro_usa_rig_count()
|
|
2798
1212
|
print(macro_usa_rig_count_df)
|
|
2799
|
-
|
|
1213
|
+
|
|
2800
1214
|
# 金十数据中心-经济指标-美国-产业指标-制造业-美国生产者物价指数(PPI)报告
|
|
2801
1215
|
macro_usa_ppi_df = macro_usa_ppi()
|
|
2802
1216
|
print(macro_usa_ppi_df)
|
|
1217
|
+
|
|
2803
1218
|
# 金十数据中心-经济指标-美国-产业指标-制造业-美国核心生产者物价指数(PPI)报告
|
|
2804
1219
|
macro_usa_core_ppi_df = macro_usa_core_ppi()
|
|
2805
1220
|
print(macro_usa_core_ppi_df)
|
|
1221
|
+
|
|
2806
1222
|
# 金十数据中心-经济指标-美国-产业指标-制造业-美国API原油库存报告
|
|
2807
1223
|
macro_usa_api_crude_stock_df = macro_usa_api_crude_stock()
|
|
2808
1224
|
print(macro_usa_api_crude_stock_df)
|
|
1225
|
+
|
|
2809
1226
|
# 金十数据中心-经济指标-美国-产业指标-制造业-美国Markit制造业PMI初值报告
|
|
2810
1227
|
macro_usa_pmi_df = macro_usa_pmi()
|
|
2811
1228
|
print(macro_usa_pmi_df)
|
|
1229
|
+
|
|
2812
1230
|
# 金十数据中心-经济指标-美国-产业指标-制造业-美国ISM制造业PMI报告
|
|
2813
1231
|
macro_usa_ism_pmi_df = macro_usa_ism_pmi()
|
|
2814
1232
|
print(macro_usa_ism_pmi_df)
|
|
1233
|
+
|
|
2815
1234
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国NAHB房产市场指数报告
|
|
2816
1235
|
macro_usa_nahb_house_market_index_df = macro_usa_nahb_house_market_index()
|
|
2817
1236
|
print(macro_usa_nahb_house_market_index_df)
|
|
1237
|
+
|
|
2818
1238
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋开工总数年化报告
|
|
2819
1239
|
macro_usa_house_starts_df = macro_usa_house_starts()
|
|
2820
1240
|
print(macro_usa_house_starts_df)
|
|
1241
|
+
|
|
2821
1242
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋销售总数年化报告
|
|
2822
1243
|
macro_usa_new_home_sales_df = macro_usa_new_home_sales()
|
|
2823
1244
|
print(macro_usa_new_home_sales_df)
|
|
1245
|
+
|
|
2824
1246
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国营建许可总数报告
|
|
2825
1247
|
macro_usa_building_permits_df = macro_usa_building_permits()
|
|
2826
1248
|
print(macro_usa_building_permits_df)
|
|
1249
|
+
|
|
2827
1250
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋销售总数年化报告
|
|
2828
1251
|
macro_usa_exist_home_sales_df = macro_usa_exist_home_sales()
|
|
2829
1252
|
print(macro_usa_exist_home_sales_df)
|
|
1253
|
+
|
|
2830
1254
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国FHFA房价指数月率报告
|
|
2831
1255
|
macro_usa_house_price_index_df = macro_usa_house_price_index()
|
|
2832
1256
|
print(macro_usa_house_price_index_df)
|
|
1257
|
+
|
|
2833
1258
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国S&P/CS20座大城市房价指数年率报告
|
|
2834
1259
|
macro_usa_spcs20_df = macro_usa_spcs20()
|
|
2835
1260
|
print(macro_usa_spcs20_df)
|
|
1261
|
+
|
|
2836
1262
|
# 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋签约销售指数月率报告
|
|
2837
1263
|
macro_usa_pending_home_sales_df = macro_usa_pending_home_sales()
|
|
2838
1264
|
print(macro_usa_pending_home_sales_df)
|
|
1265
|
+
|
|
2839
1266
|
# 金十数据中心-经济指标-美国-领先指标-美国谘商会消费者信心指数报告
|
|
2840
1267
|
macro_usa_cb_consumer_confidence_df = macro_usa_cb_consumer_confidence()
|
|
2841
1268
|
print(macro_usa_cb_consumer_confidence_df)
|
|
1269
|
+
|
|
2842
1270
|
# 金十数据中心-经济指标-美国-领先指标-美国NFIB小型企业信心指数报告
|
|
2843
1271
|
macro_usa_nfib_small_business_df = macro_usa_nfib_small_business()
|
|
2844
1272
|
print(macro_usa_nfib_small_business_df)
|
|
1273
|
+
|
|
2845
1274
|
# 金十数据中心-经济指标-美国-领先指标-美国密歇根大学消费者信心指数初值报告
|
|
2846
1275
|
macro_usa_michigan_consumer_sentiment_df = macro_usa_michigan_consumer_sentiment()
|
|
2847
1276
|
print(macro_usa_michigan_consumer_sentiment_df)
|
|
@@ -2861,14 +1290,21 @@ if __name__ == "__main__":
|
|
|
2861
1290
|
# 金十数据中心-美国商品期货交易委员会CFTC外汇类非商业持仓报告
|
|
2862
1291
|
macro_usa_cftc_nc_holding_df = macro_usa_cftc_nc_holding()
|
|
2863
1292
|
print(macro_usa_cftc_nc_holding_df)
|
|
1293
|
+
|
|
2864
1294
|
# 金十数据中心-美国商品期货交易委员会CFTC商品类非商业持仓报告
|
|
2865
1295
|
macro_usa_cftc_c_holding_df = macro_usa_cftc_c_holding()
|
|
2866
1296
|
print(macro_usa_cftc_c_holding_df)
|
|
1297
|
+
|
|
2867
1298
|
# 金十数据中心-美国商品期货交易委员会CFTC外汇类商业持仓报告
|
|
2868
1299
|
macro_usa_cftc_merchant_currency_holding_df = (
|
|
2869
1300
|
macro_usa_cftc_merchant_currency_holding()
|
|
2870
1301
|
)
|
|
2871
1302
|
print(macro_usa_cftc_merchant_currency_holding_df)
|
|
1303
|
+
|
|
2872
1304
|
# 金十数据中心-美国商品期货交易委员会CFTC商品类商业持仓报告
|
|
2873
1305
|
macro_usa_cftc_merchant_goods_holding_df = macro_usa_cftc_merchant_goods_holding()
|
|
2874
1306
|
print(macro_usa_cftc_merchant_goods_holding_df)
|
|
1307
|
+
|
|
1308
|
+
# 金十数据中心-CME-贵金属
|
|
1309
|
+
macro_usa_cme_merchant_goods_holding_df = macro_usa_cme_merchant_goods_holding()
|
|
1310
|
+
print(macro_usa_cme_merchant_goods_holding_df)
|